Quasiparticles, Casimir effect and all that: Conceptual insights

Hrvoje Nikolić

Rudjer Bošković Institute, Zagreb, Croatia

Menorca, Spain, 18-20. October 2017

A few words about me:

I feel like an outsider on this conference.

- I don't work on electron and phonon transport.
- I am not even a condensed-matter physicist.

I work on *foundations* of physics.

For instance, to study condensed matter one must first learn foundations such as

- principles of quantum mechanics
- principles of quantum field theory (= second quantization?)
- principles of statistical physics

I study such general principles of physics.

 Here I will talk about some conceptual foundations which may be relevant for general conceptual understanding of (some aspects of) condensed matter physics.

- What's the difference between particle and quasiparticle?
- Is quantum particle a pointlike object?
- Is quasiparticle (e.g. phonon) a pointlike object?
- Is vacuum a state without particles?
- Does Casimir effect originate from vacuum energy?

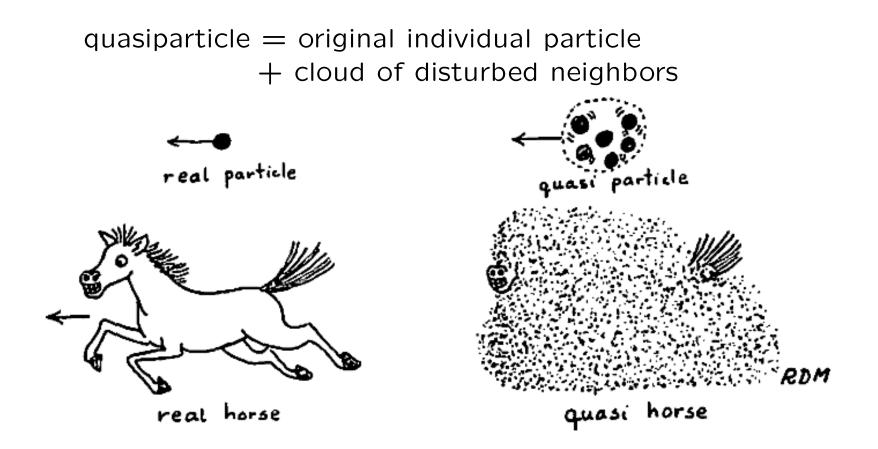
I will try to answer those and many related conceptual questions.

Part 1. PARTICLES AND QUASIPARTICLES Standard and Bohmian Perspective

What is quasiparticle?

- Terminology is not unique.

- Mattuck (*A Guide to Feynman Diagrams in the Many-Body Problem*) distinguishes quasiparticles from collective excitations.



- Collective excitation (e.g. phonon) is not centered around individual particle

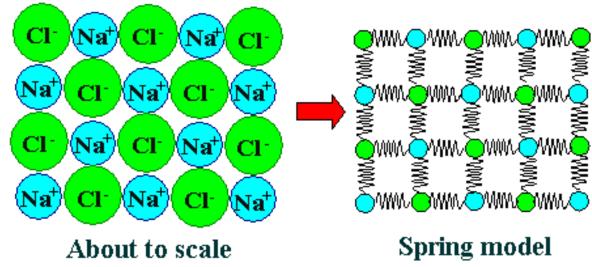
Alternative terminology (this talk):

- collective excitations (e.g. phonons) also called quasiparticles.

What makes phonons similar to particles?

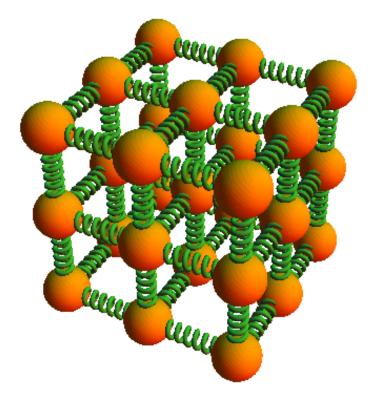
- The key is to approximate the system by a collection of harmonic oscillators.

2-dimensional lattice:



- For each h.o. the potential energy proportional to $(x_i - x_{i+1})^2$.

