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Decoherence in a nutshell:

- In QM relative phase is physical:

|ψ1⟩+ eiφ|ψ2⟩ not equivalent to |ψ1⟩+ eiφ
′|ψ2⟩

- There are physical mechanisms by which information about the phase

is effectively washed out:

|ψ1⟩+ eiφ|ψ2⟩ → |ψ1⟩+ ei·unknown|ψ2⟩

- Coherent superposition: eiφ known.

- Incoherent superposition: eiφ unknown.

- Decoherence: transition from coherent → incoherent.

- Today theoretically well understood and experimentally confirmed.

- Nobel prize 2012 (Haroche and Wineland).
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The role of decoherence in quantum foundations:

- The mechanism of decoherence does not depend on interpretation

(Copenhagen, many worlds, Bohmian, ...).

- Yet it significantly helps to understand why some quantum systems

behave classically.

- For instance, why a quantum cat |live⟩+ |dead⟩
appears either |live⟩ or |dead⟩.

However:

- Decoherence helps, but it’s not enough!

- To explain the origin of classicality completely,

it is necessary to use some specific interpretation.

- Here we shall deal mostly with interpretation-independent aspects.
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Question: How to write down a state with unknown eiφ?

Answer: With density matrix!

State with known eiφ:

|ψ⟩ =
eiφ0√

2

(
|ψ1⟩+ eiφ|ψ2⟩

)
Density matrix

ρ = |ψ⟩⟨ψ| =
1

2

(
|ψ1⟩⟨ψ1|+ |ψ2⟩⟨ψ2|+ e−iφ|ψ1⟩⟨ψ2|+ eiφ|ψ2⟩⟨ψ1|

)
- does not depend on the unphysical total phase eiφ0

- contains all the physical information as |ψ⟩

In the representation |ψ1⟩ =
(

1
0

)
, |ψ2⟩ =

(
0
1

)

ρ ≡ ρ(φ) =
1

2

(
1 e−iφ

eiφ 1

)
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Now if eiφ is completely unknown, we average over all possible values

of φ:

ρ̃ =
1

2π

∫ 2π

0
dφ ρ(φ) =

1

2
(|ψ1⟩⟨ψ1|+ |ψ2⟩⟨ψ2|) =

1

2

(
1 0
0 1

)
- There is no |ψ̃⟩ such that ρ̃ = |ψ̃⟩⟨ψ̃|.
- State |ψ⟩ or ρ = |ψ⟩⟨ψ| is called pure state.

- State ρ̃ is called mixed state.

More generally

|ψ⟩ =
∑
k

ck|k⟩

ck = |ck|eiφk, average over all phases φk ⇒

ρ̃ =
∑
k

pk|k⟩⟨k| =

 p1 0 · · ·
0 p2
... . . .


where pk = |ck|2 are probabilities.

⇒ Average over φk destroys all non-diagonal elements of ρ

in basis {|k⟩}.
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Destruction of phases equivalent to destruction of interference.

For instance, 2-slit experiment (slits called A and B):

ψ(x) = ψA(x) + ψB(x)

ψA(x) = eiφA(x)|ψA(x)|, ψB(x) = eiφB(x)|ψB(x)|

Probability density in the position space p(x) = |ψ(x)|2 ⇒

p(x) = |ψA(x)|2 + |ψB(x)|2︸ ︷︷ ︸
classical sum of probabilities

+2cos [φA(x)− φB(x)] |ψA(x)||ψB(x)|︸ ︷︷ ︸
quantum interference

Average over phases ⇒

p̃(x) = |ψA(x)|2 + |ψB(x)|2

⇒ Decoherence implies that quantum addition of probability

amplitudes gets replaced by classical addition of probabilities.

- Important step towards understanding how classical physics emerges

from fundamental quantum laws.
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However, we still haven’t answered the most important question:

Why is the phase unknown?

There can be various reasons, but the most common reason is:

Due to interaction with environment!

- This is called environment-induced decoherence.

- When physicists talk about “decoherence”, they usually mean this

kind of decoherence.

⇒ In the rest we study only environment-induced decoherence.
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Heuristic explanation:

|ψ⟩ a state in the system we want to study

|ϕ⟩ a state in the environment

⇒ A state in the full system is a superposition of terms like

(eiφ|ψ⟩)|ϕ⟩ = |ψ⟩(eiφ|ϕ⟩) ≡ |ψ⟩|ϕ′⟩

⇒ The phase is “eaten up” by environment.

