
Bohmian mechanics for instrumentalists

Hrvoje Nikolić
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Part 1.

PHILOSOPHY
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4 basic notions in philosophy of physics

Ontology:
- Things which are supposed to be there irrespective of (human)
observations.

Determinism:
- Assumption that future is completely determined by the past
(at least in principle, as e.g. in deterministic chaos).
- Says that fundamental laws of physics are not probabilistic.

Instrumentalism:
- The main goal of theoretical physics is to predict (and control)
the macroscopic phenomena, especially the outcomes
of scientific instruments.
- Most physicists are (at least partly) instrumentalists.

Instrumental interpretation of quantum mechanics (QM):
- Not deterministic (prescribes only probabilities).
- Says nothing about ontology.
(Does particle have a position before one measures it?)
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The trouble with Bohmian mechanics

Bohmian mechanics (BM):

- Postulates that quantum particles are pointlike objects

with deterministic trajectories.

- Usually motivated by the goal of prescribing fundamental microscopic

ontology. (Particle has a position even if one doesn’t measure it.)

- Determinism is not the main goal of BM, it’s only a byproduct!

- Typical instrumentalists don’t care about ontology.

- “Ontology is not physics, it’s metaphysics.”

⇒ Instrumentalists don’t find BM intuitive and well motivated.

⇒ BM is widely ignored or misunderstood in a wider physics community.

- The goal of this talk is to reformulate BM

such that it looks better motivated and more intuitive

to a wider physics community, especially instrumentalists.
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3 funny “ble” nouns in QM

Observable:
- In QM it is a noun (in normal English it is an adjective).
- Hermitian operator in the Hilbert space.
- Related to (but not identical with) a measurable quantity.
- “Quantum phenomena do not occur in a Hilbert space,
they occur in a laboratory.” - Asher Peres (an instrumentalist)

Beable:
- Word coined by John Bell.
- Same as ontology: stuff which is there irrespective of measurement.
- This concept is central to Bohmians, but not to instrumentalists.

With a goal to make BM more meaningful to instrumentalists,
I introduce a new concept:

Perceptible:
- In physics it is a noun (in normal English it is an adjective).
- A thing or phenomenon amenable to direct human perception.
- Perceptibles: tables, chairs, Moon, macroscopic instrument,
click in detector, picture of atom produced by electron microscope, ...
- Non-perceptibles: wave function, electron, photon, atom, ...
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More on perceptibles

- The distinction between perceptibles and non-perceptibles is similar

to the distinction between macroscopic and microscopic.

- All microscopic entities are non-perceptibles.

- However, a macroscopic entity does not necessarily need to be a

perceptible (e.g. gravitational field, radio wave).

- Non-perceptibles are theoretical constructs

that explain and predict properties of perceptibles, e.g.

perceptible explained by non-perceptible

click in the detector photon
picture by electron microscope atom

falling apple gravitational field
music from the radio radio wave

- To make a measurable prediction means to predict a property

of a perceptible.
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- Just because a non-perceptible is a theoretical construct

doesn’t necessarily mean that it is not a beable.

- Beable is a theoretical construct itself:

The claim that something is a beable really means that

it is beable in a given theory.

- For instance, point-like particles are beables in classical mechanics,

but not in classical field theory (classical electrodynamics).

- It is impossible to know whether a non-perceptible beable

“really” exists.

- However, it may be useful to imagine that it “really” exists

because that sometimes helps in cognitive processes (intuition).

- Like with macroscopic/microscopic, there is no strict border

between perceptible/non-perceptible.

- Is a one cell microorganism macroscopic or microscopic?

- Is perception of one cell microorganism by optical microscope direct

or indirect? (It must be direct to be called perceptible.)

- Even though there is no strict border, the concepts are useful.
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Part 2.

QUANTUM THEORY OF

PERCEPTIBLES
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All perceptibles can be reduced to macroscopic positions

- All perceptibles are macroscopic, which means big in position space.

⇒ When 2 perceptibles can be distinguished, it means that

they can be distinguished by macroscopic positions of something.

Measurement of spin:

- Spin is an observable, but not a perceptible.

- Spin is measured by Stern-Gerlach apparatus.

- Perceptible is a big dark spot on the screen.
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More sophisticated instruments:

- Analog: position of macro pointer.

- Digital: positions of lines that make a digit.

