

Interpretation miniatures

Hrvoje Nikolić Rudjer Bošković Institute, Zagreb, Croatia

Long version, 2016

- Discussions of quantum interpretations usually take a lot of words.

- Physicists only marginally interested in interpretations do not have patience for long and obscure arguments.

- If you are one of them, this talk is for you: Various aspects of interpretations are explained in a concise and simple (almost trivial) form.

- This format allows me to cover many (unrelated) topics.

Outline:

- 1. Copenhagen interpretations
 - 1.1 There is no Copenhagen interpretation
 - 1.2 Making sense of local non-reality
- 2. Many-world interpretation
 2.1 MWI is neither local nor non-local
 2.2 The Born rule cannot be derived
 2.3 The preferred basis problem
 2.4 Quantum suicide
- 3. Bohmian interpretation
- 3.1 A dark-matter analogy
- 3.2 Correlation vs causation
- 3.3 A Bohmian theory of everything
- 4. Comparison of interpretations
- 4.1 Who is puzzled by delayed choice?
- 4.2 Time in quantum gravity
- 4.3 Alternatives to non-locality

Appendix: Life is an organized disorder

1. COPENHAGEN INTERPRETATIONS

1.1 There is no Copenhagen interpretation

- Many physicists say that they prefer the "Copenhagen interpretation".

- It does not mean that they all prefer the same interpretation.

- There are at least 4 different interpretations which are frequently called "Copenhagen".

1. Shut up and calculate

- adopted by most practical physicists

2. Positivism

QM is only about the results of measurements, not about reality existing without measurements
adopted by Bohr

3. Information interpretation

- wf does not represent reality, but only information about reality

- also called QBism
- similar to 2., but not the same

4. Collapse interpretation

- when measurement is performed, then wf collapses (von Neumann)

1.2 Making sense of local non-reality

- One interpretation of Bell theorem: local non-reality
- Physics is local, but there is no reality.
- Does it mean that nothing really exists?
- That would be a nonsense!

Here is what it should really mean:

- Physics is not a theory of everything.
- Something of course exists, but that's not the subject of physics.
- Physics is not about reality of nature,

it is only about what we can **say** about nature.

- In physics we should only talk about measurable stuff.

- It's important to talk also about non-measurable stuff,

but just because it's important is not a reason to call it physics.

Bell theorem \Rightarrow reality is non-local

- logically correct, but that is not physics

 $QM \Rightarrow$ signal locality

- that is measurable, so that is physics

In short, "local non-reality" should mean:

- Reality is non-local.
- Physics is about the measurable, which is local.

- In that form, local non-reality does **not** necessarily need to be accepted, but at least can be reasonably debated.

2. MANY-WORLD INTERPRETATION

2.1 MWI is neither local nor non-local

The postulates:

- 1. Wave function $\psi(\mathbf{x}_1, \ldots, \mathbf{x}_n, t)$ is the only reality.
- 2. It always satisfies Schrödinger equation (no collapse).
- looks deceptively simple, because people forget to read the fine print:
- 3. Some auxiliary postulates (different versions of MWI).
- wf splitting into "many worlds" is **not postulated**; it is derived
- no collapse, no additional variables \Rightarrow no action at a distance \Rightarrow **MWI is not non-local**.

However, it does **not** mean that MWI is local:

- A local quantity is something of the form $\phi(\mathbf{x},t)$.
- There is no such quantity in MWI.
- wf does **not** live in the (3 + 1)-dimensional spacetime.
- wf lives in an abstract higher-dimensional space.

\Rightarrow MWI is neither local nor non-local.

MWI is **alocal**.

2.2 The Born rule cannot be derived

The 2 main postulates of MWI can be rewritten as:

- 1. ψ is real (ontic)
- 2. ψ satisfies a linear equation

- Often claimed that from 1. and 2. one can derive the Born rule

probability = $|\psi|^2$ (1)

Let me show that one cannot (by *reductio ad absurdum*): Assume that one *can*

- \Rightarrow (1) for **any** ψ satisfying 1. and 2.
- \Rightarrow (for instance) valid when $\psi = a$ water wave.

