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Figure 1: Left: A minimal area surface “̂
A

for AdS
4

whose boundary at z = 0 (entangling curve) is given
by the red curve. Right: The closed surface “̂(d)

A

embedded in R3, obtained from “̂
A

by attaching “̂
A

(blue
part) and its reflected copy “̂(r)

A

(green part) along ˆA (red curve), which is an umbilic line for “̂(d)
A

[76].

2.2.1 AdS
4

: the Willmore energy

The simplest bulk geometry to study is AdS
4

, which is given by

ds2 = 1
z2

! ≠ dt2 + dz2 + dx

2

"
, (2.22)

where the AdS radius has been set to one and dx

2 is infinitesimal spacetime interval of R2 at z = 0.
Comparing (2.22) with (2.1) and (2.6), we have that g

µ‹

is the metric of H
3

and g̃
µ‹

is the flat metric of R3.
The latter fact leads to important simplifications in the general formulas given in §2.1. Indeed, ÂÒ2Ï≠e2Ï = 0
and all the components of Â�z

µ‹

vanish. Thus, for a generic surfaces “
A

the expression (2.16) reduces to [76,77]
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For the minimal area surfaces “̂
A

, which satisfy the condition (2.17), it simplifies further to

F
A

= 1
4

ˆ
“̂A

!
Tr ÂK

"
2

dÃ =
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which can be found also by specifying (2.19) to g̃
µ‹

= ”
µ‹

. Notice that (2.24) does not depend on the choice
of the coordinate system in the z = 0 plane but, for explicit computations, this coordinate system must be
fixed in order to write ñz and dÃ (see §A).

Following [76], we find it convenient to introduce a closed surface “̂(d)
A

embedded in R3 obtained by
“doubling” “̂

A

. In particular, “̂(d)
A

is the union “̂(d)
A

= “̂
A

fi “̂(r)
A

, where “̂(r)
A

is the surface with z < 0 obtained
by reflecting the minimal surface “̂

A

with respect to the plane z = 0. The entangling curve ˆA is a particular
curve on the closed surface “̂(d)

A

and in [76] it has been found that the two principal curvatures are equal on
this curve (i.e. ˆA is an umbilic line). The set of closed oriented compact surfaces given by “̂(d)

A

as A varies
within the set of domains with smooth ˆA is strictly included into the set of the Riemann surfaces embedded
in R3. Indeed, they are symmetric with respect to the z = 0 plane and their intersection with such plane is
an umbilic closed curve. In Fig. 1 we show a minimal surface “̂

A

and the corresponding closed surface “̂(d)
A

(the red curve on “̂(d)
A

along which “̂
A

and “̂(r)
A

match is an umbilic line). It is worth remarking that already
among the connected domains A one can find cases such that “̂(d)

A

has genus two or higher1.
1We are grateful to Veronika Hubeny for pointing this issue out to us.
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Entanglement negativity in a two dimensional harmonic lattice 18

Figure 7. Configurations of adjacent domains on the lattice, identified by red circles
and blue dots, which have been employed as crosschecks for the values of b(✓(1)

i

, ✓(2)
i

)
given in Figs. 5 and 8.

By employing the replica limit (9), the relation (35) provides the corresponding

contribution to the logarithmic negativity in (33), namely

b(✓, 2⇡ � ✓) = b̃1/2(✓) (36)

The numerical checks of (36) for some values of ✓ are shown in Fig. 5. The analysis has

been done by employing some configurations of Fig. 2. [elaborare?]. Unfortunately, an

expression for the function b̃1/2(✓) obtained as the analytic continuation n ! 1/2 of the

formula for b̃
n

(✓) found in [12] is not available.

As for the vertices corresponding to a tripartition of the angle 2⇡, which are the

endpoints of the curve @A1 \ @A2 and for which ✓
(1)
i

+ ✓
(2)
i

< 2⇡, we do not see why

the function b
n

(✓(1)
i

, ✓
(2)
i

) should be related to the corner function b̃
n

(✓). By employing

the configurations shown in Fig. 6, we have studied b(✓, �) for some particular pairs of

values and the numerical results are shown in Fig. 8. [elaborare. crosschecks fatti con le

configurazioni di Fig. 7, indicati con markers neri in Fig. 8] It would be very interesting

to have an analytic expression for the corner function b(✓, �).

From our numerical analysis we find also b
n

(✓(1)
i

, ✓
(2)
i

) for n > 2, but, in order to

check the relation (35) we need to control the unusual corrections to the scaling in 2 + 1

dimensions. This means that one needs to extend to 2 + 1 dimensions the analysis done

by Calabrese and Cardy in 1+1 dimensions [66]. [commentare sui lavori recenti in 2+1 in

cui lo fanno?] Recent relevant work for us is [68] (see fig. 5 there): they studied the scalar

Area law

Corner contributions

Entanglement negativity

of adjacent regions

in a 2D harmonic lattice (massless)



Entanglement entropy

Quantum system in a state ⇢

BA
Bipartite Hilbert space

H = HA ⌦HB

Reduced density matrix

⇢A ⌘ TrB ⇢

Entanglement entropy SA = �TrA(⇢A log ⇢A)

SA = SBPure states:

Entanglement entropy is a measure of the bipartite entanglement

(e.g. 1 + 1 CFTs)

Important exceptions exist

Area law in QFTd
SA / Area(@A)

"d�2
+ . . .



Holographic Entanglement Entropy in AdS(4)/CFT(3)

[Ryu, Takayanagi, (2006)]

Constant time slice in AdSd+1

Find the minimal area surface �̂A
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Domains A obtained as small perturbations of the sphere

[Hubeny, (2012)]

Various non trivial checks. E.g. strong subadditivity

[Allais, Mezei, (2014)]

[Headrick, Takayanagi, (2007)]

Simply connected domains analytically solved:

spheres and infinite strips

[Klebanov, Nishioka, Pufu, Safdi, (2012)]

Holographic dual of Wilson loops [Maldacena, (1998)]

ds2 =
1

z2
�
� dt2 + dz2 + dx2

�
E.g.:AdS4

A[�̂"] =
PA

"

� FA + o(1)

Asymptotically AdS4 geometries

Hypersurfaces �A s.t. @�A = @A

Expansion of the area as " ! 0

[Graham, Witten, (1999)]



[Fonda, Giomi, Salvio, E.T., (2014)]

Generic shape for @A [Fonda, Seminara, E.T., (2015)]
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Figure 20. Example of a typical evolution obtained by Surface Evolver in the case of a circular
boundary. The initial configuration consists of an octagonal prism composed of 40 triangles (left).
The shape is then optimized and refined as described in section B, finding the final configuration
given by the rightmost surface, which consists of 10240 triangles and yields F̃A = 1.99843π whereas
FA = 2π is the exact value from the analytic result (3.1). In this example the radius of the circle
is R = 1 and ε = 0.03.

B Numerical method

The numerical results presented in section 3 and section 4 have been obtained with Surface

Evolver [61, 62]. This is a multipurpose shape optimization program created by Brakke [61]

in the context of minimal surfaces and capillarity and then expanded to address generic

problems on energy minimizing surfaces. A surface is implemented as a simplicial complex,

i.e. a union of triangles. Given an initial configuration of the surface, the program evolves

the surface toward a local energy minimum by a gradient descent method. The energy

used in our calculations is the H3 area function given in (2.3).

The initial configuration is preferably very simple and contains only the least number

of triangles necessary to achieve a given surface topology (figure 20). A typical evolution

consists in a sequence of optimization and mesh-adjustment steps. During an optimization

step, the coordinates of the vertices are updated by a local minimization algorithm (con-

jugate gradient in our case), resulting in a configuration of lower energy. The topology of

the mesh (i.e. the number of vertices, faces and edges) is not altered during minimization.

A mesh-adjustment step, on the other hand, consists of a set of operations whose purpose

is to render the discretized surface smooth and uniform. These operations can be broadly

divided in two class: mesh-refinements and mesh-repairs. In a mesh-refinement operation

a finer grid is overlaid on the coarse one. This is obtained, for instance, by splitting a

triangle in four smaller triangle obtained by joining the mid points of the original edges.

In a mesh-repair operation, the triangles that are too distorted compared to the average

are eliminated. This operation can change the topology of the mesh and possibly also the

topology of the surface which can then breakup into two or more connected parts. This

happens, for instance, in the case of the surfaces described in section 4. As explained, the

minimal surface spanning a disconnected boundary curve can be either connected or dis-

connected depending on the shape of the boundary. Evolving an initially connected surface

in the regime of geometric parameters where the only stable solution is disconnected causes

the surface to form narrow necks and eventually pinches off once the triangles around the

necks become too squeezed.

Due to the divergence of the area element dA =
√

h/z2 du1du2 at z = 0, the boundary

curves used in the numerical work have been defined on the plane z = ε. In order to

maximize the accuracy of the numerical solution, it is preferable to choose value of ε that

– 36 –
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Figure 20. Example of a typical evolution obtained by Surface Evolver in the case of a circular
boundary. The initial configuration consists of an octagonal prism composed of 40 triangles (left).
The shape is then optimized and refined as described in section B, finding the final configuration
given by the rightmost surface, which consists of 10240 triangles and yields F̃A = 1.99843π whereas
FA = 2π is the exact value from the analytic result (3.1). In this example the radius of the circle
is R = 1 and ε = 0.03.

B Numerical method

The numerical results presented in section 3 and section 4 have been obtained with Surface

Evolver [61, 62]. This is a multipurpose shape optimization program created by Brakke [61]
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used in our calculations is the H3 area function given in (2.3).

The initial configuration is preferably very simple and contains only the least number

of triangles necessary to achieve a given surface topology (figure 20). A typical evolution
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step, the coordinates of the vertices are updated by a local minimization algorithm (con-

jugate gradient in our case), resulting in a configuration of lower energy. The topology of

the mesh (i.e. the number of vertices, faces and edges) is not altered during minimization.

A mesh-adjustment step, on the other hand, consists of a set of operations whose purpose

is to render the discretized surface smooth and uniform. These operations can be broadly

divided in two class: mesh-refinements and mesh-repairs. In a mesh-refinement operation

a finer grid is overlaid on the coarse one. This is obtained, for instance, by splitting a

triangle in four smaller triangle obtained by joining the mid points of the original edges.