Click in the detector:

- Sound determined by macroscopic oscillations

(e.g. membrane of the speaker).

- This oscillation is a macro position as a function of time.
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What about senses such as color, taste and smell?

- Created in the eye, tongue or nose (and interpreted by brain).

- Determined by which nerve is stimulated.

- One can fool the brain: e.g. electro-stimulation

of the sweet nerve creates the illusion of sweetness.

- Different nerves have different macro positions

(most pronounced in the tongue).

⇒ Senses are perceptibles too, determined by macro positions of nerves.
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The origin of Born rule in QM

- In any basis {|k⟩}, the Born rule postulates probability

pk = |⟨k|ψ⟩|2

- However it is not necessary to postulate it.

- We derive it from the Born rule in the position-space only.

- We need probabilities of perceptibles

(e.g. probability that detector will click).

⇒ Probabilities of perceptibles must be computed in the position space.

- However, there is no strict border between

perceptible and non-perceptible.

⇒ Compute all probabilities in the position space.
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- Measure observable K̂ with eigenstates |k⟩.
- Macroscopic apparatus (the perceptible) can be described

by its quantum microscopic state |Φ⟩.
- Initial microscopic state of the apparatus |Φ0⟩.
- Interaction ⇒ unitary transition

|k⟩|Φ0⟩ → |k′⟩|Φk⟩

⇒ Wave functions have a negligible overlap in multi-position space

Φk1(x⃗)Φk2(x⃗) ≃ 0 for k1 ̸= k2

where Φk(x⃗) ≡ ⟨x⃗|Φk⟩,

x⃗ ≡ (x1, . . . ,xn)

n = number of particles constituting the apparatus∫
dx⃗ |Φk(x⃗)|2 = 1, dx⃗ ≡ d3nx

- For a superposition |ψ⟩ =
∑
k ck|k⟩:

|ψ⟩|Φ0⟩ →
∑
k

ck|k′⟩|Φk⟩
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- A more realistic analysis includes also environment

|ψ⟩|Φ0⟩|E0⟩ →
∑
k

ck|k′⟩|Φk⟩|Ek⟩ ≡ |Ψ⟩

⇒ |Ψ⟩ =
∑
k

ck|Φk⟩|Rk⟩, |Rk⟩ ≡ |k′⟩|Ek⟩

- |Φk⟩ describes the perceptible, |Rk⟩ all the rest.
Multi-position representation

Ψ(x⃗, y⃗) =
∑
k

ckΦk(x⃗)Rk(y⃗)

- Born rule in the multi-position space

ρ(x⃗, y⃗) = |Ψ(x⃗, y⃗)|2 ≃
∑
k

|ck|2|Φk(x⃗)|2|Rk(y⃗)|2

⇒ ρ(appar)(x⃗) =
∫
dy⃗ ρ(x⃗, y⃗) ≃

∑
k

|ck|2|Φk(x⃗)|2

⇒ Probability to find the apparatus particles in the support of Φk(x⃗):

p
(appar)
k =

∫
supp Φk

dx⃗ ρ(appar)(x⃗) ≃ |ck|2

- This coincides with the Born rule in arbitrary k-space. Q.E.D.
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Generalized measurements

The master formula of quantum measurement:

|Ψ⟩ =
∑
k

ck|Φk⟩|Rk⟩

- Not to be confused with master equation in quantum decoherence.
- |Φk⟩ micro state of the perceptible, |Rk⟩ the rest.
- In derivation on the previous page, the label k had double meaning:
1) Eigenstates |k⟩ of observable K̂ with non-degenerate spectrum.
2) Label of distinct perceptibles.

In general, 1) is not true:
- Degenerate spectrum, photon position, measurement of time, ...
- Generalized measurements described by POVM formalism.
- Neumark theorem: any POVM can be reduced
to projective measurement in a larger Hilbert space.
⇒ The master formula with 2) is true for any measurement.

⇒ p
(appar)
k ≃ |ck|2

always true if ρ(x⃗, y⃗; t) = |Ψ(x⃗, y⃗, t)|2.
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Part 3.

Bohmian mechanics
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Motivation for BM

The main axiom for BM:

All perceptibles are beables.

- E.g. the Moon is there even if nobody observes it.
- Motivated by common sense.
- The opposite would be that the Moon is only in our mind.
- Impossible to prove or disprove by scientific method.
- It’s only a thinking tool (hard to think the opposite).