3-dimensional lattice:



Elementary QM: Each h.o. has energy spectrum of the form

$$E_n = \hbar \omega \left(n + \frac{1}{2} \right), \quad n = 0, 1, 2, 3, \dots$$

- \Rightarrow *n* can be thought of as a number of "quanta".
- \Rightarrow *n* behaves like a number of "particles".

More formally:

- the h.o.'s decouple in new collective coordinates

 $k = 1, \ldots, N$ - labels N decoupled harmonic oscillators \Rightarrow

$$\hat{H} = \sum_{k} \hbar \omega_k \left(\hat{n}_k + \frac{1}{2} \right), \quad \hat{n}_k = \hat{a}_k^{\dagger} \hat{a}_k, \quad [\hat{a}_k, \hat{a}_{k'}^{\dagger}] = \delta_{kk'}$$

Complete set of eigenstates:

- groundstate: $|0\rangle$, satisfies $\hat{a}_k|0\rangle = 0$
- 1-"
 particle" states: $|k\rangle = \hat{a}_k^{\dagger}|0\rangle$
- 2- "particle" states: $|k_1, k_2\rangle = \hat{a}_{k_1}^{\dagger} \hat{a}_{k_2}^{\dagger} |0\rangle$
- 3- "particle" states: ...

- The formalism looks identical to QFT (quantum field theory) of elementary particles (e.g. **photons**).

- Due to this analogy, the above quanta of lattice vibrations are called **phonons**.

 \Rightarrow Formally, a phonon is not less a particle than a photon.

- Indeed, photon is also a collective excitation.
- It is a collective excitation of electromagnetic field.
- Electromagnetic field E(x), B(x) lives on a continuum 3d space, which can be thought of as a 3d lattice with spacing $l \rightarrow 0$.
- Why then photon is a "true" particle and phonon a "quasiparticle"?
- The difference is in the nature of lattice **vertices**!
- For phonons, the vertices are particles themselves atoms.
 Phonons emerge from atoms (not the other way around), so atoms are more fundamental particles than phonons.
 In this sense, a phonon is "less" particle than an atom, so it makes sense to call it "quasiparticle".
- For photons, the "vertices" are simply fields \mathbf{E} , \mathbf{B} at point \mathbf{x} .
- There are no more fundamental particles at field vertices.
- Hence photon can be considered a fundamental particle, not "quasiparticle".
- At least this is our current understanding of photons.
- The future physicists might discover that photons are quasiparticles too, just like phonons.

Practical consequences:

- For experiments at large distances $(d \gg l)$,

phonons behave as particles just as photons do.

- In principle you can measure phonon position,

but only with precision $\Delta x \gg l$.

- Position measurement may induce a phonon wave-function collapse, to a narrow (but not too narrow!) Gaussian with a width $\Delta x \gg l$.

Why does measurement induce a collapse?

- Is it just an axiom of QM?
- Or can it be explained by Schrodinger equation?

- To answer those questions we need to understand what is going on during a measurement.

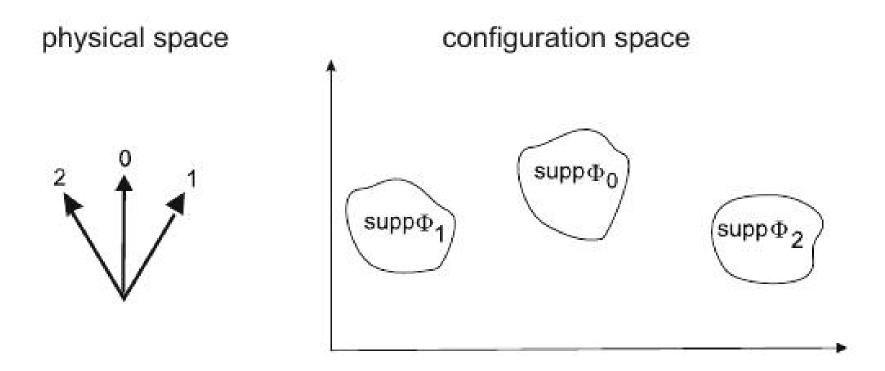
Quantum theory of measurement:

