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Part 1.

GENERAL IDEAS
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Motivation:

Frequent argument against Bohmian mechanics (BM):

BM is nonlocal.

⇒ BM is not consistent with relativity.

⇒ BM is not consistent with relativistic QFT.

⇒ BM is not consistent with the real world.

The goal is to explain why is that argument wrong!

Since the argument by critics is simple,

the counterargument should be simple too

(for otherwise it would not convince many critics).

But relativistic QFT is a technically complex theory,

and its Bohmian version is not less complex.

⇒ Fully technical analysis would not be efficient.

⇒ I present a simple conceptual non-technical analysis.

(A proof of concept!)
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A simple analogy - classical electromagnetism:

Standard interpretation:

- The “real” ontic stuff is Fµν = ∂µAν − ∂νAµ.

- Fµν is measurable, gauge invariant and Lorentz covariant.

- Potential Aµ is not ontic.

Conceptual problems:

- The mathematical formulation of the theory requires Aµ.

- If Aµ is not “real”, it’s hard to understand Aharonov-Bohm effect.

⇒ Alternative interpretation:

- Aµ is a fundamental “real” ontic stuff.

Consequences:

- For given Fµν, Aµ is not unique

(due to gauge invariance, Aµ and A′
µ = Aµ+ ∂µλ give the same Fµν).

⇒ Aµ can only be ontic if the gauge is completely fixed!
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The simplest possibility of ontic Aµ = (ϕ,A) is Coulomb gauge:

∇ ·A = 0, ∇2ϕ = −ρ

ϕ(x, t) =
1

4π

∫
d3x′

ρ(x′, t)

|x− x′|
⇒ The ontic theory is not gauge invariant, not Lorentz covariant

and not local (instantaneous action at a distance).

- But this theory makes the same measurable predictions

as the standard theory

(because mathematically it is the standard theory in a fixed gauge).

This is a simple example of the proof of concept:

- An ontic theory which violates gauge invariance,

Lorentz covariance and locality, yet all its measurable predictions

are gauge invariant, Lorentz covariant and local.

- Bohmian mechanics for relativistic QFT will turn out to be

conceptually similar.
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Questions that are hard for (most) physicists, yet easy for philosophers:

Q: What’s the difference between standard theory and this theory?

A: In this theory Aµ is a “real” ontic stuff.

Q: What’s the point of saying that Aµ is ontic?

A: The point is mainly conceptual. Computations are the same, but

helps to understand some aspects (e.g. Aharonov-Bohm) intuitively.

- Ontology is mainly a thinking tool, not a computational tool.

- Those who prefer shut-up-and-calculate may not need this tool at all.

Q: But isn’t this example mathematically trivial?

A: Yes, but that’s exactly the point!

- The point of the example is to realize that something which at first

may seem impossible (local Lorentz covariant phenomena explained

by non-local Lorentz non-covariant theory) may in fact be very easy.

- It’s a proof of concept!
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General Lorentz (non)covariant theories, including QFT:

- QFT is “local” in the sense that its Lagrangian density is local.

- We want to understand how measurable predictions of local Lorentz

covariant QFT can be explained by a nonlocal Lorentz non-covariant

theory such as Bohmian mechanics (BM).

- But we want the argument to be simple, so we don’t want to discuss

technical details of QFT.

- We do this by making the analysis very abstract and general.

For a physical theory T , let

P [T ] = set of all practically measurable predictions implied by T

- “Practically measurable” refers to measurements that can actually be

performed in practice (not merely measurable in principle).
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RQFT = Relativistic QFT in the standard (non-Bohmian) formulation.

RQFT (S) = RQFT with calculations performed in a Lorentz frame S.

- The predictions of RQFT are Lorentz invariant:

P [RQFT (S)] = P [RQFT (S′)] ∀S,∀S′.

- In words, the measurable predictions do not depend on the Lorentz

frame in which the calculations are performed.

BM = Bohmian mechanics (a nonlocal ontic theory of a Bohmian type)

- It’s not a relativistic Lorentz covariant theory

(space and time not treated on an equal footing).

