# Quantum Foundations III: Decoherence

Hrvoje Nikolić Institut Ruđer Bošković, Zagreb

Zagreb, IRB, 2020

# Decoherence in a nutshell:

- In QM relative phase is physical:  $|\psi_1\rangle + e^{i\varphi}|\psi_2\rangle$  not equivalent to  $|\psi_1\rangle + e^{i\varphi'}|\psi_2\rangle$ 

- There are physical mechanisms by which information about the phase is effectively washed out:

 $|\psi_1\rangle + e^{i\varphi}|\psi_2\rangle \rightarrow |\psi_1\rangle + e^{i \cdot \text{unknown}}|\psi_2\rangle$ 

- Coherent superposition:  $e^{i\varphi}$  known.
- Incoherent superposition:  $e^{i\varphi}$  unknown.
- Decoherence: transition from coherent  $\rightarrow$  incoherent.
- Today theoretically well understood and experimentally confirmed.
- Nobel prize 2012 (Haroche and Wineland).

The role of decoherence in quantum foundations:

- The mechanism of decoherence does **not depend** on interpretation (Copenhagen, many worlds, Bohmian, ...).

- Yet it significantly **helps** to understand why some quantum systems behave classically.

- For instance, why a quantum cat  $|\text{live}\rangle + |\text{dead}\rangle$  appears either  $|\text{live}\rangle$  or  $|\text{dead}\rangle$ .

However:

- Decoherence helps, but it's not enough!
- To explain the origin of classicality completely,
- it is necessary to use some specific interpretation.
- Here we shall deal mostly with interpretation-independent aspects.

Question: How to write down a state with unknown  $e^{i\varphi}$ ? Answer: With **density matrix**!

State with known  $e^{i\varphi}$ :

$$|\psi\rangle = \frac{e^{i\varphi_0}}{\sqrt{2}} \left( |\psi_1\rangle + e^{i\varphi} |\psi_2\rangle \right)$$

Density matrix

$$\rho = |\psi\rangle\langle\psi| = \frac{1}{2} \left( |\psi_1\rangle\langle\psi_1| + |\psi_2\rangle\langle\psi_2| + e^{-i\varphi}|\psi_1\rangle\langle\psi_2| + e^{i\varphi}|\psi_2\rangle\langle\psi_1| \right)$$

- does not depend on the unphysical total phase  $e^{i \varphi_0}$ 

- contains all the physical information as  $|\psi
angle$ 

In the representation 
$$|\psi_1\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$$
,  $|\psi_2\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$   
 $\rho \equiv \rho(\varphi) = \frac{1}{2} \begin{pmatrix} 1 & e^{-i\varphi}\\e^{i\varphi} & 1 \end{pmatrix}$ 

Now if  $e^{i\varphi}$  is completely unknown, we **average** over all possible values of  $\varphi$ :

$$\tilde{\rho} = \frac{1}{2\pi} \int_0^{2\pi} d\varphi \,\rho(\varphi) = \frac{1}{2} \left( |\psi_1\rangle \langle \psi_1| + |\psi_2\rangle \langle \psi_2| \right) = \frac{1}{2} \left( \begin{array}{cc} 1 & 0\\ 0 & 1 \end{array} \right)$$

- There is **no**  $|\tilde{\psi}\rangle$  such that  $\tilde{\rho} = |\tilde{\psi}\rangle\langle\tilde{\psi}|$ .
- State  $|\psi\rangle$  or  $\rho = |\psi\rangle\langle\psi|$  is called **pure** state.
- State  $\tilde{\rho}$  is called **mixed** state.

More generally

$$|\psi\rangle = \sum_{k} c_k |k\rangle$$

 $c_k = |c_k| e^{i \varphi_k}$ , average over all phases  $\varphi_k \Rightarrow$ 

$$\tilde{\rho} = \sum_{k} p_k |k\rangle \langle k| = \begin{pmatrix} p_1 & 0 & \cdots \\ 0 & p_2 & \\ \vdots & \ddots & \end{pmatrix}$$

where  $p_k = |c_k|^2$  are probabilities.

 $\Rightarrow$  Average over  $\varphi_k$  destroys all non-diagonal elements of  $\rho$  in basis  $\{|k\rangle\}$ .

Destruction of phases equivalent to destruction of interference.