Measure observable \hat{K} with eigenstates $|k\rangle$. $|k\rangle$ - states of any quantum object (electron, photon, **phonon**, ..., quantum "cat", ... whatever)

Measuring apparatus in initial state $|\Phi_0\rangle$. Interaction \Rightarrow unitary continuous transition

 $|k\rangle|\Phi_0
angle
ightarrow |k'
angle|\Phi_k
angle$

 $|\Phi_0\rangle$ and $|\Phi_k\rangle$ are macroscopically distinguishable pointer states \Rightarrow wave functions have a negligible overlap in configuration space



$$\Phi_{k_1}(\vec{x})\Phi_{k_2}(\vec{x}) \simeq 0 \quad \text{for} \quad k_1 \neq k_2$$

where $\Phi_k(\vec{x}) \equiv \langle \vec{x} | \Phi_k \rangle$, $\vec{x} \equiv (\mathbf{x}_1, \dots, \mathbf{x}_n)$, n = number of particles constituting the apparatus For a superposition $|\psi\rangle = \sum_k c_k |k\rangle$:

$$|\psi\rangle|\Phi_0
angle
ightarrow\sum_k c_k|k'
angle|\Phi_k
angle$$

Why this "collapses" to $|k'\rangle |\Phi_k\rangle$?

 $|\Phi_k\rangle$ are macroscopically distinguishable.

 \Rightarrow Superposition consists of many distinguishable branches.

Each branch evolves as if other branches did not exist.

 \Rightarrow From perspective of any branch, other branches do not exist.

Explains the collapse if one remaining question can be answered:

Why should we take a view from the perspective of a branch as the physical one?

Further conceptual issues:

- In QM, particle becomes localized due to measurement.
- In classical physics, particle is localized even without measurement. Can we think of quantum particle as localized without measurement?
- In standard formulation of QM no!
- In Bohmian formulation of QM yes!

How does Bohmian formulation work?

Wave function: $\psi(\mathbf{x},t) = \sqrt{\rho(\mathbf{x},t)}e^{iS(\mathbf{x},t)/\hbar}$ Complex Schrodinger equation

$$-\frac{\hbar^2 \nabla^2 \psi}{2m} + V\psi = i\hbar \frac{\partial \psi}{\partial t}$$

can be rewritten as two real equations;

1. "Continuity" equation:

$$\frac{\partial \rho}{\partial t} + \nabla(\rho \mathbf{v}) = 0, \quad \mathbf{v} \equiv \frac{\nabla S}{m}$$

2. "Hamilton-Jacobi" equation:

$$\frac{(\nabla S)^2}{2m} + V + Q = -\frac{\partial S}{\partial t}, \quad Q \equiv -\frac{\hbar^2}{2m} \frac{\nabla^2 \sqrt{\rho}}{\sqrt{\rho}}$$

Bohmian formulation interprets these equations as "classical", i.e. it postulates that \mathbf{v} is the velocity of point-like particle with trajectory $\mathbf{X}(t)$

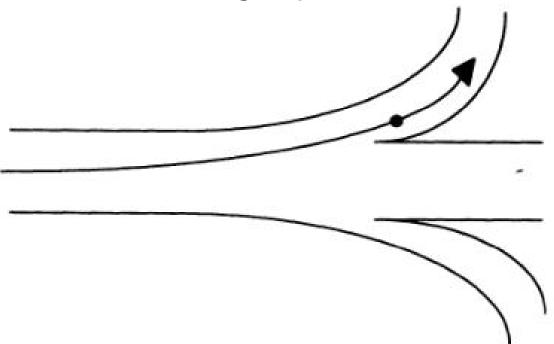
$$\frac{d\mathbf{X}(t)}{dt} = \mathbf{v}(\mathbf{X}(t), t)$$

Quantum uncertainty interpreted as in classical statistical physics:

- Fundamental dynamics is deterministic.
- Uncertainty is emergent due to our ignorance of initial positions.

Let me show that measurable statistical predictions are identical to standard QM:

- Particular branch becomes physical because it becomes **filled with** something physical - pointlike particles:



 \Rightarrow Filling entity is described by position

 $\vec{X} \equiv (\mathbf{X}_1, \dots, \mathbf{X}_n)$

n = number of particles constituting the **apparatus**.