- In the language of relativistic theories, one can say that it’s formulated

in some fixed preferred Lorentz frame S0.
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Now suppose that it is possible to construct a BM theory such that

P [BM ] ⊇ P [RQFT (S0)] (1)

- In words, we suppose that BM contains all the measurable predictions
of RQFT in the Lorentz frame S0, and, in addition, that BM may
contain some additional predictions on which RQFT is silent.

⇒ Lorentz invariance P [RQFT (S)] = P [RQFT (S′)] implies

P [BM ] ⊇ P [RQFT (S)] ∀S

- In other words, if BM reproduces the measurable predictions of RQFT
in the preferred frame S0 (assumption (1)), then it reproduces them in
all frames S.

- That’s how Lorentz non-covariant theory can have Lorentz covariant
predictions.

- A nontrivial task is to construct a concrete theory with property (1).

- Actually many different constructions are possible,
some of which we shall discuss next.
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Part 2.

A MINIMAL MODEL
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Introduction:

- In general we need a BM theory that satisfies P [BM ] ⊇ P [RQFT (S0)]

- A minimal model is a theory for which

P [BM ] = P [RQFT (S0)]

- A minimal model has the same predictions as RQFT ,

without making any additional predictions.

- As a proof of concept, we shall present a conceptually simple model.
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Fundamental Bohmian ontology:

- The only fundamental “real” ontic stuff are bosonic fields,

e.g. Higgs h(x, t), EM potentials A(x, t) in the Coulomb gauge, etc.

(W. Struyve, H. Westman, AIP Conf. Proc. 844, 321 (2006); quant-ph/0602229)

- Particle positions are not ontic.

- Fermionic fields are not ontic.

- It can be done for the whole Standard Model.

(W. Struyve, Rept. Prog. Phys. 73, 106001 (2010); arXiv:0707.3685)

- Intuitively, we usually imagine that the material world is made of

charged matter.

- Even though it’s not ontic (because it’s a fermionic field),

charged matter viewed as an effective property of EM field itself

ρeffective charge(x, t) ≡ ∇ · E(x, t)
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Bohmian ontology for non-

relativistic QM:

- a lot of particle positions

x⃗ = (x1, . . . ,xN)

Particle ontology - discrete

Bohmian ontology for QFT:

- fields ϕ(x) = (h(x),A(x), . . .)

at all space points x.

Field ontology - continuous

- At the macroscopic level it looks the same, because in both cases

the macroscopic ontology is a pattern in space.
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The mathematical construction:

- Main idea is to write QFT in a form similar to non-relativistic QM.

(For details see e.g. B. Hatfield, Quantum Field Theory of Point Particles and Strings

(1991).)

Field eigenstates: ϕ̂(x)|ϕ⟩ = ϕ(x)|ϕ⟩.
⇒ All QFT states |Ψ⟩ represented as functionals of bosonic fields

Ψ[ϕ, t] = ⟨ϕ|Ψ(t)⟩

- Time evolution given by functional Schrödinger equation

ĤΨ[ϕ, t] = ih̄∂tΨ[ϕ, t]

- Relativistic QFT written in a fixed Lorentz frame S0.

- Does not look manifestly Lorentz covariant.
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- The QFT Hamiltonian

Ĥ =
∫
d3x

π̂2(x)

2
+ V [ϕ]

where π̂(x) = −ih̄ δ
δϕ(x) is the canonical momentum.

- For comparison, Hamiltonian in non-relativistic QM

ĤNRQM =
N∑
a=1

p̂2
a

2ma
+ V (x⃗)

where p̂a = −ih̄ ∂
∂xa

- Hamiltonians have the same mathematical form, especially if
continuous QFT is regularized by a discrete lattice:

∫
d3x→

∑
x.

⇒ Bohmian mechanics is a straightforward generalization:
Bohmian particle trajectories Xa(t) → Bohmian field trajectories Φ(x, t)

dXa(t)

dt
=

−ih̄
2ma

ψ† ↔
∇aψ

ψ†ψ
−→

∂Φ(x, t)

∂t
=

−ih̄
2

Ψ†
↔
δ

δϕ(x)Ψ

Ψ†Ψ
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Part 3.

TOWARDS A MORE FUNDAMENTAL

THEORY
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Motivation:

The previous model was minimal: P [BM ] = P [RQFT (S0)]

- It assumed that Standard Model is fundamental.