In a mesh-repair operation, the triangles that are too distorted compared to the average

are eliminated. This operation can change the topology of the mesh and possibly also the

topology of the surface which can then breakup into two or more connected parts. This

happens, for instance, in the case of the surfaces described in section 4. As explained, the

minimal surface spanning a disconnected boundary curve can be either connected or dis-

connected depending on the shape of the boundary. Evolving an initially connected surface

in the regime of geometric parameters where the only stable solution is disconnected causes

the surface to form narrow necks and eventually pinches off once the triangles around the
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h/z2 du1du2 at z = 0, the boundary

curves used in the numerical work have been defined on the plane z = ε. In order to
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Figure 20. Example of a typical evolution obtained by Surface Evolver in the case of a circular
boundary. The initial configuration consists of an octagonal prism composed of 40 triangles (left).
The shape is then optimized and refined as described in section B, finding the final configuration
given by the rightmost surface, which consists of 10240 triangles and yields F̃A = 1.99843π whereas
FA = 2π is the exact value from the analytic result (3.1). In this example the radius of the circle
is R = 1 and ε = 0.03.
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Figure 20. Example of a typical evolution obtained by Surface Evolver in the case of a circular
boundary. The initial configuration consists of an octagonal prism composed of 40 triangles (left).
The shape is then optimized and refined as described in section B, finding the final configuration
given by the rightmost surface, which consists of 10240 triangles and yields F̃A = 1.99843π whereas
FA = 2π is the exact value from the analytic result (3.1). In this example the radius of the circle
is R = 1 and ε = 0.03.

B Numerical method

The numerical results presented in section 3 and section 4 have been obtained with Surface

Evolver [61, 62]. This is a multipurpose shape optimization program created by Brakke [61]

in the context of minimal surfaces and capillarity and then expanded to address generic

problems on energy minimizing surfaces. A surface is implemented as a simplicial complex,

i.e. a union of triangles. Given an initial configuration of the surface, the program evolves

the surface toward a local energy minimum by a gradient descent method. The energy

used in our calculations is the H3 area function given in (2.3).

The initial configuration is preferably very simple and contains only the least number

of triangles necessary to achieve a given surface topology (figure 20). A typical evolution

consists in a sequence of optimization and mesh-adjustment steps. During an optimization

step, the coordinates of the vertices are updated by a local minimization algorithm (con-

jugate gradient in our case), resulting in a configuration of lower energy. The topology of

the mesh (i.e. the number of vertices, faces and edges) is not altered during minimization.

A mesh-adjustment step, on the other hand, consists of a set of operations whose purpose

is to render the discretized surface smooth and uniform. These operations can be broadly
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a finer grid is overlaid on the coarse one. This is obtained, for instance, by splitting a

triangle in four smaller triangle obtained by joining the mid points of the original edges.

In a mesh-repair operation, the triangles that are too distorted compared to the average

are eliminated. This operation can change the topology of the mesh and possibly also the

topology of the surface which can then breakup into two or more connected parts. This

happens, for instance, in the case of the surfaces described in section 4. As explained, the

minimal surface spanning a disconnected boundary curve can be either connected or dis-

connected depending on the shape of the boundary. Evolving an initially connected surface

in the regime of geometric parameters where the only stable solution is disconnected causes

the surface to form narrow necks and eventually pinches off once the triangles around the

necks become too squeezed.

Due to the divergence of the area element dA =
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h/z2 du1du2 at z = 0, the boundary

curves used in the numerical work have been defined on the plane z = ε. In order to
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Figure 20. Example of a typical evolution obtained by Surface Evolver in the case of a circular
boundary. The initial configuration consists of an octagonal prism composed of 40 triangles (left).
The shape is then optimized and refined as described in section B, finding the final configuration
given by the rightmost surface, which consists of 10240 triangles and yields F̃A = 1.99843π whereas
FA = 2π is the exact value from the analytic result (3.1). In this example the radius of the circle
is R = 1 and ε = 0.03.

B Numerical method

The numerical results presented in section 3 and section 4 have been obtained with Surface

Evolver [61, 62]. This is a multipurpose shape optimization program created by Brakke [61]

in the context of minimal surfaces and capillarity and then expanded to address generic
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i.e. a union of triangles. Given an initial configuration of the surface, the program evolves

the surface toward a local energy minimum by a gradient descent method. The energy

used in our calculations is the H3 area function given in (2.3).

The initial configuration is preferably very simple and contains only the least number

of triangles necessary to achieve a given surface topology (figure 20). A typical evolution

consists in a sequence of optimization and mesh-adjustment steps. During an optimization

step, the coordinates of the vertices are updated by a local minimization algorithm (con-

jugate gradient in our case), resulting in a configuration of lower energy. The topology of

the mesh (i.e. the number of vertices, faces and edges) is not altered during minimization.

A mesh-adjustment step, on the other hand, consists of a set of operations whose purpose

is to render the discretized surface smooth and uniform. These operations can be broadly

divided in two class: mesh-refinements and mesh-repairs. In a mesh-refinement operation

a finer grid is overlaid on the coarse one. This is obtained, for instance, by splitting a

triangle in four smaller triangle obtained by joining the mid points of the original edges.

In a mesh-repair operation, the triangles that are too distorted compared to the average

are eliminated. This operation can change the topology of the mesh and possibly also the

topology of the surface which can then breakup into two or more connected parts. This

happens, for instance, in the case of the surfaces described in section 4. As explained, the

minimal surface spanning a disconnected boundary curve can be either connected or dis-

connected depending on the shape of the boundary. Evolving an initially connected surface

in the regime of geometric parameters where the only stable solution is disconnected causes

the surface to form narrow necks and eventually pinches off once the triangles around the

necks become too squeezed.

Due to the divergence of the area element dA =
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h/z2 du1du2 at z = 0, the boundary

curves used in the numerical work have been defined on the plane z = ε. In order to

maximize the accuracy of the numerical solution, it is preferable to choose value of ε that
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E.g.: when A is a disk

z

Figure 7: Minimal surface constructed with Surface Evolver corresponding to a star convex domain delimited
by the red curve given by r(⇧) = R0 + a0 cos(k⇧) in polar coordinates in the z = 0 plane, with R0 = 1,
a0 = 0.7 and k = 4. Here the cuto✏ is ⌃ = 0.03 and (V, F ) = (6145, 11776). Only half of the minimal surface
is shown in order to highlight the section given by the green curve.

3.3 Star shaped and non convex regions
The crucial assumption throughout the above discussions is that the minimal surface �̃A can be fully described
by z = z(x, y), where (x, y) � A. Nevertheless, there are many domains A for which this parameterization
cannot be employed because there are pairs of di✏erent points belonging to the minimal surfaces �̃A with
the same projection (x, y) /� A in the z = 0 plane. In these cases, being the analytic approach quite di⇣cult
in general, one can employ our numerical method to find the minimal surfaces and to compute their area.
The numerical data obtained with Surface Evolver would be an important benchmark for analytic results
that could be found in the future.

An interesting class of two dimensional regions to consider is given by the star shaped domains. A
region A at z = 0 belongs to this set of domains if a point P0 � A exists such that the segment connecting
any other point of the region to P0 entirely belongs to A. As for the minimal surface anchored on a
star shaped domain A, by introducing a spherical polar coordinates system (r, ⇧, ⇥) centered in P0 (the
angular ranges are ⇧ � [0, 2⇤) and ⇥ � [0, ⇤/2]), one can parameterize the entire minimal surface. Thus,
we have ⌅ = r sin ⇥ and z = r cos ⇥, being (⌅, ⇧) the polar coordinates of the z = 0 plane. Some interesting
analytic results about these domains have been already found. In particular, [22] considered minimal surfaces
obtained as smooth perturbations around the hemisphere and in [23] the behaviour in the IR regime for
gapped backgrounds [68] has been studied. Our numerical method allows a more complete analysis because,
within our approximations, we can find (numerically) the area of the corresponding minimal surface without
restrictions.

In Fig. 7 we show a star convex domain A delimited by the red curve at z = 0, which does not contain
vertices, and the corresponding minimal surface �̃A anchored on it. Notice that there are pairs of points
belonging to �̃A having the same projection (x, y) /� A on the z = 0 plane. It is worth recalling that in
our regularization the numerical construction of the minimal surface with Surface Evolver has been done by
defining the entangling curve ⌦A at z = ⌃.

In order to give a further check of our numerical method, we find it useful to compare our numerical
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x

y

z

x

y

R1

R2

Figure 1: Top panel: Minimal surfaces constructed by using Surface Evolver where the entangling curve
⌅A is a circle with radius R = 1 (red), an ellipse (orange), a superellipse (3.9) with n = 8 (purple) and the
boundary of a spherocylinder (green) with R1 = 3R2. The cuto� is � = 0.03 and only the y � 0 part of the
minimal surfaces has been depicted to highlight the curves provided by the section y = 0. Bottom panel:
In the (x, y) plane, we show the superellipses with R1 = 3R2 with n = 2 (orange), n = 4 (blue), n = 6
(magenta) and n = 8 (purple), the circle with radius R1 (red curve) and the rectangle circumscribing the
superellipses (dashed lines). The green curve is the boundary of the two dimensional spherocylinder with
R2 = 3R1.

3.1 Superellipse and two dimensional spherocylinder
The first examples of entangling curves ⌅A we consider for which analytic expressions of the corresponding
minimal surfaces are not known are the superellipse and the boundary of the two dimensional spherocylinder,
whose geometries depend on two parameters. The two dimensional spherocylinder nicely interpolates between
the circle and the infinite strip.

In Cartesian coordinates, a superellipse centered in the origin with axes parallel to the coordinate axes

6

Domains with generic boundaries can be studied



Minimal area surfaces in AdS(4)

z

Figure 10: Minimal surface constructed with Surface Evolver for a domain A = A1 ⇧ A2 delimited by
two disjoint and equal ellipses at z = 0 (blue curves). Here � = 0.03 and the minimal surface is anchored
on ⇧A defined at z = �, according to our regularization prescription. The minimal surface has (V, F ) =
(18936, 37616) (the number of edges E can be found from the Euler formula with vanishing genus and two
boundaries). Only half surface is shown in order to highlight the curves given by the two sections suggested
by the symmetry of the surface.

4 Two disjoint regions
In this section we discuss the main result of this paper, which is the numerical study of the holographic mutual
information of disjoint equal domains delimited by some of the smooth curves introduced in §3.1. For two
equal disjoint ellipses, an explicit example of the minimal surface whose area determines the corresponding
holographic mutual information is shown in Fig. 10.

Let us consider two dimensional domains A = A1⇧A2 made by two disjoint components A1 and A2, where
each component is a simply connected domain delimited by a smooth curve. The boundary is ⇧A = ⇧A1⇧⇧A2
and the shapes of ⇧A1 and ⇧A2 could be arbitrary, but we will focus on the geometries discussed in §3. Since
the area law holds also for SA1�A2 and PA = PA1 + PA2 , the leading divergence O(1/�) cancels in the
combination (1.2), which is therefore finite when � ⇤ 0.

