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A few words about me:

I feel like an outsider on this conference.

- I don’t work on electron and phonon transport.

- I am not even a condensed-matter physicist.

I work on foundations of physics.

For instance, to study condensed matter

one must first learn foundations such as

- principles of quantum mechanics

- principles of quantum field theory (= second quantization?)

- principles of statistical physics

I study such general principles of physics.
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- Here I will talk about some conceptual foundations

which may be relevant for general conceptual understanding

of (some aspects of) condensed matter physics.

- What’s the difference between particle and quasiparticle?

- Is quantum particle a pointlike object?

- Is quasiparticle (e.g. phonon) a pointlike object?

- Is vacuum a state without particles?

- Does Casimir effect originate from vacuum energy?

I will try to answer those and many related conceptual questions.
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Part 1.

PARTICLES AND QUASIPARTICLES

Standard and Bohmian Perspective
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What is quasiparticle?
- Terminology is not unique.

- Mattuck (A Guide to Feynman Diagrams in the Many-Body Problem)
distinguishes quasiparticles from collective excitations.

quasiparticle = original individual particle
+ cloud of disturbed neighbors

- Collective excitation (e.g. phonon) is not centered
around individual particle
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Alternative terminology (this talk):

- collective excitations (e.g. phonons) also called quasiparticles.

What makes phonons similar to particles?

- The key is to approximate the system by a collection of harmonic

oscillators.

2-dimensional lattice:

- For each h.o. the potential energy proportional to (xi − xi+1)
2.
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3-dimensional lattice:

Elementary QM: Each h.o. has energy spectrum of the form

En = h̄ω

(
n+

1

2

)
, n = 0,1,2,3, . . .

⇒ n can be thought of as a number of “quanta”.

⇒ n behaves like a number of “particles”.

7



More formally:

- the h.o.’s decouple in new collective coordinates

k = 1, . . . , N - labels N decoupled harmonic oscillators ⇒

Ĥ =
∑
k

h̄ωk

(
n̂k +

1

2

)
, n̂k = â

†
kâk, [âk, â

†
k′] = δkk′

Complete set of eigenstates:

- groundstate: |0⟩, satisfies âk|0⟩ = 0

- 1-“particle” states: |k⟩ = â
†
k|0⟩

- 2-“particle” states: |k1, k2⟩ = â
†
k1
â
†
k2
|0⟩

- 3-“particle” states: ...

- The formalism looks identical to QFT (quantum field theory)

of elementary particles (e.g. photons).

- Due to this analogy, the above quanta of lattice vibrations

are called phonons.

⇒ Formally, a phonon is not less a particle than a photon.
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- Indeed, photon is also a collective excitation.
- It is a collective excitation of electromagnetic field.
- Electromagnetic field E(x), B(x) lives on a continuum 3d space,
which can be thought of as a 3d lattice with spacing l → 0.

- Why then photon is a “true” particle and phonon a “quasiparticle”?

- The difference is in the nature of lattice vertices!

- For phonons, the vertices are particles themselves - atoms.
- Phonons emerge from atoms (not the other way around),
so atoms are more fundamental particles than phonons.
- In this sense, a phonon is “less” particle than an atom,
so it makes sense to call it “quasiparticle”.

- For photons, the “vertices” are simply fields E, B at point x.
- There are no more fundamental particles at field vertices.
- Hence photon can be considered a fundamental particle,
not “quasiparticle”.
- At least this is our current understanding of photons.
- The future physicists might discover that photons
are quasiparticles too, just like phonons.
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Practical consequences:

- For experiments at large distances (d≫ l),

phonons behave as particles just as photons do.

- In principle you can measure phonon position,

but only with precision ∆x≫ l.

- Position measurement may induce a phonon wave-function collapse,

to a narrow (but not too narrow!) Gaussian with a width ∆x≫ l.

Why does measurement induce a collapse?

- Is it just an axiom of QM?

- Or can it be explained by Schrodinger equation?