But that's absurd, (1) is not true for the water wave.

 \Rightarrow The assumption was wrong. Q.E.D.

- to derive the Born rule, one must assume something more

- that's why one needs the "3rd postulate" (fine print)
- there are various proposals for the additional assumptions
- neither of them looks sufficiently "natural"

Argument that Born rule is not natural in MWI:

- wf splits into two branches $\psi = \psi_1 + \psi_2$, both are real
- analogous to cell division in biology, both are real
- that's also how twin brothers are created, both are real

- suppose $|\psi_1|^2 > |\psi_2|^2$
- analogous to: brother-1 is bigger (fatter) than brother-2

does it mean that brother-1 is more probable than brother-2?
No! (If somebody told you that you and your twin brother have different weights, would you conclude that you are probably the fatter one?)

- by analogy: (ψ_1 more probable than ψ_2) also doesn't seem natural.

2.3 The preferred basis problem

- "the reality is $\psi(\mathbf{x}_1,\ldots,\mathbf{x}_n,t)$ " – prefers the position basis

- perhaps reality is the basis independent object $|\psi
angle?$

Leads to an even more serious preferred basis problem:

- to define separate worlds of MWI, one needs a preferred basis, e.g.

 $|\psi\rangle = |\text{live cat}\rangle + |\text{dead cat}\rangle$

- claim in modern literature: preferred basis provided by decoherence
- however, decoherence requires a split of system into subsystems (the measured system and the environment)
- but if $|\psi\rangle$ is all what exists \Rightarrow such a split is not unique.

MWI claiming that $|\psi\rangle$ is all what exists cannot resolve the basis problem, and thus cannot define separate worlds.

some additional structure is needed
(e.g. observers of Copenhagen interpretation, or particles of Bohmian interpretation)

2.4 Quantum suicide

- proposed to be an experimental test of MWI (e.g. Tegmark, 1998)
- play Russian roulette with a quantum random mechanism

MWI: there is always a branch in which you survive
 ⇒ you will always see that you survive
 (For some reason, no believer in MWI has tried this experiment.)

Critique: Even if MWI was true, that would not be a proof!

- suppose you play **classical** Russian roulette
- either you see nothing (because you are dead), or see that you survive
- after playing many times, if you will see anything, you will see that you always survive

 \Rightarrow For players who can make observations, there is no difference between quantum and classical Russian roulette.

3. BOHMIAN INTERPRETATION

3.1 A dark-matter analogy

Bohmian interpretation: deterministic particle trajectories guided by ψ . - If it s true, then why trajectories cannot be observed?

Analogous to dark matter (astrophysics):

- If dark matter exists, then why it cannot be observed?

Both questions have a similar answer.

Indirect detection:

- sufficient that **exists influence** on something else ("detector")

Direct detection:

 humans tend not to be absolutely convinced that something exists, until they are able to detect the exact **place** where it exists.
 ⇒ need to know where does the influence **comes from**!

Non-dark matter (stars):

- we observe light from the object
- light is a wave \Rightarrow it has direction of propagation
- \Rightarrow easy to determine where does it come from
- \Rightarrow observation is **direct**

Dark matter:

- does not produce (or interact with) light
- observed by static gravitational field produced by dark matter
- static gravitational field does not have direction of propagation
- \Rightarrow cannot easily determine where does the field come from
- \Rightarrow observation is **indirect**

 \Rightarrow Indirect detection of dark matter is considered less convincing than direct detection of non-dark matter.