Considering the mutual information (1.2) with the entanglement entropy computed through the holo-
graphic formula (1.1), we find it convenient to introduce IA1,A2 as follows

IA1,A2 ⇥ IA1,A2

4GN
, (4.1)

where GN is the four dimensional Newton constant. Since ⇧A1 and ⇧A2 are smooth curves, from (2.4) and
(3.8) we have

IA1,A2 = �FA1�A2 � �FA1 � �FA2 = FA1�A2 � FA1 � FA2 + o(1) . (4.2)
In the following we study IA1,A2 when ⇧A is made either by two circles (§4.1.2) or by two superellipses or
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(A = A1 [A2)

Disjoint regions

J
H
E
P
0
2
(
2
0
1
5
)
0
0
5

Figure 3. Minimal area surfaces constructed with Surface Evolver whose ∂A is a polygon with three
(left), four (middle) and eight (right) sides. The red polygons ∂A lie in the plane at z = 0 and the
z axis points downward but, according to our regularization, the triangulated surfaces are anchored
to the same polygons at z = ε. The pair (V, F ) giving the number of vertices V and the number of
faces F for these surfaces is (1585, 3072) (left), (2113, 4096) (middle) and (4225, 8192) (right). The
number of edges can be found from the Euler formula with vanishing genus and one boundary.
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Figure 4. Left: section of the minimal surfaces anchored to an equilateral triangle (red, magenta
and purple points), a square (blue points) or an octagon (green points) inscribed in a circle, as
indicated in the inset by the black line. The continuos lines are z = ρ/f0(αN ), where f0(α) is found
from (3.15) with N = 3 (red), N = 4 (blue) or N = 8 (green). The dashed black curve is the
hemisphere corresponding to the circle circumscribing the polygons at z = 0 (dashed in the inset),
while the dashed grey horizontal line corresponds to the cutoff ε = 0.03. Right: a zoom of the
left panel around the origin, placed in the common vertex of the polygons. For the triangle, three
different values of ε ∈ {0.03, 0.02, 0.01} has been considered to highlight how the agreement with
the analytic result improves as ε→ 0.

When ∂A is a convex polygon with N sides, denoting by αi < π its internal angle at

the i-th vertex, for the coefficient of the logarithmic term in (2.5) we can write

BA ≡ 2
N∑

i=1

b(αi) . (3.12)

The function b(α) has been first found in [66], where the holographic duals of the correlators

of Wilson loops with cusps have been studied, by considering the minimal surface near a

cusp whose opening angle is α. Notice that (3.12) does not depend on the lengths of the

– 11 –

(also with non smooth @A)

z

Figure 9: Minimal surfaces constructed with Surface Evolver corresponding to non convex domains at z = 0
delimited by the red and blue curves, which are made by arcs of circle centered either in the origin or in
the points identified by the black dots. The green and magenta curves are sections of the minimal surfaces
anchored on the red and the blue curves respectively.

which reads
R2(⌅) � R + a cos(k⌅) + a2

4R

�
1 + µ cos(2k⌅)

⇥
. (3.21)

In Fig. 8 we construct the minimal surfaces providing the holographic entanglement entropy of some examples
of star shaped regions A delimited by (3.21) where R and µ are kept fixed while a takes di�erent values,
taking the ⌅ = ⇤/4 section of these surfaces (see also the green curve in Fig. 7). Compare the resulting
curves (the solid ones in the main plot of Fig. 8) with the corresponding ones obtained from the second order
linearized solution (3.18) (made by the empty circles), we observe that the agreement is very good for small
values of a/R and it gets worse as a/R increases, as expected.

Our numerical method is interesting because it does not rely on any particular parameterization of the
surface and this allows us to study the most generic non convex domain. In Fig. 9 we show two examples of
non convex domains A which are not star shaped: one is delimited by the red curve and the other one by the
blue curve. We could see these domains as two two dimensional spherocylinders which have been bended in
a particular way. Constructing the minimal surfaces �̃A anchored on their boundaries and considering their
sections given by the green and magenta curves, one can clearly observe that some pair of points belonging
to the minimal surfaces have the same projection (x, y) /⇥ A on the z = 0 plane, as already remarked above.
An analytic description of these surfaces is more di✏cult with respect to the minimal surfaces anchored on
the boundary of star shaped domains because it would require more patches.
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Pathwise connected domains A



HEE in AdS(4). From the disk to the infinite strip
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Figure 1: Top panel: Minimal surfaces constructed by using Surface Evolver where the entangling curve
⌅A is a circle with radius R = 1 (red), an ellipse (orange), a superellipse (3.9) with n = 8 (purple) and the
boundary of a spherocylinder (green) with R1 = 3R2. The cuto� is � = 0.03 and only the y � 0 part of the
minimal surfaces has been depicted to highlight the curves provided by the section y = 0. Bottom panel:
In the (x, y) plane, we show the superellipses with R1 = 3R2 with n = 2 (orange), n = 4 (blue), n = 6
(magenta) and n = 8 (purple), the circle with radius R1 (red curve) and the rectangle circumscribing the
superellipses (dashed lines). The green curve is the boundary of the two dimensional spherocylinder with
R2 = 3R1.

3.1 Superellipse and two dimensional spherocylinder
The first examples of entangling curves ⌅A we consider for which analytic expressions of the corresponding
minimal surfaces are not known are the superellipse and the boundary of the two dimensional spherocylinder,
whose geometries depend on two parameters. The two dimensional spherocylinder nicely interpolates between
the circle and the infinite strip.

In Cartesian coordinates, a superellipse centered in the origin with axes parallel to the coordinate axes
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Figure 1: Top panel: Minimal surfaces constructed by using Surface Evolver where the entangling curve
⌅A is a circle with radius R = 1 (red), an ellipse (orange), a superellipse (3.9) with n = 8 (purple) and the
boundary of a spherocylinder (green) with R1 = 3R2. The cuto� is � = 0.03 and only the y � 0 part of the
minimal surfaces has been depicted to highlight the curves provided by the section y = 0. Bottom panel:
In the (x, y) plane, we show the superellipses with R1 = 3R2 with n = 2 (orange), n = 4 (blue), n = 6
(magenta) and n = 8 (purple), the circle with radius R1 (red curve) and the rectangle circumscribing the
superellipses (dashed lines). The green curve is the boundary of the two dimensional spherocylinder with
R2 = 3R1.

3.1 Superellipse and two dimensional spherocylinder
The first examples of entangling curves ⌅A we consider for which analytic expressions of the corresponding
minimal surfaces are not known are the superellipse and the boundary of the two dimensional spherocylinder,
whose geometries depend on two parameters. The two dimensional spherocylinder nicely interpolates between
the circle and the infinite strip.

In Cartesian coordinates, a superellipse centered in the origin with axes parallel to the coordinate axes
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spherocylinder

superellipse n = 4
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superellipse n = 8

superellipse n = 3

R2

R1

�FA

R1/R2

R2 = 2 R2 = 1
circle

Figure 2: Numerical data for ⇧FA, defined in (3.8), corresponding to domains A which are two dimensional
spherocylinders or delimited by superellipses. Here � = 0.03. In the main plot R2 = 1, while in the inset,
which shows a zoom of the initial part of the main plot in logarithmic scale on both the axes, we have also
reported data with R2 = 2. The horizontal dotted black line corresponds to the infinite strip (3.6) and the
dashed one to the auxiliary surface where the sections at x = ±R1 have been added (see (3.7)). The red
and blue dotted horizontal lines come from the asymptotic result (C.10) evaluated for n = 2 and n = 3
respectively.

is described by the equation
|x|n

Rn
1

+ |y|n

Rn
2

= 1 , R1 > R2 > 0 , n > 2 , (3.9)

where R1, R2 and n are real and positive parameters. The curve (3.9) is also known as Lamé curve and here
we consider only integers n > 2 for simplicity. The special case n = 2 in (3.9) is the ellipse with semi-major
and semi-minor axes given by R1 and R2 respectively. As the positive integer n increases, the superellipse
approximates the rectangle with sides 2R1 and 2R2. When R1 = R2, the curves (3.9) for various n are
known as squircles because they have intermediate properties between the ones of a circle (n = 2) and the
ones of a square (n ⌅ ⇧). In the bottom panel of Fig. 1, we show some superellipses with R1 = 3R2, the
circle with radius R1 included in all the superellipses and the rectangle circumscribing them.

In order to study the interpolation between the circle and the infinite strip, a useful domain to consider is
the two dimensional spherocylinder. The spherocylinder (also called capsule) is a three dimensional volume
consisting of a cylinder with hemispherical ends. Here we are interested in its two dimensional version, which
is a rectangle with semicircular caps. In particular, the two dimensional spherocylinder circumscribed by
the rectangle with sides 2R1 and 2R2 is defined as the set S ⇤ D  C+  C�, where the rectangle D and the
disks C± are

D ⇤
⇤

(x, y) , |y| 6 R2 , |x| 6 R1 �R2
⌅

, C± ⇤
⇤

(x, y) ,
�
x ± (R1 �R2)

⇥2 + y2 6 R2
⌅

. (3.10)

7

9
>>=

>>;

[Fonda, Giomi, Salvio, E.T., (2014)]



HEE in AdS(4) & Willmore energy

Minimal area surface �̂A ⇢ H3 has TrK = 0

Figure 1: Left: A minimal area surface “̂
A

for AdS
4

whose boundary at z = 0 (entangling curve) is given
by the red curve. Right: The closed surface “̂(d)

A

embedded in R3 obtained from “̂
A

as explained in §2.2.1.
The red curve is an umbilic line for “̂(d)

A

[62].

F
A

= 1
4

ˆ
“̂A

!
Tr ÂK

"
2

dÃ =
ˆ

“̂A

(ñz)2

z2

dÃ (2.24)

This formula can be found also by specifying (2.19) to g̃
µ‹

= ”
µ‹

. Notice that (2.24) does not depend on
the choice of the coordinate system in the z = 0 plane but, for explicit computations, this coordinate system
must be chosen in order to write ñz and dÃ (see §A).