For instance, 2-slit experiment (slits called A and B):

 $\psi(x) = \psi_A(x) + \psi_B(x)$ 

 $\psi_A(x) = e^{i\varphi_A(x)} |\psi_A(x)|, \quad \psi_B(x) = e^{i\varphi_B(x)} |\psi_B(x)|$ 

Probability density in the position space  $p(x) = |\psi(x)|^2 \Rightarrow$ 

$$p(x) = \underbrace{|\psi_A(x)|^2 + |\psi_B(x)|^2}_{\text{classical sum of probabilities}} + \underbrace{2\cos[\varphi_A(x) - \varphi_B(x)]|\psi_A(x)||\psi_B(x)|}_{\text{quantum interference}}$$
  
Average over phases  $\Rightarrow$ 

$$\tilde{p}(x) = |\psi_A(x)|^2 + |\psi_B(x)|^2$$

# $\Rightarrow$ Decoherence implies that quantum addition of probability amplitudes gets replaced by classical addition of probabilities.

- Important step towards understanding how classical physics emerges from fundamental quantum laws.

# However, we still haven't answered the most important question: **Why** is the phase unknown?

There can be various reasons, but the most common reason is: **Due to interaction with environment!** 

- This is called **environment-induced decoherence**.
- When physicists talk about "decoherence", they usually mean this kind of decoherence.
- $\Rightarrow$  In the rest we study only environment-induced decoherence.

Heuristic explanation:

- $|\psi
  angle$  a state in the system we want to study
- $|\phi
  angle$  a state in the environment
- $\Rightarrow$  A state in the full system is a superposition of terms like

 $(e^{i\varphi}|\psi\rangle)|\phi\rangle = |\psi\rangle(e^{i\varphi}|\phi\rangle) \equiv |\psi\rangle|\phi'\rangle$ 

⇒ The phase is "eaten up" by environment. ⇒ If we don't know the state of environment, the effect is the same as if we don't know the phase.

Why do we not know the state of environment?

- Sometimes simply because we choose not to measure it.
- More often, because it has large (say  $10^{23}$ ) number
- of degrees of freedom, so it's **impossible** to measure it in practice.

In the rest we make these heuristic ideas more precise.

#### Average = trace:

For pure state  $|\psi\rangle$ 

$$\begin{aligned} \langle A \rangle &= \langle \psi | A | \psi \rangle = \sum_{k} \sum_{k'} \langle \psi | k' \rangle \langle k' | A | k \rangle \langle k | \psi \rangle = \sum_{k} \sum_{k'} \underbrace{\langle k | \psi \rangle \langle \psi | k' \rangle}_{\rho_{kk'}} \underbrace{\langle k' | A | k \rangle}_{A_{k'k}} \\ &= \sum_{k} (\rho A)_{kk} = \mathrm{Tr} \rho A = \mathrm{Tr} A \rho \end{aligned}$$

Probability:  $p_k = |\langle k | \psi \rangle|^2 = \langle \psi | k \rangle \langle k | \psi \rangle = \langle \pi_k \rangle$ ,  $\pi_k$  is projector.

For two subsystems with bases  $\{|k\rangle\}$  and  $\{|l\rangle\}$  the full basis is  $\{|k\rangle|l\rangle\}$ .

$$\mathrm{Tr}O = \sum_{k} \sum_{l} \langle l | \langle k | O | k \rangle | l \rangle = \mathrm{Tr}_{2} \mathrm{Tr}_{1}O = \mathrm{Tr}_{1} \mathrm{Tr}_{2}O$$

where  $\text{Tr}_1 O = \sum_k \langle k | O | k \rangle$  and  $\text{Tr}_2 O = \sum_l \langle l | O | l \rangle$  are called **partial traces**.

For operator in the first subsystem  $A = A_1 \otimes 1$ 

$$\operatorname{Tr} A\rho = \operatorname{Tr}_1 \operatorname{Tr}_2 A\rho = \operatorname{Tr}_1 (A_1 \operatorname{Tr}_2 \rho) = \operatorname{Tr}_1 A_1 \rho_1$$

where

$$\rho_1 = \mathrm{Tr}_2 \rho$$

is called reduced density matrix.

 $\Rightarrow$  All quantum information about the first subsystem is encoded in  $\rho_1 = Tr_2\rho$ .

Example:

$$\Psi\rangle = \sum_{k} c_k |k\rangle |\phi_k\rangle$$

The first subsystem is **not**  $|\psi\rangle = \sum_k c_k |k\rangle$ . Instead, if  $\langle \phi_k | \phi_{k'} \rangle = \delta_{kk'}$ 

$$\rho_1 = \operatorname{Tr}_2 |\Psi\rangle \langle \Psi| = \sum_k p_k |k\rangle \langle k| \neq |\psi\rangle \langle \psi|, \quad p_k = |c_k|^2$$

 $\Rightarrow \rho_1$  is a mixed state, the information about phases of  $c_k$  is "lost"! - More precisely, in principle information is still there in the full  $|\Psi\rangle$ , but it's not visible in the first subsystem alone.