Most of the motivation for BM arises from this common sense axiom!

Bell theorem expressed in the language of perceptibles:
If perceptibles are beables, then perceptibles are non-local.

- If the correlated, yet spatially separated, measurement outcomes
are there even before a single local observer detects the correlation,
then measurement outcomes are governed by non-local laws.
- Avoids talk about “hidden variables”.
- Not depend on determinism.
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- Perceptible is determined by microscopic positions x⃗ = (x1, . . . ,xn)

of apparatus particles.

⇒ The simplest possibility is that all x⃗ are beables.

- But there is no strict border between perceptible/non-perceptible.

⇒ The simplest possibility is that positions y⃗ of all the rest

are also beables.

We have derived the QM Born rule in arbitrary k-space

from the Born rule in position space.

⇒ Any theory for which

ρ(x⃗, y⃗; t) = |Ψ(x⃗, y⃗, t)|2

has the same measurable predictions as QM.

Valid even for generalized measurements, e.g. measurement of time:

- There is no time operator K̂ = T̂ with eigenstates |k⟩ = |t⟩.
- Not problem because in the master formula

|Ψ⟩ =
∑
k

ck|Φk⟩|Rk⟩

k labels distinct positions of the clock pointer.
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So far we found motivation for two requirements:

1) perceptibles are beables (common sense)

2) ρ(x⃗, y⃗; t) = |Ψ(x⃗, y⃗, t)|2 (QM)

- A simple theory that satisfies both requirements is:

All positions q⃗ = (x⃗, y⃗) are beables and random.

- Almost like standard QM, except that q⃗ are beables.

- However, such theory does not explain Born rule for q⃗.

- The Born rule for q⃗ is postulated.

Can we explain the Born rule for q⃗ ?

- q⃗ is beable ⇒ it has a value Q⃗(t) at each time t.

- In principle Q⃗(t) could be stochastic (not deterministic).

- However, Q⃗(t) must be compatible with ρ(q⃗; t) = |Ψ(q⃗, t)|2,
which is a deterministic function of t.

⇒ Suggests (not proves) that Q⃗(t) could be deterministic too.
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Construction of BM

- How can a deterministic law for Q⃗(t) be compatible with probability
ρ(q⃗; t) = |Ψ(q⃗, t)|2?
- The condition is that Q⃗(t) is determined by a law of the form

dQ⃗(t)

dt
= v⃗(Q⃗(t), t)

where v⃗(q⃗, t) is a function that satisfies the continuity equation

∂|Ψ|2

∂t
+ ∇⃗(|Ψ|2v⃗) = 0

- If ρ(q⃗; t0) = |Ψ(q⃗, t0)|2 for initial t0,
then continuity equation ⇒ ρ(q⃗; t) = |Ψ(q⃗, t)|2 for ∀t.

- Continuity equation analogous to Liouville equation
in classical statistical mechanics.
⇒ ρ(q⃗; t) = |Ψ(q⃗, t)|2 is quantum equilibrium, can be explained
even without assuming initial ρ(q⃗; t0) = |Ψ(q⃗, t0)|2.
- Two approaches: typicality and H-theorem.
- Review: T. Norsen, Entropy 20, 422 (2018).
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- Is there such v⃗ = (v1, . . . ,vN)? (N = number of particles)

- In non-relativistic QM it is well-known that Schrödinger equation itself

implies a continuity equation of that form, with

va =
−ih̄
2ma

Ψ∗ ↔
∇aΨ

Ψ∗Ψ
=

Re(Ψ∗v̂aΨ)

Ψ∗Ψ

v̂a = p̂a/ma = velocity operator

p̂a = −ih̄∇a = momentum operator

Spin: Ψ∗ · · ·Ψ → Ψ† · · ·Ψ =
∑
αΨ∗

α · · ·Ψα

(sum over all spin indices)

⇒ BM works for non-relativistic QM.
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Robustness of long distance physics

A general rule in physics:

The laws of long distance physics

do not depend on details of small distance physics.

Examples:

- Fluid mechanics and thermodynamics do not depend

on details of atomic physics.

- Atomic physics does not depend on details of nuclear physics.

- Nuclear physics does not depend on details of quarks.

- QCD (quarks and gluons) ... of string theory.