Following [62], we find it convenient to consider a closed surface “̂(d)

A

embedded in R3 obtained by
“doubling” “̂

A

. In particular, “̂(d)

A

is the union “̂(d)

A

= “̂
A

fi “̂(r)

A

, where “̂(r)

A

is the surface with z < 0 obtained
by reflecting the minimal surface “̂

A

with respect to the plane z = 0. The entangling curve ˆA is a particular
curve on the closed surface “̂(d)

A

and in [62] it has been found that the two principal curvatures are equal on
this curve (ˆA is an umbilic curve). In Fig. 1 we show a minimal surface “̂

A

and the corresponding closed
surface “̂(d)

A

(the red curve along which “̂
A

and “̂(r)

A

match is an umbilic line). Thus, the set of closed oriented
compact surfaces given by “̂(d)

A

as A varies within the domains with smooth ˆA is strictly included into the
set of the Riemann surfaces embedded in R3 because they are symmetric with respect to the z = 0 plane and
their intersection with it is an umbilic closed curve. It is worth remarking that already among the connected
domains A one can find cases such that “̂(d)

A

has genus two or higher1.
Given a oriented closed two dimensional surface �

g

with genus g embedded in R3, its Willmore energy
is the Willmore functional evaluated on �

g

, namely [78]

W[�
g

] © 1
4

ˆ
�g

!
Tr ÂK

"
2

dÃ (2.25)

The Willmore energy of a round sphere of radius R is 4fi, independently of the radius2.
Comparing (2.24) and (2.25), we have that F

A

for AdS
4

is the Willmore functional evaluated on the surface
“̂

A

embedded into R3. The surface “̂
A

lies in the part z > 0 of R3 and it has a boundary. Considering the
1We are grateful to Veronika Hubeny for pointing this issue to us.
2In the mathematical literature the Willmore functional is also defined as [ref]

W[�g ] ©
1
4

ˆ
�g

!
Tr ÂK

"2
dÃ ≠

1
2

ˆ
�g

ÂR dÃ = 1
4

ˆ
�

!
Tr ÂK

"2
dÃ ≠ 4fi(1 ≠ g) (2.26)

where the Gauss-Bonnet theorem has been employed. By using this definition, the Willmore energy of a round sphere is zero.
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FA = W
⇥
�̂A

⇤
=

Z

�̂A

(ñz)2

z2
dÃ =

1

2
W

⇥
�̂(d)

A

⇤Consider �̂A ⇢ R3

[Babich, Bobenko, (1993)]

[Alexakis, Mazzeo, (2010)]

�̂A ⇢ R3

Figure 1: Left: A minimal area surface “̂
A

for AdS
4

whose boundary at z = 0 (entangling curve) is given
by the red curve. Right: The closed surface “̂(d)

A

embedded in R3 obtained from “̂
A

as explained in §2.2.1.
The red curve is an umbilic line for “̂(d)

A

[62].

F
A

= 1
4

ˆ
“̂A

!
Tr ÂK

"
2

dÃ =
ˆ

“̂A

(ñz)2

z2

dÃ (2.24)

This formula can be found also by specifying (2.19) to g̃
µ‹

= ”
µ‹

. Notice that (2.24) does not depend on
the choice of the coordinate system in the z = 0 plane but, for explicit computations, this coordinate system
must be chosen in order to write ñz and dÃ (see §A).

Following [62], we find it convenient to consider a closed surface “̂(d)

A

embedded in R3 obtained by
“doubling” “̂

A

. In particular, “̂(d)

A

is the union “̂(d)

A

= “̂
A

fi “̂(r)

A

, where “̂(r)

A

is the surface with z < 0 obtained
by reflecting the minimal surface “̂

A

with respect to the plane z = 0. The entangling curve ˆA is a particular
curve on the closed surface “̂(d)

A

and in [62] it has been found that the two principal curvatures are equal on
this curve (ˆA is an umbilic curve). In Fig. 1 we show a minimal surface “̂

A

and the corresponding closed
surface “̂(d)

A

(the red curve along which “̂
A

and “̂(r)

A

match is an umbilic line). Thus, the set of closed oriented
compact surfaces given by “̂(d)

A

as A varies within the domains with smooth ˆA is strictly included into the
set of the Riemann surfaces embedded in R3 because they are symmetric with respect to the z = 0 plane and
their intersection with it is an umbilic closed curve. It is worth remarking that already among the connected
domains A one can find cases such that “̂(d)

A

has genus two or higher1.
Given a oriented closed two dimensional surface �

g

with genus g embedded in R3, its Willmore energy
is the Willmore functional evaluated on �

g

, namely [78]

W[�
g

] © 1
4

ˆ
�g

!
Tr ÂK

"
2

dÃ (2.25)

The Willmore energy of a round sphere of radius R is 4fi, independently of the radius2.
Comparing (2.24) and (2.25), we have that F

A

for AdS
4

is the Willmore functional evaluated on the surface
“̂

A

embedded into R3. The surface “̂
A

lies in the part z > 0 of R3 and it has a boundary. Considering the
1We are grateful to Veronika Hubeny for pointing this issue to us.
2In the mathematical literature the Willmore functional is also defined as [ref]

W[�g ] ©
1
4

ˆ
�g

!
Tr ÂK

"2
dÃ ≠

1
2

ˆ
�g

ÂR dÃ = 1
4

ˆ
�

!
Tr ÂK

"2
dÃ ≠ 4fi(1 ≠ g) (2.26)

where the Gauss-Bonnet theorem has been employed. By using this definition, the Willmore energy of a round sphere is zero.
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�̂(d)

A ⇢ R3

umbilic line

[Willmore, (1965)]Since W[⌃g] > 4⇡ (saturated only by round spheres)

HEE is maximised by the disk for a given perimeter PA, i.e. FA > 2⇡

W[⌃g] ⌘
1

4

Z

⌃g

�
Tr eK

�2
dÃ

Willmore energy of a closed

smooth surface ⌃g ⇢ R3
[Willmore, (1965)]



HEE in asymptotically AdS(4) static spacetimes
[Fonda, Seminara, E.T., (2015)]

FA =

Z

�̂A


1

2

�
Tr eK

�2
+ er2'� e2' � ñµñ⌫ erµ

er⌫'

�
dÃ

Generalising the result for AdS4, one finds

AdS4: the formula involving the Willmore energy is recovered

�̂A extremal area surface

�
Tr eK

�2
= 4(ñ�@�')

2TrK = 0 ()

The unit vector ñµ
is normal to �̂A ⇢ ˜M3 (defined by g̃µ⌫)

Take ds

2|t=const

= gµ⌫ dx
µ
dx

⌫
with gµ⌫ = e

2'
g̃µ⌫ and ' = � log(z) + . . .

The metric g̃µ⌫ is asymptotically flat as z ! 0



HEE in asymptotically AdS(4) black holes

FA =

Z

�̂A

1

z2

✓
1 +

zf 0(z)

2f(z)

◆
(ñz)2 + f(z)� zf 0(z)

2
� 1

�
dÃ

ds2 =
1

z2

✓
� f(z) dt2 +

dz2

f(z)
+ dx2

◆
f(z) = 1�Mz3 +Q2z4

z

z

R1

R1

R2

R2

Figure 1: Minimal area surface “̂
A

for a Schwarzschild-AdS black hole. The entangling curve ˆA is an ellipse
with semi-major axis R

1

and semi-minor axis R
2

(the red curve is plotted at z = Á). Here Á = 0.01 and the
grey plane corresponds to the horizon at z

h

= 1. Only half of the surface is shown in order to highlight a
section of the surface (green curve) which reaches the highest value zú < z

h

of the coordinate z for the whole
surface (zú is the intersection between the green curve and the z axis).

2.2.2 Black holes

The next example we are going to address is the asymptotically AdS
4

charged black hole (Reissner-Nordström-
AdS black hole) [28–30], for which (2.1) becomes

ds2 = 1
z2

3
≠ f(z) dt2 + dz2

f(z) + dx

2

4
f(z) = 1 ≠ Mz3 + Q2z4 (2.29)

where M is the mass and Q is the charge of the black hole. The Hawking temperature for this black hole
vanishes in the extremal case, which corresponds to an emblacking function f(z) = 1 ≠ 4(z/z

h

)3 + 3(z/z
h

)4

(see e.g. [76]). Instead, the Schwarzschild-AdS geometry is the uncharged case Q = 0 and for this geometry
the horizon is z

h

= 1/ 3

Ô
M .

For the geometry (2.29) all the terms in (2.19) are non trivial. In particular

ÂÒ2Ï ≠ e2Ï = f(z) ≠ zf Õ(z)/2 ≠ 1
z2

ñµñ‹ ÂÒ
µ

ÂÒ
‹

Ï = (ñz)2

z2

3
1 ≠ zf Õ(z)

2f(z)

4
(2.30)

where we recall that ñz = f(z) ñ
z

. Combining these results with the expression for (Tr ÂK)2 in (2.21) we find
that (2.19) becomes

F
A

=
ˆ

“̂A

1
z2

53
1 + zf Õ(z)

2f(z)

4
(ñz)2 + f(z) ≠ zf Õ(z)

2 ≠ 1
6

dÃ (2.31)

Again, notice that the choice of the system of coordinates in the z = 0 plane enters in the explicit expressions
of ñz and dÃ (see §B).

(dire che la superficie minima non penetra l’orizzonte [52], introdurre zú e riferirsi alla figura 1)
A first consistency check of (2.31) can be done by observing that for AdS

4

(i.e. when f(z) = 1 identically)
the expression (2.24) is recovered, as expected.

1We are grateful to Veronika Hubeny for pointing this issue to us.
2The Willmore functional is often defined as

W[�g ] ©
1
4

ˆ
�g

!
Tr ÂK

"2
dÃ ≠

1
2

ˆ
�g

ÂR dÃ = 1
4

ˆ
�

!
Tr ÂK

"2
dÃ ≠ 4fi(1 ≠ g) (2.26)

where the Gauss-Bonnet theorem has been employed. By using this definition, the Willmore energy of a round sphere is zero.
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Large domains A: the highest value of z on �̂A is z⇤ . zh

FA ' F cyl

A , i.e. FA evaluated on the cylinder with 0 6 z 6 z⇤ built on @A

F cyl

A = �Area(A)/z2h + . . .=)
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Figure 5: The quantity F
A

for the extremal black hole with the entangling curves ˆA given by ellipses with
semi-axis R

1

> R
2

. The computations have been done with Surface Evolver (here Á = 0.01) in the two ways
given in (4.1) (solid and dashed colored lines respectively). For the disks also the expression (4.20), which
can be studied with Mathematica, is shown (solid black line).

in (A.13) and (A.16) for the vector ñz and the area element dÃ respectively, (2.31) becomes

F
A

= 2fi

ˆ
R

0

1
z2

53
f(z) + zf Õ(z)

2

4
f(z)

f(z) + z2

fl

+ f(z) ≠ zf Õ(z)
2 ≠ 1

6
Ò

f(z) + z2

fl


f(z)

fl dfl . (4.16)

This expression holds for both the Schwarzschild-AdS black hole and the charged black hole. It can be
employed only once the solution z(fl) of the extremal area equation is known. In (4.16) the profile z(fl)
satisfies the boundary condition z(R) = 0. Since the second order ordinary di�erential equation providing
z(fl) is quite complicated for non trivial f(z), we have to rely on numerical methods.