A philosophically unappealing feature:

(1) Measurable predictions (and field action) are Lorentz invariant.

(2) Bohmian equations are not Lorentz covariant.

- It’s OK for phenomenology, but it doesn’t feel right

for a really fundamental theory.

- It would be more elegant if both (1) and (2)

had same symmetries.

- But due to non-locality (Bell theorem), it’s hard to make

(2) Lorentz covariant.

⇒ Perhaps it means that (1) is also not Lorentz invariant?

- If so, then Standard Model is not fundamental.
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⇒ BM gives a hint how to search for a more fundamental theory

beyond the Standard Model:

(H.N., Int. J. Quantum Inf. (to appear); arXiv:1811.11643)

- Fundamental action should not be Lorentz invariant.

- Measurable predictions (at very small distances)

should not be Lorentz invariant.

We want a fundamental quantum theory F such that

P [F ] ⊇ P [RQFT (S0)]

and a corresponding Bohmian version of F such that

P [BM ] = P [F ]

- To find F is hard, to construct BM (once F is known) is easy.
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A promising general framework to find F :

the condensed matter framework.

- Standard Model of particle physics is just an effective theory,

in the same sense in which field theory of phonons is an effective theory.

- Such models extensively discussed in the literature.

For reviews see the books:

- G.E. Volovik, The Universe in a Helium Droplet (Oxford, 2009)

- X.-G. Wen, Quantum Field Theory of Many-body Systems:

From the Origin of Sound to an Origin of Light and Electrons (Oxford, 2004)
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Analogy between phonons and photons:

- A phonon is a collective excitation of many particles (atoms).
⇒ From atomic point of view, phonon is a quasiparticle,
not a “true” particle.

What makes phonons similar to particles?

- The key is to approximate the system by a collection of harmonic
oscillators.

2-dimensional lattice:

- For each h.o. the potential energy proportional to (xi − xi+1)
2.
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3-dimensional lattice:

Elementary QM: Each h.o. has energy spectrum of the form

En = h̄ω

(
n+

1

2

)
, n = 0,1,2,3, . . .

⇒ n can be thought of as a number of “quanta”.

⇒ n behaves like a number of “particles”.
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More formally:

- the h.o.’s decouple in new collective coordinates

k = 1, . . . , N - labels N decoupled harmonic oscillators ⇒

Ĥ =
∑
k

h̄ωk

(
n̂k +

1

2

)
, n̂k = â

†
kâk, [âk, â

†
k′] = δkk′

Complete set of eigenstates:

- groundstate: |0⟩, satisfies âk|0⟩ = 0

- 1-“particle” states: |k⟩ = â
†
k|0⟩

- 2-“particle” states: |k1, k2⟩ = â
†
k1
â
†
k2
|0⟩

- 3-“particle” states: ...

- The formalism looks identical to QFT (quantum field theory)

of elementary particles (e.g. photons).

- Due to this analogy, the above quanta of lattice vibrations

are called phonons.

⇒ Formally, a phonon is not less a particle than a photon.
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- Indeed, photon is also a collective excitation.
- It is a collective excitation of electromagnetic field.
- Electromagnetic field E(x), B(x) lives on a continuum 3d space,
which can be thought of as a 3d lattice with spacing l → 0.

- Why then photon is a “true” particle and phonon a “quasiparticle”?

- The difference is in the nature of lattice vertices!

- For phonons, the vertices are particles themselves - atoms.
- Phonons emerge from atoms (not the other way around),
so atoms are more fundamental particles than phonons.
- In this sense, a phonon is “less” particle than an atom,
so it makes sense to call it “quasiparticle”.

- For photons, the “vertices” are simply fields E, B at points x.
- In the Standard Model (SM) there are no more fundamental particles
at field vertices.
- Hence from SM point of view, photon can be considered
a fundamental particle, not “quasiparticle”.

- But if SM is not fundamental, then photon can be a “quasiparticle”.
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Emergence of QFT and Lorentz invariance:

- It is usually considered that relativistic QFT is fundamental,

while non-relativistic QM is only an approximation.