Formalized more generally by Wilson renormalization theory:

- Long distance physics obtained from microscopic theory

by integrating out small distance degrees of freedom.
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Robustness of measurable predictions by BM

- Similarly, perceptibles in BM do not depend on details
of particle trajectories.
- Recall: probability of perceptible obtained by integrating out
over all microscopic positions:

p
(appar)
k =

∫
supp Φk

dx⃗
∫
dy⃗ |Ψ(x⃗, y⃗)|2

- That’s why BM (with trajectories) makes the same measurable
predictions as standard QM (without trajectories).

How to make a false “prediction” of BM that differs from
standard QM?
- By putting too much emphasis on trajectories
and ignoring the perceptibles!
- A lot of wrong “disproofs of BM” of that kind are published.

Even distinguished Bohmians sometimes fall into this trap:
- By computing arrival time of microscopic BM trajectories
(microscopic trajectories are not perceptibles).
- By computing gravitational field gµν(x, t) in Bohmian quantum
cosmology (gravitational field is macroscopic, but not a perceptible).
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- BM is deterministic, so why can’t it make deterministic predictions

of measurement outcomes?

- Because of quantum equilibrium - analogous to thermal equilibrium.

- In full thermal equilibrium, macroscopic changes can only happen

due to rare statistical fluctuations.

- Thermodynamics makes deterministic predictions of macroscopic changes

only when the full system is not in thermal equilibrium.

- Equilibrium does not need an explanation.

- It’s the absence of equilibrium that needs explanation

(still not clear why is Universe not in thermal equilibrium).

- Why can’t BM trajectories be directly observed?

- Because there are no local interactions between BM particles.

- That’s like trying to observe Moon’s trajectory by watching tides.

- Gravity is a long range interaction ⇒ observation of effect on B

caused by A does not directly reveal the position of A.

- That’s why there is no direct evidence for astrophysical dark matter

(hypothetic matter with negligible interactions, except gravitational).

⇒ The absence of direct evidence for BM trajectories

analogous to the absence of direct evidence for dark matter.
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Part 4.

Beyond relativistic QFT
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What particles is BM about?

So far we didn’t specify what kind of particles are we talking about.

- Atoms? Protons? Electrons? Quarks? Photons? Higgs?

- Perhaps quasiparticles (collective excitations), like phonons?

- Predictions on perceptibles do not depend much on those details.

- Yet details are important for their own sake.

- Phonon trajectory is certainly not beable because we know that

1 phonon is a collective motion of many atoms.

- But do we know that photon or electron is not a collective excitation?

- We don’t!
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- Theories which serve as good approximations at longer distances,

but not at smaller distances, are called effective theories.

- Theory of phonons is certainly an effective theory.

- Widely believed that Standard Model of “elementary particles”

is an effective theory too.

⇒ The “elementary particles” like electrons, quarks, photons, ...

might be collective excitations too.

- Collective excitations of what?

- Of truly elementary particles.

- What these truly elementary particles are?

- We don’t know! (We still don’t have the theory of everything.)

- But whatever they are, BM trajectories can only be beables

for those truly fundamental particles.

⇒ It is very likely that:

BM trajectories are not beables for Standard Model

“elementary particles” like electrons, quarks, photons, or Higgs.
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Bypassing relativistic QFT

We found an explicit construction of BM for non-relativistic QM.

- How about relativistic quantum field theory (QFT)?

- “Elementary particles” (electrons, photons ...)

described by relativistic QFT.

- We argued that we don’t need BM trajectories for them.

- BM trajectories only for truly elementary particles.

- Possible that truly e.p. not described by relativistic QFT.

- If so, then BM bypasses relativistic QFT.

Can also be interpreted as a generic measurable prediction of BM:

- The simplest formulation of BM requires that the most fundamental

degrees are described by non-relativistic QM.

⇒ The simplest BM predicts that at some very small distances

(not yet amenable to our current experimental technologies)

we should see violation of Lorentz invariance.

- Differs e.g. from generic predictions of string theory.
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How could it be that non-relativistic QM is fundamental

and that relativistic QFT is only an approximation?

- It is usually considered that relativistic QFT is fundamental,

while non-relativistic QM is only an approximation.

- I propose that the opposite is the case. How could that be?

- The basic idea presented in most textbooks on condensed matter!

Sound satisfies the wave equation

1

c2s

∂2ψ

∂t2
−∇2ψ = 0

- Lorentz invariant (with speed of sound cs instead of c).

- Valid only at distances much larger than interatomic distances.