An important special case of (4.16) is AdS
4

, for which f(z) = 1 identically. In this case the profile z(fl)
is known analytically and it is given by the hemisphere. By simplifying (4.16) first and then employing the
explicit solution for the profile, the result of [11,12] is recovered, namely

F
A

= 2fi

ˆ
R

0

fl dfl

z2

Ò
1 + z2

fl

= 2fi , z(fl) =


R2 ≠ fl2 . (4.17)

Let us restrict to the Schwarzschild-AdS black hole, i.e. f(z) = 1 ≠ (z/z
h

)3, where z
h

the position of the
event horizon, and perform the following rescaling

fl̂ © fl

z
h

, ẑ © z

z
h

. (4.18)

20

Extremal AdS4 black hole

HEE in asymptotically AdS(4) black holes. Ellipses
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Figure 4: The quantity F
A

for a Schwarzschild-AdS black hole when the entangling curve ˆA is an ellipse
with semi-major axis R

1

and semi-minor axis R
2

. The computations have been done with Surface Evolver
(here Á = 0.01) through the two ways given in (4.1) (solid and dashed colored lines respectively). For the
disks (bottom curve) the expression (4.20) holds and it can be analyzed with Mathematica (solid black line).

be found numerically because to second order ordinary di�erential equation to solve is quite complicated for
non trivial f(z). (giusto?)

An important special case of (4.20) is AdS
4

, for which f(z) = 1 identically. In this case the profile z(fl)
is known analytically and it is given by the hemisphere. By first simplifying (4.20) and then employing the
explicit solution for the profile, the result of [16,17] is recovered, namely

AdS
4

: F
A

= 2fi

ˆ
R

0

fl dfl

z2

Ò
1 + z2

fl

= 2fi z(fl) =


R2 ≠ fl2 (4.21)

Let us restrict to the Schwarzschild-AdS black hole, i.e. f(z) = 1 ≠ (z/z
h

)3, being z
h

the position of the
event horizon. By performing the following rescaling

fl̂ © fl

z
h

ẑ © z

z
h

(4.22)

In terms of fl̂ and ẑ, we have f(z) = 1 ≠ ẑ3 © f̂(ẑ) and z f Õ(z) = ẑ f̂ Õ(ẑ), where f̂ Õ(ẑ) © ˆ
ẑ

f̂(ẑ). Moreover,
z

fl

= ẑ
fl̂

and, denoting by L the integrand of (4.19), we have that L = (1/z
h

)L̂, where

L̂ = fl̂

ẑ2

Û

1 +
ẑ2

fl̂

f̂(ẑ)
(4.23)

Then, it is straightforward to observe that the equation of motion d

dfl

!
ˆL
ˆzfl

"
= ˆL

ˆz

can be written as the
equation of motion for L̂, i.e. d

dfl̂

!
ˆ

ˆL
ˆẑfl̂

"
= ˆ

ˆL
ˆẑ

. Thus, the profile of the minimal area surface is given by
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Schwarzschild-AdS4
Domains A

delimited by ellipses



HEE in asymptotically AdS(4) domain wall geometries

FA =

Z

�̂A

1

z2

✓
1 +

z p0(z)

2 p(z)

◆
(ñz)2 +

z p0(z)
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�
dÃ
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Figure 3. Minimal area surface γ̂A for the domain wall geometry (2.33) with α = 2 and γ = 1.
The yellow plane corresponds to zRG = 1. The entangling curve ∂A is an ellipse whose semi axis
R2 < R1 (the red curve is plotted at z = ε and here ε = 0.01). The green curve is a section whose
intersection with the z axis provides the highest value z∗ for the coordinate z on the surface. When
the domain A is very large z∗ ≫ zRG and the deep IR region is probed, where the asymptotic
geometry is AdS4 with radius LIR = 1/(1 + γα).

constant z = z∗ ! zh. Hence, we expect that FA is also close to the integral in (2.31)

evaluated on γ̂cyl

A , that will be denoted by F cyl

A . The latter quantity is the sum of two

contributions: the integral over the base and the one over the vertical part of the cylinder,

whose height is z∗ ! zh. As for the former term, whose integration domain is horizontal,

we have ñz = 1/
√

f(z∗) and therefore the integral turns out to be proportional to the area

of A. Instead, on the vertical part of γ̂cyl

A we have ñz = 0 and the corresponding integral is

proportional to PA. The sum of these terms reads

F cyl

A =
2f(z∗)− 1

z2∗
Area(A) + PA

ˆ z∗

0

1

z2

[
f(z)− zf ′(z)

2
− 1

]
dz , (2.32)

where the term containing Area(A) dominates when A is large. Since z∗ is close to the

horizon, one easily finds that the leading term in (2.32) is F cyl

A = −Area(A)/z2h + . . . (see

e.g. [56, 96, 113]).

2.2.3 Domain wall geometries

Asymptotically AdS4 static backgrounds have been introduced also to provide a holo-

graphic dual description of a RG flow of the boundary theory [92–94]. The holographic

entanglement entropy for these geometries has been already studied in [21, 24, 61, 95, 96],

mainly for the infinite strip and for the disk.

The example that we are going to consider is given by the following four dimensional

bulk metric2

ds2 =
1

z2

(
− dt2 + dx2

p(z)
+ dz2

)
, p(z) =

[
1 + (z/zRG)

α
]2γ

, (2.33)

where z > 0 and α > 0 to guarantee a well defined z → 0 behaviour. The background (2.33)

has a crossover scale zRG separating the ultraviolet (UV) region z ≫ zRG from the infrared

2We are grateful to Rob Myers for addressing our attention to this metric and for useful discussions

about it.
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[Fonda, Seminara, E.T., (2015)]Generic shapes

ds2 =
1

z2

✓
� dt2 + dx2

p(z)
+ dz2

◆
p(z) =

⇥
1 + (z/zRG)

↵
⇤2�

z/zRG ⌧ 1
z/zRG � 1

UV regime: AdS4 with LUV = 1
IR regime: AdS4 with LIR = 1/(1 + �↵) < LUV

↵ > 0

� > 0

HEE: see [Albash, Johnson, (2010)][Myers, Sinha, (2010)] [Myers, Singh, (2012)] [Liu, Mezei, (2012)]

Holographic
RG flow

[Freedman, Gubser, Pilch, Warner, (1999)]
[Girardello, Petrini, Porrati, Za↵aroni, (1998); (1999)]



Domain wall geometries: disk & F-theorem
In 2 + 1 dimensions, when A is a disk p
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Figure 8. The quantity FA of a disk for the domain wall geometry (2.33) with various α and γ. Top:
plot with larger values of R with respect to figures 6 and 7. Bottom: the function 4GNC from (4.26)
in terms of R/zRG. In the UV regime 4GNCUV = 2π and in the IR regime 4GNCIR = 2π/(1+αγ)2

(dashed lines). In the inset we show a zoom of the main plot for small values of R/zRG. These data
correspond to zRG = 1 but they have been checked also through other values of zRG.
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4GN CIR =
2⇡

(1 + ↵�)2
< 2⇡4GN CUV = 2⇡

CUV > CIR
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Figure 8. The quantity FA of a disk for the domain wall geometry (2.33) with various α and γ. Top:
plot with larger values of R with respect to figures 6 and 7. Bottom: the function 4GNC from (4.26)
in terms of R/zRG. In the UV regime 4GNCUV = 2π and in the IR regime 4GNCIR = 2π/(1+αγ)2

(dashed lines). In the inset we show a zoom of the main plot for small values of R/zRG. These data
correspond to zRG = 1 but they have been checked also through other values of zRG.
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Domain wall geometries:

The slope of FA in the IR depends on ↵ and � separately

[Liu, Mezei, (2012)][Myers, Singh, (2012)] [Fonda, Seminara, E.T., (2015)]

[Ja↵eris, Klebanov, Pufu, Safdi, (2011)]

[Casini, Huerta, (2012)] [Liu, Mezei, (2012)]

[Myers, Sinha, (2010)]C ⌘ (R @R � 1)SA



Domain wall geometries: ellipses
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Figure 7. The quantity FA for the domain wall geometry (2.33) with α = 4 and γ = 1. The
entangling curves ∂A are ellipses with semi-axis R1 ! R2. The computations have been done with
Surface Evolver (here ε = 0.01) in the two ways given in (4.1) (solid and dashed colored lines
respectively). For the disks (bottom curve), also the expression (4.22) is shown (solid black line),
which can be studied with Mathematica. In the inset we provide the highest point z∗ of the surfaces
corresponding to all the points in the main plot, by adopting the same colour code.

element dÃ given in (A.18) and (A.21) respectively, one finds that (2.35) becomes

FA = 2π

ˆ R

0

[(
1 +

z p′(z)

2 p(z)

)
1

1 + z2ρ p(z)
+

z p′(z)

2 p(z)

]
√
1 + z2ρ p(z)

z2 p(z)
ρ dρ . (4.22)

This expression needs the explicit form of z(ρ), which can be found by solving numerically

the second order ordinary differential equation coming from the variation of (4.21). In

order to check the consistency of this expression, notice that for R/zRG ≪ 1 we have that

p(z) → 1 (i.e. p′(z) → 0) and in this limit (4.22) becomes (4.17) for AdS4, as expected.

An analysis similar to the one made for the black hole in section 4.3.1 leads us to

observe that FA = FA(R/zRG). In particular, one first introduces the following rescaling

ρ̂ ≡ ρ

zRG

, ẑ ≡ z

zRG

. (4.23)

in terms of which p(z) = (1 + ẑα)2γ ≡ p̂(ẑ). Then, we also have z p′(z) = ẑ p̂′(ẑ), where

p̂′(ẑ) = ∂ẑ p̂(ẑ), and zρ = ẑρ̂. The differential equation obtained by extremizing (4.21) gives

ẑ = ẑ(ρ̂). Indeed, denoting by L the integrand of (4.21), we have that L = L̂/zRG, where

L̂ =
ρ̂

ẑ2 p̂(ẑ)

√
1 + ẑ2ρ̂ p̂(ẑ) . (4.24)
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Figure 6: The quantity F
A

for the domain wall geometry (2.33) with – = 2 and “ = 1. The entangling
curves ˆA are ellipses with semi-axis R

1

> R
2

. The computations have been done with Surface Evolver
(here Á = 0.01) in the two ways given in (4.1) (solid and dashed colored lines respectively). For the disks
(bottom curve), the expression (4.22) holds, which can be studied with Mathematica (solid black line). In
the inset we show the highest point zú of the surfaces corresponding to all the points in the main plot, with
the same colour code.

in terms of which p(z) = (1 + ẑ–)2“ © p̂(ẑ). Then, we also have z pÕ(z) = ẑ p̂Õ(ẑ), where p̂Õ(ẑ) = ˆ
ẑ

p̂(ẑ), and
z

fl

= ẑ
fl̂

. The di�erential equation obtained by extremizing (4.21) gives ẑ = ẑ(fl̂). Indeed, denoting by L the
integrand of (4.21), we have that L = L̂/zRG, where

L̂ = fl̂

ẑ2 p̂(ẑ)

Ò
1 + ẑ2

fl̂

p̂(ẑ) . (4.24)