⇒ If we don’t know the state of environment,

the effect is the same as if we don’t know the phase.

Why do we not know the state of environment?

- Sometimes simply because we choose not to measure it.

- More often, because it has large (say 1023) number

of degrees of freedom, so it’s impossible to measure it in practice.

In the rest we make these heuristic ideas more precise.
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Average = trace:

For pure state |ψ⟩

⟨A⟩ = ⟨ψ|A|ψ⟩ =
∑
k

∑
k′
⟨ψ|k′⟩⟨k′|A|k⟩⟨k|ψ⟩ =

∑
k

∑
k′

⟨k
ρ︷ ︸︸ ︷

|ψ⟩⟨ψ| k′⟩︸ ︷︷ ︸
ρkk′

⟨k′|A|k⟩︸ ︷︷ ︸
Ak′k

=
∑
k

(ρA)kk = TrρA = TrAρ

Probability: pk = |⟨k|ψ⟩|2 = ⟨ψ
πk︷ ︸︸ ︷

|k⟩⟨k|ψ⟩ = ⟨πk⟩, πk is projector.

For two subsystems with bases {|k⟩} and {|l⟩} the full basis is {|k⟩|l⟩}.

TrO =
∑
k

∑
l

⟨l|⟨k|O|k⟩|l⟩ = Tr2Tr1O = Tr1Tr2O

where Tr1O =
∑
k⟨k|O|k⟩ and Tr2O =

∑
l⟨l|O|l⟩ are called partial traces.
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For operator in the first subsystem A = A1 ⊗ 1

TrAρ = Tr1Tr2Aρ = Tr1(A1Tr2ρ) = Tr1A1ρ1

where

ρ1 = Tr2ρ

is called reduced density matrix.

⇒ All quantum information about the first subsystem

is encoded in ρ1 = Tr2ρ.
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Example:

|Ψ⟩ =
∑
k

ck|k⟩|ϕk⟩

The first subsystem is not |ψ⟩ =
∑
k ck|k⟩. Instead, if ⟨ϕk|ϕk′⟩ = δkk′

ρ1 = Tr2|Ψ⟩⟨Ψ| =
∑
k

pk|k⟩⟨k| ̸= |ψ⟩⟨ψ|, pk = |ck|2

⇒ ρ1 is a mixed state, the information about phases of ck is “lost”!

- More precisely, in principle information is still there in the full |Ψ⟩,
but it’s not visible in the first subsystem alone.

- Similarly, it’s not visible in the second subsystem alone:

ρ2 = Tr1|Ψ⟩⟨Ψ| =
∑
k

pk|ϕk⟩⟨ϕk|
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Partial decoherence:

What if ⟨ϕk|ϕk′⟩ ̸= δkk′?
Example:

|Ψ⟩ =
1√
2
(|1⟩|ϕ1⟩+ |2⟩|ϕ2⟩)

ρ1 = Tr2|Ψ⟩⟨Ψ| ⇒

ρ1 = 1
2(|1⟩⟨1|+ |2⟩⟨2|+ |1⟩⟨2|⟨ϕ2|ϕ1⟩+ |2⟩⟨1|⟨ϕ1|ϕ2⟩)

= 1
2

(
1 ⟨ϕ2|ϕ1⟩

⟨ϕ1|ϕ2⟩ 1

)
Full decoherence (full diagonalisation): ⟨ϕ1|ϕ2⟩ = 0
Full coherence: |⟨ϕ1|ϕ2⟩| = 1
Partial decoherence: 0 < |⟨ϕ1|ϕ2⟩| < 1

Full coherence ⇒ no entanglement:

|⟨ϕ1|ϕ2⟩| = 1 ⇒ |ϕ2⟩ = eiφ|ϕ1⟩

⇒ |Ψ⟩ =
1√
2
(|1⟩+ eiφ|2⟩)|ϕ1⟩ ≡ |ψ⟩|ϕ1⟩
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- When the second subsystem has many degrees of freedom

then decoherence is usually almost full: |⟨ϕ1|ϕ2⟩| ≪ 1.

Simple explanation:

- For N ≫ 1 degrees, usually they are statistically quite independent.