- Similarly, it's not visible in the second subsystem alone:

$$\rho_2 = \mathrm{Tr}_1 |\Psi\rangle \langle \Psi| = \sum_k p_k |\phi_k\rangle \langle \phi_k|$$

### Partial decoherence:

What if  $\langle \phi_k | \phi_{k'} \rangle \neq \delta_{kk'}$ ? Example:

$$\Psi\rangle = \frac{1}{\sqrt{2}}(|1\rangle|\phi_1\rangle + |2\rangle|\phi_2\rangle)$$

 $\rho_1 = \mathrm{Tr}_2 |\Psi\rangle \langle \Psi | \Rightarrow$ 

$$\rho_{1} = \frac{1}{2} (|1\rangle\langle 1| + |2\rangle\langle 2| + |1\rangle\langle 2|\langle\phi_{2}|\phi_{1}\rangle + |2\rangle\langle 1|\langle\phi_{1}|\phi_{2}\rangle) = \frac{1}{2} \begin{pmatrix} 1 & \langle\phi_{2}|\phi_{1}\rangle \\ \langle\phi_{1}|\phi_{2}\rangle & 1 \end{pmatrix}$$

Full decoherence (full diagonalisation):  $\langle \phi_1 | \phi_2 \rangle = 0$ Full coherence:  $|\langle \phi_1 | \phi_2 \rangle| = 1$ Partial decoherence:  $0 < |\langle \phi_1 | \phi_2 \rangle| < 1$ 

Full coherence  $\Rightarrow$  no entanglement:

$$|\langle \phi_1 | \phi_2 \rangle| = 1 \implies |\phi_2 \rangle = e^{i\varphi} |\phi_1 \rangle$$

$$\Rightarrow |\Psi\rangle = \frac{1}{\sqrt{2}}(|1\rangle + e^{i\varphi}|2\rangle)|\phi_1\rangle \equiv |\psi\rangle|\phi_1\rangle$$

- When the second subsystem has **many** degrees of freedom then decoherence is usually almost full:  $|\langle \phi_1 | \phi_2 \rangle| \ll 1$ .

Simple explanation:

- For  $N \gg 1$  degrees, usually they are statistically quite independent.

- Independent means not correlated,

which in QM means not entangled:  $|\phi_k\rangle \simeq |\chi_{k1}\rangle \cdots |\chi_{kN}\rangle$ 

 $\Rightarrow \langle \phi_1 | \phi_2 \rangle \simeq \langle \chi_{11} | \chi_{21} \rangle \cdots \langle \chi_{1N} | \chi_{2N} \rangle, \quad |\langle \chi_{1j} | \chi_{2j} \rangle| \equiv e^{-\alpha_j} < 1$ 

For simplicity we can take all  $\alpha_i$  to be roughly the same  $\alpha_i \sim \alpha$ 

 $\Rightarrow |\langle \phi_1 | \phi_2 \rangle| \sim e^{-\alpha N} \ll 1$ 

The second system with many degrees usually called environment.
A particularly useful kind of environment: macroscopic measuring apparatus.

## Quantum measurement:

- Suppose that  $|\phi_1\rangle$  and  $|\phi_2\rangle$  are two macroscopic states of the measuring apparatus.

- In a practical sense, the apparatus "measures" only if the two states can be **distinguished**  $\Rightarrow |\langle \phi_1 | \phi_2 \rangle| \ll 1$ .

# $\Rightarrow$ Measurement is associated with (almost) full decoherence.

Generalized measurement with n possible outcomes:

$$|\Psi\rangle = \sum_{l=1}^{n} c_l |\psi_l\rangle |\phi_l\rangle, \quad \langle \phi_l |\phi_{l'}\rangle \simeq \delta_{ll'}$$

Counter-example:

- In quantum optics, a mirror does not destroy coherence of a photon.

- $\Rightarrow$  Mirror does not cause decoherence.
- $\Rightarrow$  Mirror does not measure the photon. Why?
- $|\phi_1
  angle$  state of mirror when it is not hit by the photon
- $|\phi_2
  angle$  state of mirror when it is hit by the photon
- When photon hits the mirror, it transfers momentum  $\mathbf{p}$  to the mirror.
- x = position of the mirror center of mass in the direction of p
- $\dots$  = all the other mirror particle positions

- Mirror is a correlated system of particles, all momentum transferred to  $\boldsymbol{x}$ 

$$\Rightarrow \phi_2(x,...) = e^{ipx/\hbar} \phi_1(x,...) \Rightarrow \langle \phi_1 | \phi_2 \rangle \propto \int dx \, e^{ipx/\hbar} |\phi_1(x,...)|^2$$

- Center of mass is well defined, i.e.  $\phi_1(x,...)$  is narrow Gaussian in x.  $\Rightarrow e^{ipx/\hbar}$  nearly a constant inside the Gaussian (unless the transferred momentum p is very big)

# $\Rightarrow |\langle \phi_1 | \phi_2 \rangle| \simeq 1$

i.e. the photon is not much decohered by mirror.