Analogy with Bohmian particles:

- there is evidence for Bohmian particles (observations can be explained by it, but there are also other explanations)
- non-local quantum potential similar to gravitational static potential (does not have direction of propagation)
- \Rightarrow cannot easily determine where does potential come from
- ⇒ cannot easily determine **position** of Bohmian particle
- \Rightarrow evidence for Bohmian particles is only **indirect**

3.2 Correlation vs causation

- To defend locality of QM, often said that "only" correlations are non-local; there is no true non-local causation.

- Bohmian interpretation accused for being "too much" non-local, by involving a true nonlocal causation.

- But what exactly the difference between correlation and causation is?

I argue that there is no substantial difference at all:

- For simplicity, consider perfect correlation: Whenever system A has property P1, system B has property P2 (whenever one particle has spin up, the other particle has spin down.)

- But Bohmian non-locality also has this form: Whenever one particle has this position, other particle has that velocity.

⇒ There is no difference between perfect correlation and causation. ⇒ Bohmian interpretation is not more non-local than standard correlation interpretation.

3.3 A Bohmian theory of everything

Bohmian mechanics very successful for non-relativistic QM, but:

- non-locality: how can it be compatible with relativity?
- continuous trajectories: how can it be compatible with particle creation/destruction?

A key to the answer: Bohmian interpretation of **phonons**:

- sound satisfies a wave equation

$$\frac{1}{c_s^2} \frac{\partial^2 \psi}{\partial t^2} - \nabla^2 \psi = 0$$

- Lorentz invariant (with velocity of sound c_s instead of c)
- quantum theory of phonons is a QFT (phonon creation/destruction)

Fundamental theory (from condensed-matter perspective):

- fundamental particles: electrons and nuclei
- described by non-relativistic QM
- no creation/destruction of fundamental particles
- Lorentz invariance and QFT are **emergent** (derived from non-relativistic QM)
- phonon is a quasi-particle (not "true" particle)

Bohmian interpretation of phonons:

- no trajectories for phonons
- trajectories only for electrons and nuclei
- ⇒ fundamental theory is non-relativistic Bohmian mechanics

Suggests a Bohmian theory of everything (ToE):

- Perhaps **all** relativistic particles of the Standard Model (photons, electrons, quarks, gluons, Higgs, ...) are really **quasi-particles**
- Perhaps the truly fundamental particles (as yet unknown) are described by non-relativistic QM

 \Rightarrow Non-relativistic Bohmian mechanics is a natural ToE:

- trajectories only for those truly fundamental particles

-Many **qualitative** features of Standard Model (SM) can be realized in condensed matter:

-Raises optimism that even **quantitative** features of SM can be derived from some non-relativistic quantum theory.

4. COMPARISON OF INTERPRETATIONS

4.1 Who is puzzled by delayed choice?

- many physicists seem puzzled by delayed choice experiments (DCE)
- apparently, such experiments seem to change the past
- I compare 7 major interpretations of QM
- **Neither** of them supports the change of past!

1. Shut up and calculate:

- only calculate probabilities of **final** outcomes
- no calculation and no talk about the past

2. Positivist interpretation:

- only talk about the measured
- past is not measured
- \Rightarrow nothing to say about the past

3. Collapse interpretation:

- wf collapse happens at the time of measurement

- before that, evolution described by Schrödinger equation
- \Rightarrow measurement does not affect the past

4. Information interpretation:

- wf represents knowledge about the system
- predicts probabilities of measurement in the **future**
- says nothing about **un-performed** measurements in the past

5. Statistical ensemble interpretation:

- QM says nothing about individual particles
- only about **measured** statistical ensembles
- if past is not measured, it says nothing about the past

6. Many-world interpretation:

- evolution always described by Schrödinger equation

 \Rightarrow no change of the past

7. Bohmian interpretation:

- wf evolves according to Schrödinger equation
- particle guided by wf
- \Rightarrow particle does not change its past.

Niels Bohr said:

"If QM hasn't profoundly shocked you, you haven't understood it yet."

I would add: If DCE shocked you more than the rest of QM, you haven't understood the rest of QM yet.