- I propose that (in the more fundamental theory)

the opposite is the case. How could that be?

Again, the key is analogy with sound.

Sound satisfies the wave equation

1

c2s

∂2ψ

∂t2
−∇2ψ = 0

- Lorentz invariant (with speed of sound cs instead of c).

- Valid only at distances much larger than interatomic distances.

- Derived from non-relativistic motion of atoms.

- Atoms make the “ether” for sound waves.

- If one observed only the sound and nothing else,

it would look as if there was no “ether” for sound.
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- First quantization of ψ ⇒ QM of a single phonon.

- Second quantization of ψ ⇒ QFT of phonons.

- Standard tools in condensed matter.

- Derived from non-relativistic QM of atoms (nuclei + electrons).

- Creation/destruction of phonons from fixed number of atoms.

- By analogy, all relativistic “elementary particles” of Standard Model

(photons, electrons, ...) might be derivable from hypothetic

more fundamental non-relativistic particles.

- The world looks “fundamentally” relativistic only because we don’t

yet see those more fundamental degrees.

- It’s a neo-Lorentzian ether theory.

- Michelson-Morley experiment ruled out a possibility that Earth

moves through ether.

- No experiment ruled out a possibility that Earth (and everything else)

is made of ether.
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Example: A Phonon and its Bohmian interpretation:

- Crystal lattice made of N atoms with positions

q⃗ = (q1, . . . ,qN)

- Wave function Ψ(q⃗, t) satisfies non-relativistic Schrödinger equation N∑
a=1

p̂2
a

2ma
+ V (q⃗)

Ψ = ih̄∂tΨ

- Let Ψp(q⃗, t) = solution corresponding to 1 (acoustic) phonon
with momentum p.
⇒ Most general 1-phonon solution

Ψ(q⃗, t) =
∑
p
cpΨp(q⃗, t).

- In the abstract Hilbert space this state is

|Ψ(t)⟩ =
∑
p
cp|Ψp(t)⟩

which can also be represented by a 1-quasiparticle wave function

ψ(x, t) =
∑
p
cpe

−i[ω(p)t−p·x]

- units h̄ = 1, ω(p) = cs|p| - Lorentz invariant dispersion relation
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- The 1-quasiparticle wave function ψ(x, t) satisfies wave equation

1

c2s

∂2ψ

∂t2
−∇2ψ = 0

Bohmian interpretation 1:

ψ(x, t) suggests phonon position X(t).

- Makes sense if one imagines that phonon is fundamental.

Bohmian interpretation 2:

- Denies X(t), but Ψ(q⃗, t) suggests atom positions Q⃗(t).

- Makes sense if one imagines that atoms are fundamental.

Contains 3 wave-like objects:

1) 1-phonon wave function ψ(x, t), relativistic, not fundamental.

2) Multi-atom wave function Ψ(q⃗, t), non-relativistic, fundamental.

3) Collective motion of atoms Q⃗(t), non-relativistic, fundamental.
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Bohmian interpretation 3:

- Denies Q⃗(t), but accepts Standard Model fields Φ(x, t).

- We discussed it in more detail in Part 2.

- Makes sense if SM is fundamental.

Bohmian interpretation 4:

- Denies Φ(x, t), but accepts existence of as yet unknown

truly fundamental particles with Q⃗truly fundamental(t).

- Truly fundamental particles are not created and destroyed.

⇒ Described by non-relativistic QM.

- Such a more fundamental theory looks natural

from a Bohmian point of view.

- So far it’s just a general theoretical framework for a research program.

- It’s still far from a closed theory.
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Dr. Bohm or:

How I learned to stop worrying and love standard QM/QFT

- In standard QM/QFT, it’s unclear how measurement

creates definite results (the mystery of collapse).

- Bohmian interpretation offers an intuitive explanation.

- Perhaps it’s not how nature actually works.

- But it is how it could work.

It’s like finding a way how a magician could

pull out a rabbit from the hat:

- without seeing how does the magician actually do it

- without believing in true magic.

- With this intuitive Bohmian picture in mind, it’s no longer

disturbing to use the standard collapse rule in practice.
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Possible topics for next talks:

Quantum Foundations VI: Suggestions welcome
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