
QUANTUM STATE:

REALITY OR MERE PROBABILITY?

How PBR theorem elevated this question

to a higher level

Hrvoje Nikolić
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1. INTRODUCTION

What is the meaning of the quantum state |ψ〉?
- Is it an objective property of a single system? (ψ-ontology)

- Or is it only a tool to calculate probability? (ψ-epistemology)

- Or is it both?

- What does it even mean that a property is “objective”?

(precise definition)

- Many brilliant physicists (Bohr, Einstein, ...) tried to answer,

but a generally accepted answer has not been produced.

- Discussions of such questions have a bad reputation

(on the borderline between science and philosophy).

- We need a clever reformulation of the problem,

to make it more scientific and less philosophical.

- The PBR theorem (2012) is an important step in that direction.
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What is PBR theorem?

The theorem proved by M.F. Pusey, J. Barrett, T. Rudolph,

in Nature Phys. 8, 476 (2012); arXiv:1111.3328 (v3).

Consists of

1. Mathematical definition of the difference between

“ontological” and “epistemological”.

2. Technical proof (with the aid some auxiliary assumptions)

QM ⇒ |ψ〉 is ontological (objectively real)!

Conclusion also confirmed by a recent experiment:

D. Nigg et al, arXiv:1211.0942.

- confirms QM, and thus reality of |ψ〉.
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2. (NOT ONLY SCIENTIFIC)

HISTORY OF THE PROBLEM

- Einstein 1926: “God does not play dice.”

- But later (contrary to wide misbelief) Einstein did not insist

on determinism.

- He insisted on reality:

Physical systems have properties even when we don’t measure them.

This is in contrast with Copenhagen view of uncertainty relations:

In momentum-eigenstate |p〉, the position x is not merely unknown;

instead, the particle does not even have position x.

If it looks too philosophical ...
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... to argue that he is right, Einstein proposed many

thought experiments.

Two most famous ones:

- Einstein photon-in-a-box paradox (1930)

- Einstein-Podolsky-Rosen paradox (1935)

(Recently realized that they are equivalent: Dieks and Lam 2008, Nikolić 2012.)
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Breakthrough by Bell theorem (1964):

If reality λ exists (whatever it is), it must necessarily be non-local.

- This elevated the problem to a higher scientific level.

- However, it does not tell whether λ exists, nor what it is.

Different interpretations of QM suggest different answers:

1. Copenhagen-collapse interpretation (von Neumann 1932):

- λ = ψ

- measurement causes collapse of ψ (not explained why?)

- the collapse is non-local

2. Copenhagen-information interpretation

- λ does not exist

- ψ is not real, only a tool to calculate probability

- collapse is just our update of knowledge

3. Copenhagen-Bohr interpretation

- ψ is real, but only on the microscopic level

- there is a fundamental border between micro and macro

- not specified where that border is?
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4. Copenhagen-pragmatic interpretation

- shut up and calculate

- most popular among practical physicists

5. Bohm interpretation (1952)

- λ = (ψ, x) (both ψ and particle position x separately exist)

- trajectory x(t) guided by ψ

- ψ does not collapse

- x(t) satisfy non-local equations of motion

6. Many-world interpretation (Everett, 1957)

- λ = ψ

- ψ does not collapse

- all branches of ψ are real

7. Statistical ensemble interpretation (Ballentine, 1970):

- ψ is not real, i.e., not a property of an individual system

- ψ is a property of a statistical ensemble of many

similarly prepared systems

- λ might exist, but does not tell what it is

How to know who is right?

8



3. PBR THEOREM: MAIN IDEAS

New breakthrough (similar to the Bell theorem):

PBR theorem (2012)

- The most serious attempt so far to actually prove that

ψ is real

(Note, however, that the theorem does not say that

ψ is fundamental, or that ψ is the only reality.)

- But what does it even mean to prove that “something is real”?

- We need to define the meaning of the words

“something is real”

in a precise way, such that a rigorous theorem is possible.
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Example from classical probability - coin flipping:

To make it non-trivial, assume unfair coin flipping

p(head) 6= p(tail)

- Are p(head) and p(tail) intrinsic properties of a single coin?
- If they are, we shall say that p(head) and p(tail) are real

(objective) properties of the coin.

Two possibilities:

1. Unfair coin

- p(head) 6= p(tail) because the distribution of the coin-mass
is not uniform

- this is a property of the coin itself

- from the knowledge of λ = mass distribution
⇒ p(head), p(tail) can be determined uniquely

2. Unfair flipping

- p(head) 6= p(tail) because the act of flipping is unfair

- this is not a property of the coin
- from the knowledge of λ = mass distribution
⇒ p(head), p(tail) can not be determined uniquely
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This motivates the general definition:

A probability distribution µ(λ) is ontic

(i.e., corresponds to something real)

iff it can be determined uniquely from the fundamental λ.

Otherwise, µ(λ) is called epistemic.

11



Now apply to QM:

- QM is an unfair game (not all probabilities are equal).

- Is QM an unfair “coin” or an unfair “flipping”?

Analogy: coin flipping ↔ QM

set {head, tail} ↔ set of all different states in the Hilbert space {|ψ〉}

(|ψ〉 is different from |ψ′〉 iff |ψ′〉 6= c|ψ〉.)