 \Rightarrow Apparatus made of pointlike particles.

- If apparatus particles are real and pointlike, does it make sense to assume that so are other particles?

 $\mathbf{X}_1,\ldots,\mathbf{X}_n,\mathbf{X}_{n+1},\ldots,\mathbf{X}_N$

N = total number of particles in the laboratory

Probability density of particle positions:

 $\rho(\mathbf{x}_1,\ldots,\mathbf{x}_N,t) = |\Psi(\mathbf{x}_1,\ldots,\mathbf{x}_N,t)|^2$

 cannot be tested in practice (one cannot observe all particles in the whole laboratory).

- One really observes macroscopic observable describing the measuring apparatus.

 \Rightarrow Probability to find the apparatus particles in the support of $\Phi_k(\vec{x})$:

$$p_k = \int_{\text{supp } \Phi_k} d^{3n} x \, \rho^{(\text{appar})}(\vec{x}) \simeq |c_k|^2$$

- this is the Born rule.

 \Rightarrow We **derived** Born rule in arbitrary *k*-basis from assumption of Born rule in position basis.

⇒ It is crucial that apparatus particles exist
and have the quantum probability distribution.
not so important whether positions
of the observed system (photon, phonon, ...) exist.

Bohmian formulation used in two ways:

- As a fundamental interpretation of QM (alternative to Copenhagen): assumes that particle trajectories really exist in Nature.

- As a practical tool for computations (e.g. Xavier Oriols et al).
- Bohmian formulation often used for electrons.
- Can Bohmian formulation be used for phonons?

As a fundamental interpretation of phonons:

- No, because we know that phonon is not a fundamental particle, but emerges from collective motion of atoms.

As a practical tool for phonon computations:

- Yes, because

(when phonon can be described by a Schrodinger-like equation) Bohmian formulation will lead to same measurable predictions as standard theory of phonons.

Final warnings:

- Be careful not to take seriously the phonon theory (either standard or Bohmian) at small distances.

- Take phonons seriously only at distances much larger than the interatomic distance.

- At smaller distances reformulate your problem in terms of more fundamental particles (atoms, electrons, photons, ...).

Part 2. THE ORIGIN OF CASIMIR EFFECT Vacuum Energy or van der Waals Force?

- Spectrum of h.o.

$$E_n = \hbar\omega\left(n + \frac{1}{2}\right)$$

 \Rightarrow Energy of the ground state $E_0 = \hbar \omega/2$.

- Is this energy physical?

Standard answer - no, because we only measure energy differences.
 ⇒ We can subtract this constant without changing physics

 $\Rightarrow E_n = \hbar \omega n$

- On the other hand, often claimed in literature that Casimir effect is a counter-example.

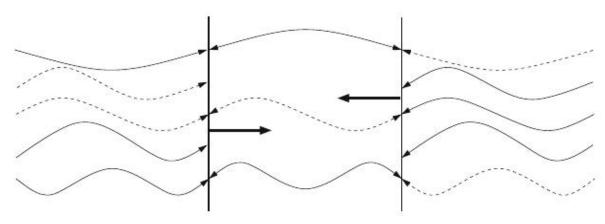
- Is Casimir effect evidence that vacuum energy is physical?

Casimir effect = attractive force between electrically neutral plates

Two explanations:

- 1) vacuum energy of electro-magnetic field
- 2) van der Waals force
- Which explanation is correct?