- To answer those questions we need to understand

what is going on during a measurement.
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Quantum theory of measurement:

Measure observable K̂ with eigenstates |k⟩.
|k⟩ - states of any quantum object

(electron, photon, phonon, ..., quantum “cat”, ... whatever)

Measuring apparatus in initial state |Φ0⟩.
Interaction ⇒ unitary continuous transition

|k⟩|Φ0⟩ → |k′⟩|Φk⟩
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|Φ0⟩ and |Φk⟩ are macroscopically distinguishable pointer states

⇒ wave functions have a negligible overlap in configuration space

Φk1(x⃗)Φk2(x⃗) ≃ 0 for k1 ̸= k2

where Φk(x⃗) ≡ ⟨x⃗|Φk⟩, x⃗ ≡ (x1, . . . ,xn),

n = number of particles constituting the apparatus
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For a superposition |ψ⟩ =
∑
k ck|k⟩:

|ψ⟩|Φ0⟩ →
∑
k

ck|k′⟩|Φk⟩

Why this “collapses” to |k′⟩|Φk⟩?

|Φk⟩ are macroscopically distinguishable.
⇒ Superposition consists of many distinguishable branches.
Each branch evolves as if other branches did not exist.
⇒ From perspective of any branch, other branches do not exist.
Explains the collapse if one remaining question can be answered:

Why should we take a view from the perspective of a branch
as the physical one?

Further conceptual issues:
- In QM, particle becomes localized due to measurement.
- In classical physics, particle is localized even without measurement.
Can we think of quantum particle as localized without measurement?
- In standard formulation of QM - no!
- In Bohmian formulation of QM - yes!
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How does Bohmian formulation work?

Wave function: ψ(x, t) =
√
ρ(x, t)eiS(x,t)/h̄

Complex Schrodinger equation

−
h̄2∇2ψ

2m
+ V ψ = ih̄

∂ψ

∂t
can be rewritten as two real equations;
1. “Continuity” equation:

∂ρ

∂t
+∇(ρv) = 0, v ≡

∇S
m

2. “Hamilton-Jacobi” equation:

(∇S)2

2m
+ V +Q = −

∂S

∂t
, Q ≡ −

h̄2

2m

∇2√ρ
√
ρ

Bohmian formulation interprets these equations as “classical”,
i.e. it postulates that v is the velocity of point-like particle
with trajectory X(t)

dX(t)

dt
= v(X(t), t)
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Quantum uncertainty interpreted as in classical statistical physics:

- Fundamental dynamics is deterministic.

- Uncertainty is emergent due to our ignorance of initial positions.

Let me show that measurable statistical predictions

are identical to standard QM:

- Particular branch becomes physical because

it becomes filled with something physical - pointlike particles:
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⇒ Filling entity is described by position

X⃗ ≡ (X1, . . . ,Xn)

n = number of particles constituting the apparatus.

⇒ Apparatus made of pointlike particles.

- If apparatus particles are real and pointlike,
does it make sense to assume that so are other particles?

X1, . . . ,Xn,Xn+1, . . . ,XN

N = total number of particles in the laboratory

Probability density of particle positions:

ρ(x1, . . . ,xN , t) = |Ψ(x1, . . . ,xN , t)|2

- cannot be tested in practice
(one cannot observe all particles in the whole laboratory).

- One really observes macroscopic observable describing
the measuring apparatus.
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⇒ Phenomenologically more interesting is apparatus probability density

ρ(appar)(x1, . . . ,xn, t) =
∫
d3xn+1 · · · d3xN ρ(x1, . . . ,xn,xn+1, . . . ,xN , t)

⇒

ρ(appar)(x⃗) ≃
∑
k

|ck|2 |Φk(x⃗)|2

⇒ Probability to find the apparatus particles in the support of Φk(x⃗):

pk =
∫
supp Φk

d3nx ρ(appar)(x⃗) ≃ |ck|2

- this is the Born rule.

⇒ We derived Born rule in arbitrary k-basis

from assumption of Born rule in position basis.

⇒ It is crucial that apparatus particles exist

and have the quantum probability distribution.

- not so important whether positions

of the observed system (photon, phonon, ...) exist.
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Bohmian formulation used in two ways:

- As a fundamental interpretation of QM (alternative to Copenhagen):

assumes that particle trajectories really exist in Nature.

- As a practical tool for computations (e.g. Xavier Oriols et al).

- Bohmian formulation often used for electrons.

- Can Bohmian formulation be used for phonons?

As a fundamental interpretation of phonons:

- No, because we know that phonon is not a fundamental particle,

but emerges from collective motion of atoms.

As a practical tool for phonon computations:

- Yes, because

(when phonon can be described by a Schrodinger-like equation)

Bohmian formulation will lead to same measurable predictions

as standard theory of phonons.
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Final warnings:

- Be careful not to take seriously the phonon theory

(either standard or Bohmian) at small distances.