- In general, experimentalists do not have a full control

over all fundamental degrees of freedom λ.

⇒ When they prepare |ψ〉 in the laboratory, this actually means

that they have prepared some probability distribution µ(λ):
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Assume that for states |ψ1〉, |ψ2〉 their λ-distributions overlap:

- For λ ∈ overlap, one cannot know whether λ belongs

to µ1(λ) or µ2(λ)

⇒ λ does not uniquely determine µ(λ)

⇒ (by definition) µ(λ) is not ontic

⇒ |ψ〉 is not ontic

⇒ To prove that |ψ〉 is not ontic, it is sufficient to prove

that there is at least one pair |ψ1〉, |ψ2〉 (|ψ1〉 6= c|ψ2〉)
for which µ1(λ) and µ2(λ) do overlap.
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⇒ The converse (that |ψ〉 is ontic)

is much more difficult to prove:

- One needs to prove that for any pair |ψ1〉, |ψ2〉 (|ψ1〉 6= c|ψ2〉)
the overlap does not exist:

- Yet, the PBR theorem proves exactly this!

This is not only difficult to prove (sketch in the next section),

but also very surprising:

- The absence of overlap µ1(λ)µ2(λ) = 0 ∀ λ
is not surprising when 〈ψ1|ψ2〉 = 0.

- What is surprising is that µ1(λ)µ2(λ) = 0 ∀ λ
even when 〈ψ1|ψ2〉 6= 0.
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- Why is that surprising? Because

〈ψ1|ψ2〉 6= 0
[

1 =
∫

da|a〉〈a|
]

⇒
∫

da〈ψ1|a〉〈a|ψ2〉 6= 0

⇒ 〈ψ1|a〉〈a|ψ2〉 6= 0 for some a
[

ρi(a) = |〈a|ψi〉|2
]

⇒ ρ1(a)ρ2(a) 6= 0 for some a

and yet µ1(λ)µ2(λ) = 0 ∀λ.

- In other words, QM-distributions overlap,

but corresponding λ-distributions do not overlap!
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4. PBR THEOREM:

SKETCH OF THE PROOF

- We prove the absence of overlap

for a simple example of a pair of non-orthogonal states.

(PBR generalize it to an arbitrary pair.)

2-dimensional Hilbert space with orthogonal basis |0〉, |1〉.
Another orthogonal basis |+〉, |−〉

|±〉 = |0〉 ± |1〉√
2

Non-orthogonal pair |0〉, |+〉:

〈0|+〉 = 1/
√
2

Goal: prove that µ0(λ)µ+(λ) = 0 ∀λ
Strategy: assume the opposite and derive a contradiction!
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- assume overlap ⇒ finite probability p that λ ∈ overlap

Consider two similar systems:

- each prepared either in |0〉 or |+〉
(but experimentalist does not know in which one it is prepared)

- probability of overlap in each is p

- assume they are statistically independent

⇒ probability of overlap in both is Pjoint = p · p > 0
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⇒ Consequence of the assumed overlap:

There is a probability Pjoint > 0 that

the outcome will be consistent with all four

possibilities for the initial preparation

(|0〉|0〉, |0〉|+〉, |+〉|0〉, and |+〉|+〉)

Now compare it with predictions of QM:

- Measure the joint system in a specially chosen

complete orthogonal basis:

|φ1〉 =
1√
2
[|0〉|1〉+ |1〉|0〉], |φ2〉 =

1√
2
[|0〉|−〉+ |1〉|+〉],

|φ3〉 =
1√
2
[|+〉|1〉+ |−〉|0〉], |φ4〉 =

1√
2
[|+〉|−〉+ |−〉|+〉]

- This basis has the property (notation: |ab〉 ≡ |a〉|b〉)
〈φ1|00〉 = 0, 〈φ2|0+〉 = 0, 〈φ3|+0〉 = 0, 〈φ4|++〉 = 0

⇒ Whatever the outcome of a single measurement will be

(|φ1〉, |φ2〉, |φ3〉, or |φ4〉), it is certain that it will eliminate

one of the possibilities (|00〉, |0+〉, |+0〉, or |++〉).
⇒ Pjoint = 0

⇒ Contradiction with the Consequence above! Q.E.D.
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5. DISCUSSION AND CONCLUSION

Explicit assumptions of the theorem:

- some fundamental reality λ exists

- separately prepared λ’s are statistically independent

- statistical predictions of QM are correct

- definition of reality based on non-overlapping

probability distributions

PBR theorem: under these assumptions, |ψ〉 is real!

(In other words, whatever the fundamental λ is,

if λ is given, then |ψ〉 can be determined uniquely.)
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The theorem stimulated a lot of further research:

- further clarifications, refinements, and simplifications

of the theorem

- e.g., a proof without using many copies of the system

(Hardy, 2012)

Critiques of

- explicit assumptions

- implicit assumptions (not spelled out in the theorem)

- definition of reality

- physical relevance

Conclusion:

- The PBR theorem provided a strong argument

(if not the ultimate proof) that |ψ〉 is real.

- It elevated the question of reality of |ψ〉
to a higher scientific level.
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Thank You!
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