4.2 Time in quantum gravity

Classical general relativity:

- gravity has negative energy, so total Hamiltonian H = 0

Quantum gravity (instead of Schrödinger equation):

$H\Psi = 0$

- $\Rightarrow \Psi$ does not depend on time.
- Then where time-dependence comes from?
- Considered to be a **big** problem in quantum gravity!

- I show that **all** major interpretations of QM (except perhaps MWI) **trivially** resolve the problem.

1. "Copenhagen"-collapse interpretation (von Neumann)

- wf collapse (due to observation) introduces additional time evolution
- observation itself not described by physics

2. "Copenhagen" interpretation with classical macro-world. (Bohr)

- QM valid only for micro-world
- time dependence due to classical laws for macro-world
- 3. Instrumental "Copenhagen" interpretation (e.g. Peres)
- QM only a tool to predict probabilities of measurement outcomes for given measurement preparations
- measurement preparations freely chosen by experimentalists
- experimentalists themselves not described by QM
- free manipulations by experimentalists introduce additional time-dependence

4. Objective collapse (GRW)

- time evolution due to stochastic (observer-independent) wf collapse

5. Hidden variables (Bohm)

- observed physical object is not $\boldsymbol{\Psi}$
- observed physical object is made of time-dependent "hidden" variables

6. Statistical ensemble (Ballentine)

- ψ does not describe individual systems
- time-dependence is property of individual systems

7. Consistent histories (Griffiths)

- $\boldsymbol{\Psi}$ is a tool to assign probability to a given history
- the history is time-dependent

8. Many worlds (Everett)

- $\Psi(x_1,\ldots,x_N)$ does not depend on t
- however, x_1 may be position of a clock observable
- the origin of time more subtle than in other interpretations

4.3 Alternatives to non-locality

- Does Bell theorem imply non-locality?
- No, there are many alternatives!
- However, each alternative introduces something very strange (perhaps much stranger than non-locality itself)

1. Copenhagen local non-reality

- physics is local, but physics is not about reality

2. many worlds

- reality is not non-local, but also not local (in the 3-space)

3. super-determinism ('t Hooft)

- reality is local and deterministic, but initial conditions are fine tuned

4. backward causation (transactional interpretation)

- reality is local, but there are signals backwards in time

5. consistent histories (Griffiths)

 reality is local, but classical propositional logic is replaced by a different logic: (A true) & (B true), but (A & B) not true

6. solipsistic hidden variables (H.N.)

- reality is local, but only observers (not the observed objects) are real

Appendix: Life is an organized disorder

- 2nd law of thermodynamics: order diminishes with time.
- Life: order seems to grow with time.
- \Rightarrow Life seems to contradict the 2nd law.

The standard explanation:

- 2nd law: total entropy of the **whole** system must increase
- entropy of a subsystem does not need to increase.
- Life works at the expense of increasing entropy of the environment.

Not satisfying:

- Suppose you see a spontaneous (i.e. without human assistance) assembly of a micro-chip,

accompanied with a large increase of environment entropy.

- Would you be surprised? Of course you would!
- But you should not be, according to the standard explanation.
- \Rightarrow Something is missing in this explanation;
- Life is more than a donor of entropy.

Life is a **complex** system \Rightarrow statistical physics is not enough.

- life is a **self-organized** system
- self-organization is **spontaneous**
- means that self-organization is very likely
- ⇒ life evolves towards a **more probable** state
- but more probable state has larger statistical entropy
- (far from equilibrium \Rightarrow not the same as thermodynamic entropy)
- ⇒ statistical entropy increases in life **itself** (not only in its environment)
- \Rightarrow life: organization increases, but order decreases

In a nutshell:

- Organization (complex systems) and order (statistical physics) are not the same.

- Life is an organized disorder.

5. CONCLUSION

For interpretations, a short explanation is sometimes better than a long one (less is more)