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1. INTRODUCTION

What is the meaning of the quantum state |¢)7

- Is it an objective property of a single system? («-ontology)

- Or is it only a tool to calculate probability? (i-epistemology)
Or is it both?

What does it even mean that a property is “objective” ?
(precise definition)

- Many brilliant physicists (Bohr, Einstein, ...) tried to answer,
but a generally accepted answer has not been produced.

- Discussions of such questions have a bad reputation
(on the borderline between science and philosophy).

- We need a clever reformulation of the problem,
to make it more scientific and less philosophical.

- The PBR theorem (2012) is an important step in that direction.



What is PBR theorem?

The theorem proved by M.F. Pusey, J. Barrett, T. Rudolph,
in Nature Phys. 8, 476 (2012); arXiv:1111.3328 (v3).

Consists of

1. Mathematical definition of the difference between
“ontological” and “epistemological’ .

2. Technical proof (with the aid some auxiliary assumptions)
QM = [v¢) is ontological (objectively real)!

Conclusion also confirmed by a recent experiment:
D. Nigg et al, arXiv:1211.0942.
- confirms QM, and thus reality of |¢).



2. (NOT ONLY SCIENTIFIC)
HISTORY OF THE PROBLEM

- Einstein 1926: “God does not play dice.”

- But later (contrary to wide misbelief) Einstein did not insist
on determinism.

- He insisted on reality:

Physical systems have properties even when we don't measure them.

This is in contrast with Copenhagen view of uncertainty relations:
In momentum-eigenstate |p), the position = is not merely unknown;
instead, the particle does not even have position x.

If it looks too philosophical ...



. to argue that he is right, Einstein proposed many
thought experiments.

Two most famous ones:

- Einstein photon-in-a-box paradox (1930)

- Einstein-Podolsky-Rosen paradox (1935)

(Recently realized that they are equivalent: Dieks and Lam 2008, Nikoli¢ 2012.)



Breakthrough by Bell theorem (1964):
If reality )\ exists (whatever it is), it must necessarily be non-local.

- This elevated the problem to a higher scientific level.
- However, it does not tell whether A\ exists, nor what it is.

Different interpretations of QM suggest different answers:

1. Copenhagen-collapse interpretation (von Neumann 1932):
- A=

- measurement causes collapse of ¢ (not explained why?)

- the collapse is non-local

2. Copenhagen-information interpretation

- A does not exist

- 1 is not real, only a tool to calculate probability
- collapse is just our update of knowledge

3. Copenhagen-Bohr interpretation

- 9 is real, but only on the microscopic level

- there is a fundamental border between micro and macro
- not specified where that border is?



4. Copenhagen-pragmatic interpretation
- shut up and calculate
- most popular among practical physicists

5. Bohm interpretation (1952)

- A= (¢,z) (both ¢ and particle position x separately exist)
trajectory x(t) guided by

1 does not collapse

x(t) satisfy non-local equations of motion

6. Many-world interpretation (Everett, 1957)
-\ = w

- 1 does not collapse

- all branches of ) are real

7. Statistical ensemble interpretation (Ballentine, 1970):

- 1) is not real, i.e., not a property of an individual system

- 1 is a property of a statistical ensemble of many
similarly prepared systems

- A might exist, but does not tell what it is

How to know who is right?



3. PBR THEOREM: MAIN IDEAS

New breakthrough (similar to the Bell theorem):

PBR theorem (2012)

- The most serious attempt so far to actually prove that

Y is real

(Note, however, that the theorem does not say that
1 is fundamental, or that v is the only reality.)

- But what does it even mean to prove that “something is real’?
- We need to define the meaning of the words

“something is real”

in a precise way, such that a rigorous theorem is possible.



Example from classical probability - coin flipping:

To make it non-trivial, assume unfair coin flipping

p(head) #= p(tail)
- Are p(head) and p(tail) intrinsic properties of a single coin?
- If they are, we shall say that p(head) and p(tail) are real
(objective) properties of the coin.

Two possibilities:

1. Unfair coin

- p(head) #= p(tail) because the distribution of the coin-mass
is not uniform

- this is a property of the coin itself

- from the knowledge of A = mass distribution
— p(head), p(tail) can be determined uniquely

2. Unfair flipping
- p(head) # p(tail) because the act of flipping is unfair
- this is not a property of the coin
- from the knowledge of A = mass distribution
= p(head), p(tail) can not be determined uniquely
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This motivates the general definition:

A probability distribution p()\) is ontic
(i.e., corresponds to something real)
iIff it can be determined uniquely from the fundamental ).