# Dynamics of decoherence:

- Evolution of the full closed system is unitary:  $|\Psi(t)\rangle = e^{-iHt/\hbar}|\Psi(0)\rangle$
- Due to interactions, evolution of a subsystem is usually not unitary.

 $\Rightarrow |\langle \phi_1(t) | \phi_2(t) \rangle| \equiv r(t)$  (decoherence factor) changes with time.

Heuristic description:

- Initially (before interaction) r(0) = 1.
- During a short time  $\delta t$  it slightly lowers

 $r(\delta t) = r(0) - \Gamma \delta t = r(0)[1 - \Gamma \delta t] \simeq r(0)e^{-\Gamma \delta t}$ 

- Due to many degrees of freedom, the system soon "forgets" its initial state, so it always repeats the same decay pattern:

$$r(2\delta t) \simeq r(\delta t)e^{-\Gamma\delta t} \simeq r(0)e^{-\Gamma2\delta t}$$

 $\Rightarrow$  For long times exponential decay

$$r(t) \simeq r(0) e^{-\Gamma t}$$

- More careful computations and simulations qualitatively confirm.

- At extremely long times ( $t \gg$  age of the universe) r(t) can grow (quantum Poincare recurrence).
- Irrelevant in practice.
- For all practical purposes (FAPP), decoherence is irreversible.
- It's a statistical law, closely related to 2nd law of thermodynamics.
- □ C depends on details of the interaction Hamiltonian.
- For N degrees of freedom, usually  $\Gamma\propto N.$
- $\Rightarrow$  For macroscopic objects decoherence is usually **very fast**.

| Environment                 | Dust grain | Large molecule |
|-----------------------------|------------|----------------|
| Cosmic background radiation | 1          | $10^{24}$      |
| Photons at room temperature | $10^{-18}$ | $10^{6}$       |
| Best laboratory vacuum      | $10^{-14}$ | $10^{-2}$      |
| Air at normal pressure      | $10^{-31}$ | $10^{-19}$     |

Typical decoherence times (in seconds)  $\tau = 1/\Gamma$  for some cases:

# **Environment-induced superselection:**

- Decoherence: mechanism by which  $\rho_1$  becomes (nearly) diagonal. - But if  $\rho_1$  is diagonal in one basis, it's not diagonal in another. Question: What determines the basis in which  $\rho_1$  is diagonal? Answer: The Hamiltonian (of the full closed system)!

- If  $H|\Psi(t)\rangle \neq E|\Psi(t)\rangle \Rightarrow |\Psi(t)\rangle$  is non-stationary, changes with time. - If  $H|\Psi(t)\rangle = E|\Psi(t)\rangle \Rightarrow |\Psi(t)\rangle = e^{-iEt/\hbar}|\Psi(0)\rangle$  does not change (the overall phase  $e^{-iEt/\hbar}$  is irrelevant).

- $\Rightarrow$  *H*-eigenstates are stable, other states are unstable.
- $\Rightarrow$  Decoherence factors  $r(t) \simeq e^{-\Gamma t}$  decay in the basis of *H*-eigenstates.
- $\Rightarrow$  After time  $t \sim \Gamma^{-1}$ ,  $\rho_1$  settles down into a matrix

(nearly) diagonal in the basis of H-eigenstates.

- $\Rightarrow$  *H* defines a preferred basis.
- In this basis, coherent superpositions are often (FAPP) impossible.
- In general, impossibility of a certain kind of coherent superposition is called **superselection**.

- Decoherence explains superselection via interaction with environment.

## Examples:

Charge Q:

- Exactly conserved  $\Rightarrow [Q, H] = 0.$ 

 $\Rightarrow$  Impossible to find a coherent superposition of states with different charges, e.g.  $|1 \text{ electron}\rangle + |2 \text{ electrons}\rangle$ 

Energy of the 1st subsystem:

 $H = H_1 + H_2 + H_{\text{int}}$ 

- If  $H_{\text{int}} \ll H_1 \Rightarrow H$ -eigenstates are close to  $H_1$ -eigenstates.