1) Vacuum-energy explanation:



- field vanishes at perfectly conducting plates
- \Rightarrow some wavelengths impossible between the plates
- \Rightarrow Hamiltonian does not contain those modes
- \Rightarrow those modes do not contribute to vacuum energy $E_{\rm Vac}$
- $\Rightarrow E_{Vac}$ depends on the distance y between the plates
- \Rightarrow Casimir force

$$F_{\text{vac}} = -\frac{\partial E_{\text{vac}}(y)}{\partial y} = -\frac{\pi^2}{240} \frac{\hbar c}{y^4}$$

Advantages:

- calculation relatively simple
- presented in many textbooks

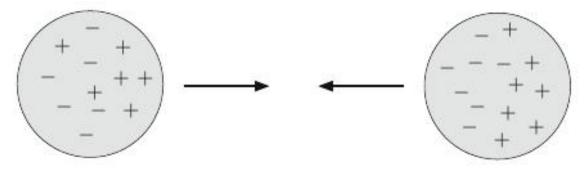
Disadvantages:

- Electromagnetic forces are forces between charges,
- but where are the charges?
- Force originates from boundary conditions, but microscopic origin of boundary conditions not taken into account.
- ⇒ Vacuum-energy explanation is not a fully microscopic explanation.

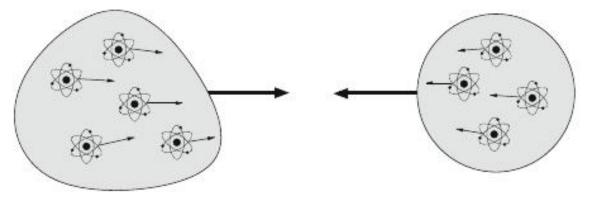
Those disadvantages avoided by van der Waals force approach.

2) Van der Waals force explanation:

- Force explained by polarization of the medium:



- Polarizability of the medium traced down to microscopic polarizability of atoms:



- calculation more complicated (Lifshitz theory)
- the final result is the same $F_{\rm vdW} = F_{\rm vac}$

Qualitative explanation:

- vacuum-energy explanation originates from boundary conditions
- boundary conditions originate from $\mathbf{E}=\mathbf{0}$ in a perfect conductor
- $\mathbf{E} = \mathbf{0}$ originates from rearrangement of charges

so that any external \mathbf{E}_{ext} is canceled

- rearrangement of charges = polarization P(x)

(electric dipole moment per volume)

- such a system is simpler to describe by electric displacement

 $\mathbf{D} = \mathbf{E} + \mathbf{P}$

- **P** is induced by **E**, so approximately $\mathbf{P} \propto \mathbf{E}$ $\Rightarrow \mathbf{D} = \epsilon \mathbf{E}$ (ϵ is dielectric constant) \Rightarrow

 $\mathbf{P} = (\epsilon - 1)\mathbf{E}$

- energy density in dielectric medium (Jackson, Classical Electrodyn.)

$$\mathcal{H} = \frac{\mathbf{D} \cdot \mathbf{E}}{2}$$

- combining all the equations above \Rightarrow

$$\mathcal{H} = \frac{\mathbf{E}^2}{2} + \frac{\mathbf{P} \cdot \mathbf{E}}{2}$$

- assume there is no external electric field \Rightarrow average field vanishes, i.e.

 $\left< \mathbf{E} \right> = \left< \mathbf{P} \right> = \mathbf{0}$

- however there are quantum fluctuations $\langle E^2 \rangle \neq 0 \Rightarrow$

$$\langle \mathcal{H}_{\text{int}} \rangle = \frac{\langle \mathbf{P} \cdot \mathbf{E} \rangle}{2} = \frac{\langle \mathbf{P}^2 \rangle}{2(\epsilon - 1)} = \frac{\epsilon - 1}{2} \langle \mathbf{E}^2 \rangle$$

- \Rightarrow interaction energy originates from correlation $\langle P \cdot E \rangle$
- this is van der Waals energy
- this is **fundamental** because it does not depend on phenomenological macroscopic parameter ϵ .

At a **phenomenological** macroscopic ϵ -dependent level, can also be interpreted as:

- energy of polarization fluctuations $\langle \mathbf{P}^2 \rangle$, or
- energy of electric field fluctuations $\langle E^2 \rangle$ (the ''vacuum''-energy description of Casimir effect)

A toy model:

- The full quantum description is very complicated.
- To gain intuitive understanding of full quantum description,
 I present a simple toy model with many qualitative features analogue to Casimir effect.