- Independent means not correlated,

which in QM means not entangled: |ϕk⟩ ≃ |χk1⟩ · · · |χkN⟩

⇒ ⟨ϕ1|ϕ2⟩ ≃ ⟨χ11|χ21⟩ · · · ⟨χ1N |χ2N⟩, |⟨χ1j|χ2j⟩| ≡ e−αj < 1

For simplicity we can take all αj to be roughly the same αj ∼ α

⇒ |⟨ϕ1|ϕ2⟩| ∼ e−αN ≪ 1

- The second system with many degrees usually called environment.

- A particularly useful kind of environment: macroscopic measuring

apparatus.
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Quantum measurement:

- Suppose that |ϕ1⟩ and |ϕ2⟩ are two macroscopic states

of the measuring apparatus.

- In a practical sense, the apparatus “measures” only if the two states

can be distinguished ⇒ |⟨ϕ1|ϕ2⟩| ≪ 1.

⇒ Measurement is associated with (almost) full decoherence.

Generalized measurement with n possible outcomes:

|Ψ⟩ =
n∑
l=1

cl|ψl⟩|ϕl⟩, ⟨ϕl|ϕl′⟩ ≃ δll′
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Counter-example:

- In quantum optics, a mirror does not destroy coherence of a photon.

⇒ Mirror does not cause decoherence.

⇒ Mirror does not measure the photon. Why?

|ϕ1⟩ - state of mirror when it is not hit by the photon

|ϕ2⟩ - state of mirror when it is hit by the photon

- When photon hits the mirror, it transfers momentum p to the mirror.

x = position of the mirror center of mass in the direction of p

... = all the other mirror particle positions

- Mirror is a correlated system of particles, all momentum

transferred to x

⇒ ϕ2(x, ...) = eipx/h̄ϕ1(x, ...) ⇒ ⟨ϕ1|ϕ2⟩ ∝
∫
dx eipx/h̄|ϕ1(x, ...)|2

- Center of mass is well defined, i.e. ϕ1(x, ...) is narrow Gaussian in x.

⇒ eipx/h̄ nearly a constant inside the Gaussian

(unless the transferred momentum p is very big)

⇒ |⟨ϕ1|ϕ2⟩| ≃ 1

i.e. the photon is not much decohered by mirror.
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Dynamics of decoherence:

- Evolution of the full closed system is unitary: |Ψ(t)⟩ = e−iHt/h̄|Ψ(0)⟩
- Due to interactions, evolution of a subsystem is usually not unitary.

⇒ |⟨ϕ1(t)|ϕ2(t)⟩| ≡ r(t) (decoherence factor) changes with time.

Heuristic description:

- Initially (before interaction) r(0) = 1.

- During a short time δt it slightly lowers

r(δt) = r(0)− Γδt = r(0)[1− Γδt] ≃ r(0)e−Γδt

- Due to many degrees of freedom, the system soon “forgets”

its initial state, so it always repeats the same decay pattern:

r(2δt) ≃ r(δt)e−Γδt ≃ r(0)e−Γ2δt

⇒ For long times exponential decay

r(t) ≃ r(0)e−Γt

- More careful computations and simulations qualitatively confirm.
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- At extremely long times (t≫ age of the universe) r(t) can grow

(quantum Poincare recurrence).

- Irrelevant in practice.

- For all practical purposes (FAPP), decoherence is irreversible.

- It’s a statistical law, closely related to 2nd law of thermodynamics.

Γ depends on details of the interaction Hamiltonian.

- For N degrees of freedom, usually Γ ∝ N .

⇒ For macroscopic objects decoherence is usually very fast.

Typical decoherence times (in seconds) τ = 1/Γ for some cases:
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Environment-induced superselection:

- Decoherence: mechanism by which ρ1 becomes (nearly) diagonal.

- But if ρ1 is diagonal in one basis, it’s not diagonal in another.

Question: What determines the basis in which ρ1 is diagonal?

Answer: The Hamiltonian (of the full closed system)!

- If H|Ψ(t)⟩ ̸= E|Ψ(t)⟩ ⇒ |Ψ(t)⟩ is non-stationary, changes with time.

- If H|Ψ(t)⟩ = E|Ψ(t)⟩ ⇒ |Ψ(t)⟩ = e−iEt/h̄|Ψ(0)⟩ does not change

(the overall phase e−iEt/h̄ is irrelevant).

⇒ H-eigenstates are stable, other states are unstable.

⇒ Decoherence factors r(t) ≃ e−Γt decay in the basis of H-eigenstates.