The equation of motion for L can be written as the equation of motion for L̂ and the boundary condition
is ẑ(R/zRG) = 0, as one can see from z(R) = 0 and (4.23). These observations allow us to write (4.22) in
terms of (4.23), finding

F
A

= 2fi

ˆ
R/zRG

0

C3
1 + ẑ p̂Õ(ẑ)

2 p̂(ẑ)

4
1

1 + ẑ2

fl̂

p̂(ẑ) + ẑ p̂Õ(ẑ)
2 p̂(ẑ)

D Ò
1 + ẑ2

fl̂

p̂(ẑ)
ẑ2 p̂(ẑ) fl̂ dfl̂ , (4.25)

which tells us that F
A

= F
A

(R/zRG).
The bottom curves in Figs. 6 and 7 provide a check of the expressions (4.22) and (4.25) against numerical

results obtained through Surface Evolver (coloured lines) and Mathematica (black line). Further observations
can be made from these curves. In particular, an interesting quantity to compute is C = ≠(1 ≠ R ˆ

R

)S
A

when A is a disk of radius R because for 2 + 1 dimensional field theories it plays a role similar to the one
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Figure 11. The quantity FA for the domain wall geometry (2.33) with α = 2 and γ = 1. The
entangling curves are the blue and the red ones in the bottom right part of the plot, which are
obtained by joining arcs of circumferences whose centers provide an opening angle given by π and
1.54π respectively. The radius of the external circumference is R and the radius of the internal one
is R/3 (see figure 10 for two examples of minimal surfaces γ̂A anchored to these entangling curves).
The numerical analysis has been done with Surface Evolver by taking ε = 0.03, R = 3 and moving
zRG in the interval (0.5, 70). Solid and dashed lines correspond respectively to the two ways to find
FA given in (4.1). In the inset we show z∗/zRG in terms of R/zRG corresponding to all the points
in the main plot.

When the bulk geometry is AdS4, this rescaling of A does not change FA because the

Willmore energy is invariant, as already discussed in section 2.2.1. On the other hand, for

asymptotically AdS4 black holes and domain wall geometries this invariance is broken and

a non trivial behaviour is found under rescaling of A.

In figure 4 and figure 5 we study this rescaling for the Schwarzschild-AdS black hole

and the extremal Reissner-Nordström-AdS black hole respectively by employing both the

formula (2.31) and the usual way to get FA by subtracting the area law divergence, as

explained in section 4.1. We show FA for A given by disks or domains delimited by ellipses

with semi-axis R1 ! R2 having two different eccentricity. Let us remind that the perimeter

PA of an ellipse with semi-axis R1 ! R2 is PA = 4R1 E(1−R2
2/R

2
1), where E is the complete

elliptic integral of the second kind,4 and its area is Area(A) = πR1R2. For the disks we

have employed also the simpler formula (4.16), which can be evaluated numerically by

using Mathematica. The plots in figure 4 and figure 5 show that FA is a function of R1/zh
for a given eccentricity. It would be helpful to have data for large ellipses in order to check

the behaviour FA = −Area(A)/z2h + . . . expected from (2.32).

4We adopt the convention of Mathematica for the arguments of the elliptic integrals.
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Figure 10. Minimal area surfaces γ̂A for the domain wall geometry (2.33) with α = 2, γ = 1. The
yellow plane corresponds to z = zRG. The entangling curves ∂A (blu curve in the top panel and
red curve in the bottom panel), which belong to the z = 0 plane, are constructed by joining arcs of
circumferences and they delimit two non convex domains. The centers of the circumferences (the
outer one has radius R = 3 and the inner one R/3) form an opening angle of π (top) and 1.54π
(bottom). Here zRG = 0.5. Only half of the surfaces γ̂A are shown in order to highlight the section
(magenta curve in the top panel and cyan curve in the bottom panel) reaching the highest value z∗
along the holographic direction.

normal vector ñ can be found and this allows us to check the formulas found in section 2.2

for non trivial domains.

Besides the cases of disks and strips discussed in section 4.2 and section 4.3, we have

considered FA also for more complicated simply connected domains, both convex and non

convex. In particular we have studied regions A delimited by ellipses for all the static

backgrounds of section 2.2. For the domain wall geometries, we have considered also the

non convex domains delimited by the blue and the red curves in figure 10. Once the shape

and all the relative ratios between the various geometrical parameters have been fixed, we

have computed FA changing the total size of the region A. The numerical analysis has

been done as explained in section 4.1. The area AA for domains A delimited by ellipses as

small perturbations of circumferences has been already considered through the standard

approach e.g. in [31, 36] and by employing the interesting method of [82, 118–120] (which

is based on the solution of the cosh-Gordon equation in terms of algebraic curves) in [121].
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Figure 10. Minimal area surfaces γ̂A for the domain wall geometry (2.33) with α = 2, γ = 1. The
yellow plane corresponds to z = zRG. The entangling curves ∂A (blu curve in the top panel and
red curve in the bottom panel), which belong to the z = 0 plane, are constructed by joining arcs of
circumferences and they delimit two non convex domains. The centers of the circumferences (the
outer one has radius R = 3 and the inner one R/3) form an opening angle of π (top) and 1.54π
(bottom). Here zRG = 0.5. Only half of the surfaces γ̂A are shown in order to highlight the section
(magenta curve in the top panel and cyan curve in the bottom panel) reaching the highest value z∗
along the holographic direction.

normal vector ñ can be found and this allows us to check the formulas found in section 2.2

for non trivial domains.

Besides the cases of disks and strips discussed in section 4.2 and section 4.3, we have

considered FA also for more complicated simply connected domains, both convex and non

convex. In particular we have studied regions A delimited by ellipses for all the static

backgrounds of section 2.2. For the domain wall geometries, we have considered also the

non convex domains delimited by the blue and the red curves in figure 10. Once the shape

and all the relative ratios between the various geometrical parameters have been fixed, we

have computed FA changing the total size of the region A. The numerical analysis has

been done as explained in section 4.1. The area AA for domains A delimited by ellipses as

small perturbations of circumferences has been already considered through the standard

approach e.g. in [31, 36] and by employing the interesting method of [82, 118–120] (which

is based on the solution of the cosh-Gordon equation in terms of algebraic curves) in [121].
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Holographic mutual information in AdS(4) 

IA1,A2 = FA1[A2 � FA1 � FA2 + o(1)IA1,A2 ⌘ SA1 + SA2 � SA1[A2 ⌘ IA1,A2

4GN
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squircles n = 4

squircles n = 6

squircles n = 8

circles

d/R

IA1,A2

R = 2 R = 1

Figure 15: Holographic mutual information of two disjoint and equal domains delimited by squircles for
various n. The coloured points are the numerical data obtained with Surface Evolver, while the black
triangles correspond to the solid black curve of Fig. 11 (right panel) mapped through the transformation
(4.16) with �2 = ⇤. The transition between the connected surface and the configuration of disconnected
surfaces occurs at the zero of each curve. A point having IA1,A2 < 0 corresponds to a connected surface
which is a local minimum of the area functional but it is not the global minimum for the corresponding
entangling curve.

mutual information of a domain A made by two equal disjoint disks. The black triangles have been found by
mapping the black curve for the annulus in the right panel of Fig. 11 (which is given by the r.h.s. of (4.12))
through ⇤ = ⇤(⇥̃) found above. The agreement with the corresponding data obtained with Surface Evolver
(red curve) is very good. Notice that, as already observed for the annulus in §4.1.1, also in this case Surface
Evolver finds a surface which is a local minimum of the area functional, even if it is not the global minimum.
Let us conclude by emphasizing that, while this numerical method is very e�cient in finding surfaces which
are local minima for the area functional when they exist, it is not suitable for studying the existence of a
surface with a given topology.

4.2 Other shapes
In §4.1.2 we have considered the holographic mutual information of two disjoint circular domains, for which
analytic results are available. When A = A1 ⇥ A2 is not made by two disjoint disks, analytic results for the
corresponding holographic mutual information are not known and therefore a numerical approach could be
very useful. Here we employ Surface Evolver to study IA1,A2 (defined in (4.1)) of disjoint regions delimited
by some of the smooth curves introduced in §3.1.

The holographic mutual information of non circular domains depends on the geometries of their bound-
aries, on their distance and also on their relative orientation. Independently of the shapes of ⇧A1 and ⇧A2,
once the domains and their relative orientation have been fixed, the holographic mutual information vanishes

24

Figure 12: The connected surface anchored on the boundary of an annulus at z = 0 (top left panel), which
is a local minimum of the area functional, can be mapped through (4.13) into one of the connected surfaces
anchored on the configurations of circles at z = 0 shown in the remaining panels, depending on the value of
the parameter of the transformation (4.13), as discussed in §4.1.2. The mapping preserves the color code.
The green circle in the top left panel corresponds to the matching of the two branches given by (4.3) and
(4.7) (see the point Pm in Fig. 23) and it is mapped into the vertical circle in the bottom right panel.

4.1.2 Two disjoint disks
In this section we consider domains A made by two disjoint disks by employing the analytic results for the
annulus reviewed in §4.1.1 and some isometries of H3. This method has been used in [69] for the case of a
circle, while the case of two disjoint circles has been recently studied in [59, 60]. The analytic results found
in this way provide another important benchmark for the numerical data obtained with Surface Evolver.

Let us consider the following reparameterizations of H3, which correspond to the special conformal
transformations on the boundary [69]

x̃ = x + bx(|v|2 + z2)
1 + 2b · v + |b|2(|v|2 + z2) , ỹ = y + by(|v|2 + z2)

1 + 2b · v + |b|2(|v|2 + z2) , z̃ = z

1 + 2b · v + |b|2(|v|2 + z2) ,

(4.13)
being b ⇤ (bx, by) a vector in R2 and v ⇤ (x, y).

When z = 0 in (4.13), the maps (x, y) ⌅ (x̃, ỹ) are the special conformal transformations of the Euclidean
conformal group in two dimensions. These transformations in the z = 0 plane send a circle C with center
c = (cx, cy) and radius R into another circle ⇥C with center c̃ = (c̃x, c̃y) and radius ⇥R which are given by

c̃i = ci + bi(|c|2 � R2)
1 + 2b · c + |b|2(|c|2 � R2) i ⇧ {x, y} , ⇥R = R��1 + 2b · c + |b|2(|c|2 � R2)

�� . (4.14)

Notice that the center c̃ is not the image of the center c under (4.13) with z = 0. Moreover, when c is such
that the denominator in (4.14) vanishes, the circle is mapped into a straight line [69].