- Derived from non-relativistic motion of atoms.

- Atoms make the “ether” for sound waves.

- If one observed only the sound and nothing else,

it would look as if there was no “ether” for sound.
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Quantization of sound:

- First quantization of ψ ⇒ QM of a single phonon.

- Second quantization of ψ ⇒ QFT of phonons.

- Standard tools in condensed matter.

- Derived from non-relativistic QM of atoms (nuclei + electrons).

- Creation/destruction of phonons from fixed number of atoms.

- By analogy, all relativistic “elementary particles” of Standard Model

(photons, electrons, ...) might be derivable from hypothetic

more fundamental non-relativistic particles.

- The world looks “fundamentally” relativistic only because we don’t

yet see those more fundamental degrees.

- It’s a neo-Lorentzian ether theory.

- Michelson-Morley experiment ruled out possibility that Earth

moves through ether.

- No experiment ruled out possibility that Earth (and everything else)

is made of ether.
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Explicit models in which various qualitative properties of

the Standard Model of “elementary particles” derived from

condensed-matter systems:

- G.E. Volovik, The Universe in a Helium Droplet (Oxford, 2009)

- X.-G. Wen, Quantum Field Theory of Many-body Systems:

From the Origin of Sound to an Origin of Light and Electrons

(Oxford, 2004)
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Example: A Phonon and its Bohmian interpretation

- Crystal lattice made of N atoms with positions

q⃗ = (q1, . . . ,qN)

- Wave function Ψ(q⃗, t) satisfies non-relativistic Schrödinger equation N∑
a=1

p̂2
a

2ma
+ V (q⃗)

Ψ = ih̄∂tΨ

- Let Ψp(q⃗, t) = solution corresponding to 1 (acoustic) phonon
with momentum p.
⇒ Most general 1-phonon solution

Ψ(q⃗, t) =
∑
p
cpΨp(q⃗, t).

- In the abstract Hilbert space this state is

|Ψ(t)⟩ =
∑
p
cp|Ψp(t)⟩

which can also be represented by a 1-quasiparticle wave function

ψ(x, t) =
∑
p
cpe

−i[ω(p)t−p·x]

- units h̄ = 1, ω(p) = cs|p| - Lorentz invariant dispersion relation
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- The 1-quasiparticle wave function ψ(x, t) satisfies wave equation

1

c2s

∂2ψ

∂t2
−∇2ψ = 0

Bohmian interpretation 1:

ψ(x, t) suggests phonon position X(t).

- Makes sense if one imagines that phonon is fundamental.

Bohmian interpretation 2:

- Denies X(t), but Ψ(q⃗, t) suggests atom positions Q⃗(t).

- Makes sense if one imagines that atoms are fundamental.

Contains 3 wave-like objects:

1) 1-phonon wave function ψ(x, t), relativistic, not fundamental.

2) Multi-atom wave function Ψ(q⃗, t), non-relativistic, fundamental.

3) Collective motion of atoms Q⃗(t), non-relativistic, fundamental.
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Bohmian interpretation 3:

- Denies Q⃗(t), but accepts Q⃗quarks & electrons(t).

- Makes sense if one imagines that quarks & electrons are fundamental.

- Requires relativistic BM, hard problem.

Bohmian interpretation 4:

- Denies Q⃗quarks & electrons(t), but accepts existence of as yet unknown

truly fundamental particles with Q⃗truly fundamental(t).

- Truly fundamental particles are not created and destroyed.

⇒ Described by non-relativistic QM.

- Bypasses the hard problem of relativistic BM

in Bohmian interpretation 3.

- This is the version of BM that I actually propose.
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Summary

- Perceptibles: macroscopic entities that we observe directly.

- Perceptibles distinguished in position space.

- Non-perceptibles: wave function, atom, photon ...

theoretical constructs that explain the perceptibles.

- Main axiom: perceptibles are beables.

(The Moon is there even when we don’t observe it).

- No strict border between perceptibles and non-perceptibles.

⇒ Suggests that microscopic positions are also beables.

⇒ Suggests BM - deterministic particle positions.

- What particles? Only the fundamental ones.

- Indications that Standard Model particles are not fundamental.

- Measurable prediction by the simplest BM: fundamental particles

obey non-relativistic QM.

- Analogy with phonons indicates how fundamental non-relativistic QM

may lead to non-fundamental relativistic QFT.
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