(H.N., Annals of Physics 383 (2017) 181, arXiv:1702.03291)

- Electromagnetic field E(x), $B(x) \rightarrow$ mimic by single degree x_1
- Charged particles \rightarrow mimic by single degree x_2
- Distance between the plates ightarrow mimic by the third degree y

Hamiltonian:

$$H = \left(\frac{p_1^2}{2m} + \frac{kx_1^2}{2}\right) + \left(\frac{p_2^2}{2m} + \frac{kx_2^2}{2}\right) + \frac{p_y^2}{2M} + g(y)x_1x_2$$

Force on *y*:

$$F = -\frac{\partial H}{\partial y} = -g'(y)x_1x_2$$

To decouple x_1 and x_2 , introduce new canonical variables

$$x_{\pm} = \frac{x_1 \pm x_2}{\sqrt{2}}, \quad p_{\pm} = \frac{p_1 \pm p_2}{\sqrt{2}}$$

$$H = H_{+} + H_{-} + \frac{p_y^2}{2M}$$

where

 \Rightarrow

$$H_{\pm} = \frac{p_{\pm}^2}{2m} + \frac{k_{\pm}(y)x_{\pm}^2}{2}, \quad k_{\pm}(y) = k \pm g(y)$$

Force on y in new variables:

$$F = -\frac{g'(y)\left(x_{+}^{2} - x_{-}^{2}\right)}{2}$$

To quantize the theory we make an approximation:

- treat y as a classical background

 \Rightarrow quantize only the effective Hamiltonian

 $H^{(\mathrm{eff})} = H_+ + H_-$

 \Rightarrow two (quantum) uncoupled harmonic oscillators

$$H_{\pm} = \hbar \Omega_{\pm}(y) \left(a_{\pm}^{\dagger} a_{\pm} + \frac{1}{2} \right), \quad \Omega_{\pm}^2(y) = \frac{k \pm g(y)}{m}$$

effective vacuum $a_{\pm}|\tilde{0}
angle=0$ \Rightarrow

$$E_{\text{vac}}^{(\text{eff})} = \langle \tilde{0} | H^{(\text{eff})} | \tilde{0} \rangle = \frac{\hbar \Omega_{+}(y)}{2} + \frac{\hbar \Omega_{-}(y)}{2}$$

⇒ Casimir-like force

$$F = -\frac{\partial E_{\text{vac}}^{(\text{eff})}}{\partial y} = -\frac{\hbar \Omega_{+}'(y)}{2} - \frac{\hbar \Omega_{-}'(y)}{2} = \frac{-\hbar g'(y)}{4m\Omega_{+}(y)} + \frac{\hbar g'(y)}{4m\Omega_{-}(y)}$$

- Not clear how is this quantum force related to the classical force?

A Lifshitz-like approach to calculate the force:

Quantum expectation of the "classical" force operator

$$F = -\frac{g'(y) \langle \tilde{0} | (x_+^2 - x_-^2) | \tilde{0} \rangle}{2}$$

Elementary property of harmonic oscillator:

$$\langle \tilde{0} | x_{\pm}^2 | \tilde{0} \rangle = \frac{\hbar}{2m\Omega_{\pm}}$$

 \Rightarrow

$$F = \frac{-\hbar g'(y)}{4m\Omega_+(y)} + \frac{\hbar g'(y)}{4m\Omega_-(y)}$$

- the same result as with the Casimir-like approach

In both approaches, the force originates from coupling function g(y).

The structure of the interacting vacuum:

In the absence of coupling $g(y) \rightarrow 0$,

- different frequency

$$\omega = \frac{k}{m}
eq \Omega_{\pm}$$

- different creation/destruction operators $a_{1,2} \neq a_{\pm}$:

$$a_j = \sqrt{\frac{m\omega}{2\hbar}} x_j + \frac{i}{\sqrt{2m\hbar\omega}} p_j$$

$$a_{\pm} = \sqrt{\frac{m\Omega_{\pm}}{2\hbar}}x_{\pm} + \frac{i}{\sqrt{2m\hbar\Omega_{\pm}}}p_{\pm}$$