- Take phonons seriously only at distances

much larger than the interatomic distance.

- At smaller distances reformulate your problem

in terms of more fundamental particles (atoms, electrons, photons, ...).
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Part 2.

THE ORIGIN OF CASIMIR EFFECT

Vacuum Energy or van der Waals Force?
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- Spectrum of h.o.

En = h̄ω

(
n+

1

2

)
⇒ Energy of the ground state E0 = h̄ω/2.
- Is this energy physical?

- Standard answer - no, because we only measure energy differences.
⇒ We can subtract this constant without changing physics

⇒ En = h̄ωn

- On the other hand, often claimed in literature
that Casimir effect is a counter-example.
- Is Casimir effect evidence that vacuum energy is physical?

Casimir effect = attractive force between electrically neutral plates

Two explanations:
1) vacuum energy of electro-magnetic field
2) van der Waals force
- Which explanation is correct?
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1) Vacuum-energy explanation:

- field vanishes at perfectly conducting plates

⇒ some wavelengths impossible between the plates

⇒ Hamiltonian does not contain those modes

⇒ those modes do not contribute to vacuum energy Evac

⇒ Evac depends on the distance y between the plates

⇒ Casimir force

Fvac = −
∂Evac(y)

∂y
= −

π2

240

h̄c

y4
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Advantages:

- calculation relatively simple

- presented in many textbooks

Disadvantages:

- Electromagnetic forces are forces between charges,

but where are the charges?

- Force originates from boundary conditions, but microscopic origin

of boundary conditions not taken into account.

⇒ Vacuum-energy explanation is not a fully microscopic explanation.

Those disadvantages avoided by van der Waals force approach.
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2) Van der Waals force explanation:

- Force explained by polarization of the medium:

- Polarizability of the medium traced down to

microscopic polarizability of atoms:

- calculation more complicated (Lifshitz theory)

- the final result is the same FvdW = Fvac
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Why do two different explanations give the same result?

Qualitative explanation:

- vacuum-energy explanation originates from boundary conditions

- boundary conditions originate from E = 0 in a perfect conductor

- E = 0 originates from rearrangement of charges

so that any external Eext is canceled

- rearrangement of charges = polarization P(x)

(electric dipole moment per volume)

- such a system is simpler to describe by electric displacement

D = E+P

- P is induced by E, so approximately P ∝ E

⇒ D = ϵE (ϵ is dielectric constant) ⇒

P = (ϵ− 1)E

- energy density in dielectric medium (Jackson, Classical Electrodyn.)

H =
D · E
2
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- combining all the equations above ⇒

H =
E2

2
+

P · E
2

- assume there is no external electric field ⇒ average field vanishes, i.e.

⟨E⟩ = ⟨P⟩ = 0

- however there are quantum fluctuations ⟨E2⟩ ̸= 0 ⇒

⟨Hint⟩ =
⟨P · E⟩

2
=

⟨P2⟩
2(ϵ− 1)

=
ϵ− 1

2
⟨E2⟩

⇒ interaction energy originates from correlation ⟨P · E⟩
- this is van der Waals energy
- this is fundamental because it does not depend
on phenomenological macroscopic parameter ϵ.

At a phenomenological macroscopic ϵ-dependent level,
can also be interpreted as:
- energy of polarization fluctuations ⟨P2⟩, or
- energy of electric field fluctuations ⟨E2⟩
(the “vacuum”-energy description of Casimir effect)
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A toy model:

- The full quantum description is very complicated.

- To gain intuitive understanding of full quantum description,

I present a simple toy model with many qualitative features

analogue to Casimir effect.

(H.N., Annals of Physics 383 (2017) 181, arXiv:1702.03291)

- Electromagnetic field E(x), B(x) → mimic by single degree x1
- Charged particles → mimic by single degree x2
- Distance between the plates → mimic by the third degree y

Hamiltonian:

H =

(
p21
2m

+
kx21
2

)
+

(
p22
2m

+
kx22
2

)
+

p2y

2M
+ g(y)x1x2

Force on y:

F = −
∂H

∂y
= −g′(y)x1x2
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To decouple x1 and x2, introduce new canonical variables

x± =
x1 ± x2√

2
, p± =

p1 ± p2√
2

⇒

H = H+ +H− +
p2y

2M
where

H± =
p2±
2m

+
k±(y)x2±

2
, k±(y) = k ± g(y)