⇒ After time t ∼ Γ−1, ρ1 settles down into a matrix

(nearly) diagonal in the basis of H-eigenstates.

⇒ H defines a preferred basis.

- In this basis, coherent superpositions are often (FAPP) impossible.

- In general, impossibility of a certain kind of coherent superposition

is called superselection.

- Decoherence explains superselection via interaction with environment.
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Examples:

Charge Q:

- Exactly conserved ⇒ [Q,H] = 0.

⇒ Impossible to find a coherent superposition of states with

different charges, e.g. |1 electron⟩+ |2 electrons⟩

Energy of the 1st subsystem:

H = H1 +H2 +Hint

- If Hint ≪ H1 ⇒ H-eigenstates are close to H1-eigenstates.

⇒ ρ1 is nearly diagonal in the basis of H1-eigenstates

(e.g. a stable or quasi-stable atom).
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Interaction energy:

- If Hint ≫ H1 ⇒ H-eigenstates are close to H1-eigenstates.

⇒ ρ1 is nearly diagonal in the basis of Hint-eigenstates.

- Usually Hint depends only on positions, e.g. Hint = V (r).

- Explains why do we not observe macroscopic superpositions

of states at different places, e.g. |cat here⟩+ |cat there⟩.

Application to Schrödinger cat:

- Difference between life and death can be reduced to a difference

between positions of some macroscopic objects

(e.g. eyelid open vs eyelid closed).

⇒ Decoherence explains why there are no coherent superpositions

|cat live⟩+ |cat dead⟩.
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Does decoherence explain the wave-function collapse?

- Not quite!

- Decoherence eliminates certain coherent superpositions,

but it still contains incoherent superpositions.

For coherent superposition |ψ⟩ = 1√
2
(|live⟩+ |dead⟩)

in the representation |live⟩ =
(

1
0

)
, |dead⟩ =

(
0
1

)
we have

|ψ⟩⟨ψ| =
1

2

(
1 1
1 1

)
decoherence
−−−−−−−−−→

1

2

(
1 0
0 1

)

On the other hand, collapse corresponds to an additional transition:

1

2

(
1 0
0 1

)
collapse
−−−−−→

(
1 0
0 0

)
or

1

2

(
1 0
0 1

)
collapse
−−−−−→

(
0 0
0 1

)
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- Mixed state ρ always related to a lack of knowledge.
- Physical reasons for the lack of knowledge may be different,
but ρ may look the same.

Improper mixture:
- Full system |Ψ⟩ = 1√

2
(|1⟩|ϕ1⟩+ |2⟩|ϕ2⟩)

- Someone who doesn’t measure the 2nd subsystem,
describes the 1st subsystem as ρ1 = 1

2|1⟩⟨1|+
1
2|2⟩⟨2|

Proper mixture:
- An apparatus prepares a pure state, either |1⟩ or |2⟩.
- The decision is made by a classical pseudo-random mechanism.
- Someone who doesn’t know what the decision was,
describes her knowledge as ρ = 1

2|1⟩⟨1|+
1
2|2⟩⟨2|

- For given ρ, the interpretation as a proper mixture is not unique.
E.g. |1⟩⟨1|+ |2⟩⟨2| = |+⟩⟨+|+ |−⟩⟨−|, where |±⟩ = 1√

2
(|1⟩ ± |2⟩)

The problem of measurement in QM can be expressed as:
- How does an improper mixture turn into a proper mixture?
- The answer depends on the interpretation of QM
(Copenhagen, many worlds, Bohmian, ...)
⇒ Decoherence alone doesn’t solve the measurement problem!
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Nevertheless, decoherence has far reaching implications:

- Coherent superposition of a macroscopic object

(e.g. Schrödinger cat) can live only for a very short time.

- Once coherence gets destroyed, it remains destroyed “forever” (FAPP).

- Quantum computer with many qbits is very hard to make.

Relevance for solution of the measurement problem:

- Fast decoherence helps to explain why macro objects obey classical

laws.

- Irreversibility of decoherence helps to explain the (illusion of)

wave-function collapse.

- A full solution requires a use of some specific interpretation

(Copenhagen, many worlds, Bohmian, ...)

not to be discussed today.
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Forthcoming talks:

Quantum Foundations IV:

Quantum theory of measurement and Bohmian mechanics

Quantum Foundations V:

Relativistic QFT from a Bohmian perspective: A proof of concept

Quantum Foundations VI:

Suggestions welcome

24