20

Beyond a critical distance IA1,A2 = 0 and the disconnected configuration

is the minimal one

[Fonda, Giomi, Salvio, E.T., (2014)]

[Gross, Ooguri, (1998)]
[Zarembo, (1999)]

[Drukker, Fiol, (2005)]

[Fonda, Seminara, E.T., (2015)]

It cannot be found in this holographic context

[Willmore, (1965)] [Marques, Neves, (2012)]among the genus one surfaces: W[⌃1] > 2⇡2

The Cli↵ord torus minimises the Willmore energy



HEE in AdS(4). Polygons (I)

Figure 3: Minimal area surfaces constructed with Surface Evolver whose  A is a polygon with three (left),
four (middle) and eight (right) sides. The red polygons  A lie in the plane at z = 0 and the z axis points
downward but, according to our regularization, the triangulated surfaces are anchored to the same polygons
at z = ⌅. The pair (V, F ) giving the number of vertices V and the number of faces F for these surfaces is
(1585, 3072) (left), (2113, 4096) (middle) and (4225, 8192) (right). The number of edges can be found from
the Euler formula with vanishing genus and one boundary.
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Figure 4: Left: Section of the minimal surfaces anchored to an equilateral triangle (red, magenta and purple
points), a square (blue points) or an octagon (green points) inscribed in a circle, as indicated in the inset
by the black line. The continuos lines are z = ⇥/f0(�N ), where f0(�) is found from (3.15) with N = 3
(red), N = 4 (blue) or N = 8 (green). The dashed black curve is the hemisphere corresponding to the circle
circumscribing the polygons at z = 0 (dashed in the inset), while the dashed grey horizontal line corresponds
to the cuto� ⌅ = 0.03. Right: A zoom of the left panel around the origin, placed in the common vertex of the
polygons. For the triangle, three di�erent values of ⌅ ⇤ {0.03, 0.02, 0.01} has been considered to highlight
how the agreement with the analytic result improves as ⌅ ⇥ 0.

the coe✏cient of the logarithmic term in (2.5) we can write

BA � 2
N�

i=1
b(�i) . (3.12)

The function b(�) has been first found in [66], where the holographic duals of the correlators of Wilson
loops with cusps have been studied, by considering the minimal surface near a cusp whose opening angle
is �. Notice that (3.12) does not depend on the lengths of the edges but only on the convex angles of
the polygon. Further interesting results have been obtained in the context of the holographic entanglement
entropy [57,67].

Introducing the polar coordinates (⇥,⇤) in the z = 0 plane, one considers the domain {|⇤| � �/2 , ⇥ < L},

9

[Fonda, Giomi, Salvio, E.T., (2014)]

Minimal surfaces anchored on finite polygons

can be studied numerically

Figure 3: Minimal area surfaces constructed with Surface Evolver whose  A is a polygon with three (left),
four (middle) and eight (right) sides. The red polygons  A lie in the plane at z = 0 and the z axis points
downward but, according to our regularization, the triangulated surfaces are anchored to the same polygons
at z = ⌅. The pair (V, F ) giving the number of vertices V and the number of faces F for these surfaces is
(1585, 3072) (left), (2113, 4096) (middle) and (4225, 8192) (right). The number of edges can be found from
the Euler formula with vanishing genus and one boundary.
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Figure 4: Left: Section of the minimal surfaces anchored to an equilateral triangle (red, magenta and purple
points), a square (blue points) or an octagon (green points) inscribed in a circle, as indicated in the inset
by the black line. The continuos lines are z = ⇥/f0(�N ), where f0(�) is found from (3.15) with N = 3
(red), N = 4 (blue) or N = 8 (green). The dashed black curve is the hemisphere corresponding to the circle
circumscribing the polygons at z = 0 (dashed in the inset), while the dashed grey horizontal line corresponds
to the cuto� ⌅ = 0.03. Right: A zoom of the left panel around the origin, placed in the common vertex of the
polygons. For the triangle, three di�erent values of ⌅ ⇤ {0.03, 0.02, 0.01} has been considered to highlight
how the agreement with the analytic result improves as ⌅ ⇥ 0.

the coe✏cient of the logarithmic term in (2.5) we can write

BA � 2
N�

i=1
b(�i) . (3.12)

The function b(�) has been first found in [66], where the holographic duals of the correlators of Wilson
loops with cusps have been studied, by considering the minimal surface near a cusp whose opening angle
is �. Notice that (3.12) does not depend on the lengths of the edges but only on the convex angles of
the polygon. Further interesting results have been obtained in the context of the holographic entanglement
entropy [57,67].

Introducing the polar coordinates (⇥,⇤) in the z = 0 plane, one considers the domain {|⇤| � �/2 , ⇥ < L},
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Infinite wedge with opening angle ↵ (|�| 6 ↵/2)

z =
⇢

f(�)

� =

Z f

f0

1

⇣


(⇣2 + 1)

✓
⇣2(⇣2 + 1)

f2
0 (f

2
0 + 1)

� 1

◆�� 1
2

d⇣ f0 ⌘ f(0)

[Drukker, Gross, Ooguri, (1999)]

f ! 1 then � ! ↵/2

[Hirata, Takayanagi, (2006)]



HEE in AdS(4). Polygons (II)

AA =

PA

"

�BA log(PA/")�WA + o(1) ⌘ PA

"

� e
BA log(PA/")

Area of the minimal surfaces anchored on polygons

BA ⌘ 2
NX

i=1

b(↵i) b(↵) ⌘
Z 1

0

 
1�

s
⇣2 + f2

0 + 1

⇣2 + 2f2
0 + 1

!
d⇣

[Fonda, Seminara, E.T., (2015)]

Log term obtained also through the Willmore energy

[Drukker, Gross, Ooguri, (1999)]

WA influenced
by the regularization
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Figure 6: The quantity  BA in (3.11) corresponding to ⌦A given by polygons with N equal sides circumscribed
by a circle with radius R. The cuto� is ⇧ = 0.03 and the values of N are indicated above the corresponding
series of data points. The black curve is given by (3.12) and (3.16).

Plugging (3.13) into the area functional, the problem becomes one dimensional, similarly to the case of the
infinite strip slightly discussed in §3. Since the resulting integrand does not depend explicitly on ⌅, the
corresponding conservation law tells us that (f4 + f2)/

�
(f ⇥)2 + f4 + f2 is independent of ⌅. Thus, the

profile for 0 � ⌅ < �/2 (the part of the surface with ��/2 < ⌅ � 0 is obtained by symmetry) is given by

⌅ =
ˆ f

f0

1
⇥

⇧
(⇥2 + 1)

⇤
⇥2(⇥2 + 1)
f2

0 (f2
0 + 1) � 1

⌅⌃� 1
2

d⇥ , (3.14)

being f0 ⇥ f(0). When f ⇤ ⌅, we require that the l.h.s. of (3.14) becomes �/2 and, by inverting the
resulting relation, one finds f0 = f0(�). In this limit the integral in (3.14) can be evaluated analytically in
terms of elliptic integrals � and K (see §E for their definitions) as follows

�(f0) = 2f̃0

�
1 � 2f̃2

0
1 � f̃2

0

⌦
�
�
1 � f̃2

0 , f̃2
0
⇥

� K
�
f̃2

0
⇥↵

, f̃2
0 ⇥ f2

0
1 + 2f2

0
⇧ [0, 1/2] . (3.15)

Notice that when f0 ⇤ 0 we have � ⇤ ⇤, which means absence of the corner, while � ⇤ 0 for f0 ⇤ ⌅.
As for the area of the minimal surface given by (3.13), one finds that

b(�) ⇥
ˆ ⇤

0

⌥
1 �

�
⇥2 + f2

0 + 1
⇥2 + 2f2

0 + 1

�
d⇥ =

E
�
f̃2

0
⇥

�
�
1 � f̃2

0
⇥
K
�
f̃2

0
⇥

�
1 � 2f̃2

0

, (3.16)

where f0 = f0(�) can be found by inverting numerically (3.15). The function (3.16) has a pole when � ⇤ 0
(in particular, b(�) = ⌅( 3

4 )4/(⇤�) + . . . ) while b(⇤) = 0, which is expected because � = ⇤ means no cusp
and the logarithmic divergence does not occur for smooth entangling curves.

An interesting family of curves to study is the one made by the convex regular polygons. They are
equilateral, equiangular and all vertices lie on a circle. For instance, a rhombus does not belong to this
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Regular polygons
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Figure 5: The quantity �BA in (3.11) with AA evaluated with Surface Evolver when the entangling curve
�A is either an isosceles triangle whose basis has length � (top panel) or a rhombus whose side length is �
(bottom panel). Here ⌅ = 0.03. The black continuous curves are obtained from (3.12) and (3.16).

where L � 1. By employing scale invariance, one introduces the following ansatz [66]

z = ⇥

f(⇤) , (3.13)

in terms of a positive function f(⇤), which is even in the domain |⇤| � �/2 and f ⇥ +⇤ for |⇤| ⇥ �/2.
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Isosceles triangles

[Fonda, Giomi, Salvio, E.T., (2014)]Numerical checks with Surface Evolver



Mutual Information & Entanglement Negativity

Rényi
entropies

Entanglement
entropy

SA ⌘ �Tr(⇢A log ⇢A) = lim

n!1

log(Tr⇢nA)

1� n
= � lim

n!1

@

@n
Tr ⇢nA

SA = SB for pure states

BAbipartite system H = HA ⌦HB

Ground state ⇢ = | ih | and

�A = TrB�
density matrix

Reduced

⇢A1[A2 is mixed

B

A1 A2

Tripartite system H = HA1 �HA2 �HB

Entanglement between A1 and A2?