Force on y in new variables:

F = −
g′(y) (x2+ − x2−)

2
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To quantize the theory we make an approximation:

- treat y as a classical background

⇒ quantize only the effective Hamiltonian

H(eff) = H+ +H−

⇒ two (quantum) uncoupled harmonic oscillators

H± = h̄Ω±(y)
(
a
†
±a± +

1

2

)
, Ω2

±(y) =
k ± g(y)

m

effective vacuum a±|0̃⟩ = 0 ⇒

E
(eff)
vac = ⟨0̃|H(eff)|0̃⟩ =

h̄Ω+(y)

2
+
h̄Ω−(y)

2
⇒ Casimir-like force

F = −
∂E

(eff)
vac

∂y
= −

h̄Ω′
+(y)

2
−
h̄Ω′

−(y)

2
=

− h̄g′(y)
4mΩ+(y)

+
h̄g′(y)

4mΩ−(y)

- Not clear how is this quantum force related to the classical force?
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A Lifshitz-like approach to calculate the force:

Quantum expectation of the “classical” force operator

F = −
g′(y) ⟨0̃|(x2+ − x2−)|0̃⟩

2

Elementary property of harmonic oscillator:

⟨0̃|x2±|0̃⟩ =
h̄

2mΩ±
⇒

F =
− h̄g′(y)
4mΩ+(y)

+
h̄g′(y)

4mΩ−(y)

- the same result as with the Casimir-like approach

In both approaches, the force originates from coupling function g(y).
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The structure of the interacting vacuum:

In the absence of coupling g(y) → 0,

- different frequency

ω =
k

m
̸= Ω±

- different creation/destruction operators a1,2 ̸= a±:

aj =
√
mω

2 h̄
xj +

i√
2mh̄ω

pj

a± =

√
mΩ±
2 h̄

x± +
i√

2mh̄Ω±
p±
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Related by a Bogoliubov transformation:

a± =
∑

j=1,2

αj±aj + βj±a
†
j

Bogoliubov coefficients:

α1± =
Ω± + ω

2
√
2Ω±ω

, α2± = ±α1±

β1± =
Ω± − ω

2
√
2Ω±ω

, β2± = ±β1±

Two different vacuums |0⟩ ̸= |0̃⟩:

aj|0⟩ = 0, a±|0̃⟩ = 0

⇒ The average number of free quanta Nj = a
†
jaj

is not zero in interacting vacuum |0̃⟩:

⟨0̃|Nj|0̃⟩ = β2j+ + β2j−

32



How is this toy model related to the real Casimir effect?

- first free oscillator analogous to electromagnetic Hamiltonian

p21/m+ kx21
2

↔
∫
d3x

E2 +B2

2
- second free oscillator analogous to polarization field of charged matter

(J.J. Hopfield, Phys. Rev. 112, 1555 (1958))

- the interaction term analogous to interaction

between charges and electromagnetic field

gx1x2 ↔
∫
d3xAµj

µ

Aµ is electromagnetic 4-potential, jµ is charged 4-current
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- mixture of fundamental degrees:

x+ =
x1 + x2√

2
↔ D = E+P

P(x) polarization (dipole moment per volume),
D(x) electric displacement (defined by Eq. above)

- More precisely, two frequencies Ω± ↔ two branches ω±(K)
of the dispersion relation in a dielectric medium:
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- free vacuum |0⟩ ↔ state without photons and polarization quanta

- interacting vacuum |0̃⟩ ↔ Casimir vacuum

⇒ Casimir vacuum is not a state without photons

(H.N., Phys. Lett. B 761, 197 (2016); arXiv:1605.04143)

- Casimir vacuum is a state without polaritons.

(W.M.R. Simpson (2015), Surprises in Theoretical Casimir Physics)

- Polariton is a quasiparticle, a complicated mixture

of photons and polarization quanta.

35



The final question: What is vacuum?

In physics, there are different definitions of the word “vacuum”:

1) - state without any particles

2) - state without photons

3) - state annihilated by some lowering operators ak|0⟩ = 0

4) - local minimum of a classical potential

5) - state with lowest possible energy (ground state)

- Casimir vacuum is only 3),

it has zero number of quasiparticles (polaritons).

- Casimir vacuum is not 5),

for otherwise Casimir force could not attract the plates

to a state of even lower energy.
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