Related by a Bogoliubov transformation:

$$a_{\pm} = \sum_{j=1,2} \alpha_{j\pm} a_j + \beta_{j\pm} a_j^{\dagger}$$

Bogoliubov coefficients:

$$\alpha_{1\pm} = \frac{\Omega_{\pm} + \omega}{2\sqrt{2\Omega_{\pm}\omega}}, \quad \alpha_{2\pm} = \pm \alpha_{1\pm}$$
$$\beta_{1\pm} = \frac{\Omega_{\pm} - \omega}{2\sqrt{2\Omega_{\pm}\omega}}, \quad \beta_{2\pm} = \pm \beta_{1\pm}$$

Two different vacuums $|0\rangle \neq |\tilde{0}\rangle$:

$$a_j|0
angle = 0, \quad a_\pm|\tilde{0}
angle = 0$$

 \Rightarrow The average number of free quanta $N_j = a_j^{\dagger} a_j$ is not zero in interacting vacuum $|\tilde{0}\rangle$:

$$\langle \tilde{\mathbf{0}} | N_j | \tilde{\mathbf{0}} \rangle = \beta_{j+}^2 + \beta_{j-}^2$$

How is this toy model related to the real Casimir effect?

- first free oscillator analogous to electromagnetic Hamiltonian

$$\frac{p_1^2/m + kx_1^2}{2} \leftrightarrow \int d^3x \, \frac{\mathbf{E}^2 + \mathbf{B}^2}{2}$$

- second free oscillator analogous to polarization field of charged matter (J.J. Hopfield, Phys. Rev. $\mathbf{112}$, 1555 (1958))

- the interaction term analogous to interaction between charges and electromagnetic field

$$gx_1x_2 \leftrightarrow \int d^3x A_\mu j^\mu$$

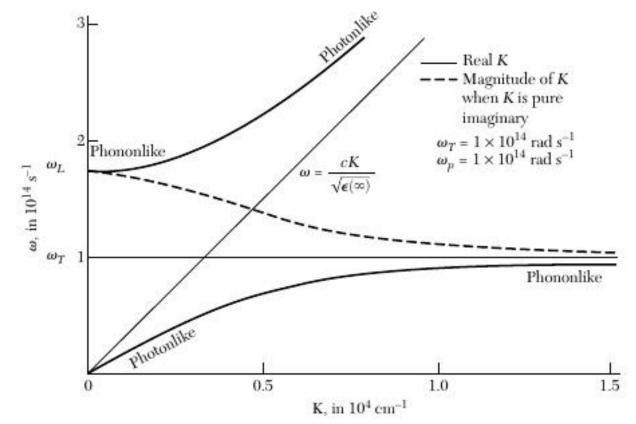
 A_{μ} is electromagnetic 4-potential, j^{μ} is charged 4-current

- mixture of fundamental degrees:

$$x_{+} = \frac{x_{1} + x_{2}}{\sqrt{2}} \iff \mathbf{D} = \mathbf{E} + \mathbf{P}$$

P(x) polarization (dipole moment per volume), D(x) electric displacement (defined by Eq. above)

- More precisely, two frequencies $\Omega_{\pm} \leftrightarrow$ two branches $\omega_{\pm}(K)$ of the dispersion relation in a dielectric medium:



- free vacuum $|0\rangle \leftrightarrow$ state without photons and polarization quanta - interacting vacuum $|\tilde{0}\rangle \leftrightarrow$ Casimir vacuum

 \Rightarrow Casimir vacuum is not a state without photons (H.N., Phys. Lett. B **761**, 197 (2016); arXiv:1605.04143)

Casimir vacuum is a state without polaritons.
(W.M.R. Simpson (2015), *Surprises in Theoretical Casimir Physics*)
Polariton is a quasiparticle, a complicated mixture of photons and polarization quanta.

The final question: What is vacuum?

In physics, there are different definitions of the word "vacuum":

- 1) state without any particles
- 2) state without photons
- 3) state annihilated by **some** lowering operators $a_k |0\rangle = 0$
- 4) local minimum of a classical potential
- 5) state with lowest possible energy (ground state)
- Casimir vacuum is only 3),
 it has zero number of quasiparticles (polaritons).

- Casimir vacuum is **not** 5), for otherwise Casimir force could not attract the plates to a state of even lower energy.