Otherwise, nu(\) is called epistemic.
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Now apply to QM:
- QM is an unfair game (not all probabilities are equal).
- Is QM an unfair “coin” or an unfair “flipping” 7

Analogy: coin flipping < QM
set {head, tail} <+ set of all different states in the Hilbert space {|v)}

(|) is different from [¢") iff |/) 7 c|i).)

- In general, experimentalists do not have a full control
over all fundamental degrees of freedom .
= When they prepare [¢) in the laboratory, this actually means

that they have prepared some probability distribution pu(\):
Probability Density

TR '}
\ UA)

]

=~
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Assume that for states |¢1),

o) their A-distributions overlap:

Probability Density
) 4 w (A uy(A)

- For \ € overlap, one cannot know whether \ belongs
to p1(A) or pa(A)

= )\ does not uniquely determine n(\)

= (by definition) n(\) is not ontic

= [1)) is not ontic

= To prove that |¢) is not ontic, it is sufficient to prove

that there is at least one pair |11), |Y2) (1) # c|vr))
for which p1(\) and u>(A\) do overlap.
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= The converse (that |¢) is ontic)

IS much more difficult to prove:

- One needs to prove that for any pair 1), [Y¥2) (|11) 7 c|vo))
the overlap does not exist:

Probability Density
4 A% ()

- Yet, the PBR theorem proves exactly this!

This is not only difficult to prove (sketch in the next section),
but also very surprising:

- The absence of overlap pui(AN)pus(A) =0 VA
is not surprising when (i1 |1Yo) = 0.

- What is surprising is that u1(AM)us(A) =0 VA

even when (¢1]y5) # 0.
14



- Why is that surprising? Because

(Y1l2) =0
[1 — /da|a><a|

= [ da(1la)al) # O
= (¢¥1|a){alyr) = 0 for some a

pi(a) = [(alv)?] = p1(a)p2(a) # 0 for some a

and vet 1 (M) ps(A) =0 V.

- In other words, QM-distributions overlap,
but corresponding A\-distributions do not overlap!
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4. PBR THEOREM:
SKETCH OF THE PROOF
- We prove the absence of overlap

for a simple example of a pair of non-orthogonal states.
(PBR generalize it to an arbitrary pair.)

2-dimensional Hilbert space with orthogonal basis |0), [1).
Another orthogonal basis |+), |—)

_ 10 £11)
Non-orthogonal pair |0), |4):
(O]4+) = 1/v2

Goal: prove that pg(A)p4(A) =0 VA
Strategy: assume the opposite and derive a contradiction!
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- assume overlap = finite probability p that A € overlap

Consider two similar systems:
- each prepared either in |0) or |+)
(but experimentalist does not know in which one it is prepared)

no ng

- probability of overlap in each is p
- assume they are statistically independent
— probability of overlap in both is Pjgint =p-p >0
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= Consequence of the assumed overlap:

There is a probability Pjsjnt > 0 that
the outcome will be consistent with all four
possibilities for the initial preparation

(10)10), [0)|+), [4)[0), and [+)[+))

Now compare it with predictions of QM:
- Measure the joint system in a specially chosen
complete orthogonal basis:

1 1

61) = ZS10)1) + IO [¢2) = 5010)|=) + 1))
1 1

63) = S0 1100 16a) = S[H)1-) + =) )

- This basis has the property (notation: |ab) = |a)|b))

<¢1|OO> — Ov <¢2‘O+> — Ov <¢3’ + O> — Ov <¢4’ + +> =0
= Whatever the outcome of a single measurement will be
(|o1), |P2), |03), or |¢4)), it is certain that it will eliminate
one of the possibilities (|00), |04), |4+ 0), or |+ +)).
= Pioint =0
= Contradiction with the Consequence above! Q.E.D.
18



5. DISCUSSION AND CONCLUSION

Explicit assumptions of the theorem:

- some fundamental reality A\ exists

- separately prepared \'s are statistically independent
- statistical predictions of QM are correct

definition of reality based on non-overlapping
probability distributions

PBR theorem: under these assumptions, |¢) is real!
(In other words, whatever the fundamental X is,
if A is given, then |¢) can be determined uniquely.)
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The theorem stimulated a lot of further research:

- further clarifications, refinements, and simplifications
of the theorem

- e.g., a proof without using many copies of the system
(Hardy, 2012)

Critiques of

explicit assumptions

implicit assumptions (not spelled out in the theorem)
definition of reality

physical relevance

Conclusion:

- The PBR theorem provided a strong argument
(if not the ultimate proof) that [¢) is real.

- It elevated the question of reality of |¢)
to a higher scientific level.

20



T hank You!
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