 $\Rightarrow \rho_1$  is nearly diagonal in the basis of  $H_1$ -eigenstates

(e.g. a stable or quasi-stable atom).

Interaction energy:

- If  $H_{\text{int}} \gg H_1 \Rightarrow H$ -eigenstates are close to  $H_1$ -eigenstates.
- $\Rightarrow \rho_1$  is nearly diagonal in the basis of  $H_{\text{int}}$ -eigenstates.
- Usually  $H_{\text{int}}$  depends only on positions, e.g.  $H_{\text{int}} = V(r)$ .
- Explains why do we not observe macroscopic superpositions of states at different places, e.g.  $|cat here\rangle + |cat there\rangle$ .

Application to Schrödinger cat:

- Difference between life and death can be reduced to a difference between positions of some macroscopic objects

(e.g. eyelid open vs eyelid closed).

 $\Rightarrow$  Decoherence explains why there are **no** coherent superpositions  $|\text{cat live}\rangle + |\text{cat dead}\rangle$ .

Does decoherence explain the wave-function collapse?

- Not quite!

- Decoherence eliminates certain **coherent** superpositions, but it still contains **incoherent** superpositions.

For coherent superposition  $|\psi\rangle = \frac{1}{\sqrt{2}}(|\text{live}\rangle + |\text{dead}\rangle)$ in the representation  $|\text{live}\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$ ,  $|\text{dead}\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$  we have  $|\psi\rangle\langle\psi| = \frac{1}{2}\begin{pmatrix} 1&1\\1&1 \end{pmatrix} \xrightarrow{\text{decoherence}} \frac{1}{2}\begin{pmatrix} 1&0\\0&1 \end{pmatrix}$ 

On the other hand, collapse corresponds to an additional transition:

$$\frac{1}{2}\left(\begin{array}{c}1&0\\0&1\end{array}\right)\xrightarrow{\text{collapse}}\left(\begin{array}{c}1&0\\0&0\end{array}\right) \text{ or } \frac{1}{2}\left(\begin{array}{c}1&0\\0&1\end{array}\right)\xrightarrow{\text{collapse}}\left(\begin{array}{c}0&0\\0&1\end{array}\right)$$

- Mixed state  $\rho$  always related to a lack of knowledge.

- Physical reasons for the lack of knowledge may be different, but  $\rho$  may look the same.

# **Improper mixture:**

- Full system  $|\Psi\rangle = \frac{1}{\sqrt{2}}(|1\rangle|\phi_1\rangle + |2\rangle|\phi_2\rangle)$ - Someone who doesn't measure the 2nd subsystem, describes the 1st subsystem as  $\rho_1 = \frac{1}{2} |1\rangle \langle 1| + \frac{1}{2} |2\rangle \langle 2|$ 

# **Proper mixture:**

- An apparatus prepares a pure state, either  $|1\rangle$  or  $|2\rangle$ .
- The decision is made by a classical pseudo-random mechanism.

- Someone who doesn't know what the decision was, describes her knowledge as  $\rho = \frac{1}{2} |1\rangle \langle 1| + \frac{1}{2} |2\rangle \langle 2|$ 

- For given  $\rho$ , the interpretation as a proper mixture is not unique. E.g.  $|1\rangle\langle 1| + |2\rangle\langle 2| = |+\rangle\langle +| + |-\rangle\langle -|$ , where  $|\pm\rangle = \frac{1}{\sqrt{2}}(|1\rangle \pm |2\rangle)$ 

The problem of measurement in QM can be expressed as:

- How does an improper mixture turn into a proper mixture?
- The answer depends on the interpretation of QM

(Copenhagen, many worlds, Bohmian, ...)

 $\Rightarrow$  Decoherence **alone** doesn't solve the measurement problem!

Nevertheless, decoherence has far reaching implications:

- Coherent superposition of a macroscopic object
- (e.g. Schrödinger cat) can live only for a very short time.
- Once coherence gets destroyed, it remains destroyed "forever" (FAPP).
- Quantum computer with many qbits is very hard to make.

Relevance for solution of the measurement problem:

- Fast decoherence **helps** to explain why macro objects obey classical laws.

- Irreversibility of decoherence **helps** to explain the (illusion of) wave-function collapse.

- A **full** solution requires a use of some specific interpretation (Copenhagen, many worlds, Bohmian, ...) not to be discussed today.

# Forthcoming talks:

Quantum Foundations IV:

Quantum theory of measurement and Bohmian mechanics

Quantum Foundations V:

Relativistic QFT from a Bohmian perspective: A proof of concept

Quantum Foundations VI: Suggestions welcome