A computable measure of the entanglement

is the logarithmic negativity

SA1[A2 : entanglement between A1 [A2 and B

gives an upper bound

The mutual information SA1 + SA2 � SA1[A2



Entanglement between disjoint regions: Negativity

⇢ = ⇢A1[A2 is a mixed state

�j eigenvalues of ⇢T2

Trace norm

||⇢T2 || = Tr|⇢T2 | =
X

i

|�i| = 1� 2
X

�i<0

�i
Tr ⇢T2 = 1

Logarithmic negativity EA2 = ln ||⇢T2 || = lnTr|⇢T2 |

B
A1 A2

Bipartite system H = H1 ⌦H2 in any state ⇢ E1 = E2

�e(1)i e(2)j | �T2 |e(1)k e(2)l ⇥ = �e(1)i e(2)l | � |e(1)k e(2)j ⇥
(|e(k)i i base of HAk)

⇢T2
is the partial transpose of ⇢

[Peres, (1996)]

[Vidal, Werner, (2002)][Eisert, (2001)]

[Zyczkowski, Horodecki, Sanpera, Lewenstein, (1998)]

[Plenio, (2005)]

[Lee, Kim, Park, Lee, (2000)]



Replica approach to Negativity

lim
n
o

!1
Tr(⇢T2)no = Tr ⇢T2 = 1

Analytic continuation on the even sequence Tr(⇢T2
)

ne (make 1 an even number)

E = lim

ne!1
log

⇥
Tr(⇢T2

)

ne
⇤

⇢ = | ih | and bipartite system (H = H1 ⌦H2)Pure states

Taking ne ! 1 we have (Renyi entropy 1/2)E = 2 logTr⇢1/22

Tr(⇢T2)n =

(
Tr ⇢n2 n = n

o

n = ne

odd

even
�
Tr ⇢n/22

�2

Schmidt
decomposition

Tr(⇢T2)no =
X

i

�n
o

i =
X

�
i

>0

|�i|no �
X

�
i

<0

|�i|no

Tr(⇢T2)ne =
X

i

�ne
i =

X

�i>0

|�i|ne +
X

�i<0

|�i|ne

A parity e↵ect for Tr(⇢T2
)

n

[Calabrese, Cardy, E.T., (2012)]



Negativity in a 2D harmonic lattice: Adjacent regions

Entanglement negativity in a two dimensional harmonic lattice 9

Figure 1. [plot di sx incompleto, da aggiornare con dati nuovi] Area law
behaviour for E between two equal rectangles whose edges have lengths `

x

and `
y

which
are adjacent along the vertical edge (see the inset of the left panel). Left: For fixed
values of `

y

, the ratio E/`
y

reaches a constant value as `
x

increases. Right: For fixed
(and large enough?) values of `

x

, the logarithmic negativity grows linearly as `
y

increases
(the dashed line is obtained by fitting all the data corresponding to `

x

= 11).

denote by P
shared

⌘ length(@A1\@A2). Thus, the logarithmic negativity between adjacent

domains satisfies an area law in terms of the region shared by their boundaries. This

observation has been recently done for this model also by Eisler and Zimboras [45], who

have considered the logarithmic negativity between the two halves of a square for increasing

values of the length of its edge (citare altre refs per altri modelli) [RIPENSARE quello

che fanno EZ]. Mettere questa citazione esplicita nella intro?.

In order to improve our analysis of the area law behaviour for the logarithmic

negativity between adjacent regions A1 and A2, let us consider the six configurations

of adjacent domains on the lattice shown in Fig. 2, where the sites belonging to A1 and

A2 are highlighted by blue dots and red circles. In these examples the curve @A1 \ @A2

is not given by a simple line segment. The domains identified by the red circles in Fig. 2

are convex. As for the regions corresponding to the blue dots, the ones in the top panels

are non-convex and the ones in the bottom panels are non-simply connected. It is well

known that the curve separating adjacent domains on the lattice is not unique. For these

configurations we have chosen the dashed lines.

The three configurations in the top panels of Fig. 2 are natural to define on the square

lattice because the edges are multiple of the orthogonal vectors generating the lattice.

Denoting by `
in

the length of the edge of the internal square, highlighted by red circles,

and by `
out

the length of the edge of the square given by A, we have that P
shared

= 4`
in

,

P
shared

= 3`
in

and P
shared

= 2`
in

for the top left, middle and right panel respectively.

Instead, the three configurations in the bottom panels of Fig. 2 involve adjacent

domains where the line @A1\@A2 either is curved or contains a line segment which is not

just a multiple of one of the vectors generating the lattice, but it is a linear combination

H =
X

16i6L

x

16j6L

y

⇢
p2i,j
2M

+
M!2

2
q2i,j +

K

2

h�
qi+1,j � qi,j

�2
+

�
qi,j+1 � qi,j

�2i
�

The partial transpose w.r.t. A2 is obtained by sending pi ! �pi in A2
[Simon, (2000)]

[Audenaert, Eisert, Plenio, Werner, (2002)]

Entanglement negativity in a two dimensional harmonic lattice 10

Figure 1. Area law behaviour for the logarithmic negativity E between two equal
rectangles, whose edges have lengths `

x

and `
y

, which are adjacent along the vertical edge
(inset of the left panel). Left: For fixed values of `

y

, the ratio E/`
y

reaches a constant
value as `

x

increases. Right: For fixed and large enough values of `
x

, the logarithmic
negativity grows linearly as `

y

increases (the dashed line is obtained by fitting all the
data corresponding to `

x

= 11).

of adjacent domains on the lattice shown in Fig. 2, where the sites belonging to A
1

and

A
2

are highlighted by blue dots and red circles. In these examples the curve @A
1

\ @A
2

is not given by a simple line segment. The domains identified by the red circles in Fig. 2

are convex, while the ones corresponding to the blue dots are not.

It is well known that the curve separating adjacent domains on the lattice is not

unique. For these configurations we have chosen the dashed lines, which are the lines

whose length has been used to get the perimeter. The three configurations in the top

panels of Fig. 2 are natural to define on the square lattice because their edges are parallel

to the orthogonal vectors generating the lattice. Instead, the three configurations in the

bottom panels of Fig. 2 are made by adjacent domains where the line @A
1

\ @A
2

either is

curved or it contains a line segment which is a linear combination of the vectors generating

the lattice involving both of them. Notice that a disk of given radius on the lattice could

include a di↵erent number of sites depending on whether the center of the disk is located

on a lattice site or within a plaquette. Such ambiguity does not a↵ect the leading order

behaviour of the quantities that we are considering, but it could be relevant for subleading

terms [17, 62].

Also for the logarithmic negativity of the adjacent domains shown in Fig. 2 we have

observed the same qualitative behaviour described in the left panel Fig. 1 for the equal

adjacent rectangles: by keeping fixed the region corresponding to the red circles while the

sizes of the region characterised by the blue dots increase with their ratios unchanged, E
saturates to a constant value.

In Fig. 3 we show some quantitative results for the logarithmic negativity of the

configurations in Fig. 2. In particular, considering the configuration in the top left panel

Adjacent regions: e.g. two adjacent rectangles

[Eisler, Zimboras, (2015)]

We consider the massless case in the thermodynamic limit.

[De Nobili, Coser, E.T., (2016)]
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Figure 3. Left: Logarithmic negativity of adjacent domains (the red and blue regions
in a given configuration of the legenda) for some configurations involving di↵erent shapes
for the curve @A1 \ @A2. The sizes of the domains increase while their ratios are kept
fixed. The data are obtained for convex domains (the red ones in the legenda) which are
1/3 of the corresponding A1 [ A2. Right: Logarithmic negativity for the configuration
in the top left panel of Fig. 2, where `

in

and `
out

are the sizes of the edges of the red
square and of the square A1 [A2 respectively. Dashed lines corresponds to what??

increases. For large enough `
out

, the area law behaviour in terms of `
in

is observed. It is

worth remarking that E ! 0 when `
in

/`
out

! 1. This is expected because in this limit

the internal convex domain becomes the whole A, namely the other subregion vanishes.

Notice that the ratio `
in

/`
out

= 1/3, which characterises the data in the left panel of Fig. 3,

is a good choice to explore the area law behaviour even for relatively small domains.

Given the latter observation, we have considered the logarithmic negativity for the

configurations in Fig. 2 with a ratio of 1/3 between the size of the internal convex domain

and the whole subsystem A. [per il triangolo e il trapezio dire a quale lato si riferisce

il rapporto di 1/3]. By increasing the sizes of the domains while their ratio is kept

fixed to 1/3, we find the results collected in the right panel of Fig. 3, which provides

another confirmation of the area law behaviour in terms of P
shared

. Notice that the di↵erent

configurations in the right panel of Fig. 3 provide linear growths with the same slope.

Summarise the numerical results presented above, we can conclude that the

logarithmic negativity of two large adjacent domains A1 and A2 on a lattice of massless

harmonic oscillators in the ground state satisfies an area law in terms of the length P
shared

of the curve shared by the adjacent regions at the leading order, namely

E = aP
shared

+ . . . (24)

where the dots indicate subleading terms for large values of P
shared

. The area law (24) is

consistent with the fact that E measures the bipartite entanglement between A1 and A2

for the mixed state characterised by the reduced density matrix ⇢
A

1

[A
2

. The coe�cient

a is non-universal and depends on the ultraviolet details
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Figure 2. Configurations of adjacent domains on the lattice, identified by red circles
and blue dots, which have been employed to study the area law behaviour and some
corners contributions for E and E

n

. (riferirsi alle sezioni nel testo)

of them. In particular, in the bottom left panel A1 [ A2 is a disk of radius R
out

whose

center is located on a lattice site and one of the two subregions is a smaller disk of radius

R
in

< R
out

concentric to the previous one. In this case P
shared

= 2⇡R
in

. Notice that a

disk of given radius on the lattice could include a di↵erent number of sites depending

on whether the center of the disk is located on a lattice site or within a plaquette. Such

ambiguity does not a↵ect the leading order behaviour that we are considering, but it could

be relevant for subleading terms [14, 58]. In the bottom middle and right panels the line

@A1 \ @A2 contains a segment which is non-parallel to the vectors generating the square

lattice. We have considered only configurations which involve corners which are multiples

of ⇡/4.

Also for the logarithmic negativity between the adjacent domains shown in Fig. 2

we have observed the behaviour described in the left panel Fig. 1 for the equal adjacent

rectangles: by keeping fixed the region corresponding to the red circles while the sizes of

the one characterised by the blue dots increase with their ratios unchanged, E saturates

to a constant value.

In Fig. 3 we show some numerical results for the logarithmic negativity of the

configurations represented in Fig.2 [dati ottenuti con una doppia procedura di fit?].

Considering the configuration in the top left panel of Fig. 2, which is characterised by

the lengths `
in

and `
out

introduced above, in the left panel of Fig. 3 [adattare la figura] we

show E/`
out

as function of 0 < `
in

/`
out

< 1 when `
out

is kept fixed and the internal square

E = aPshared + . . .

Area law in terms of

Pshared ⌘ length(@A1 \ @A2)

E gives information about the

entanglement between A1 and A2
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out

whose
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Other configurations of adjacent domains

in the scaling limit with `
in

/`
out

⇠ 1/3

[De Nobili, Coser, E.T., (2016)]



Negativity in a 2D harmonic lattice: Area law (II)
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Figure 4. XXXX [right: le curve fittanti sono calcolate su quella nera e non su n�1/n2]

Given two adjacent regions A1 and A2, another very interesting quantity to consider

is their mutual information I
A

1

,A

2

defined in (3). From the area law of the entanglement

entropy S
A

= ã P
A

+ . . . , it is straightforward to find that I
A

1

,A

2

of adjacent domains

follows the following area law

I
A

1

,A

2

= 2ã P
shared

+ . . . (25)

where the coe�cient of the leading term is twice the corresponding one occurring in the

area law of the entanglement entropy and the dots stand for subleading terms as P
shared

becomes large. The coe�cient ã is non-universal and depends on the ultraviolet

details

3.2. Moments of the partial transpose

The moments Tr(⇢T2

A

)n of the partial transpose for integer values of n are interesting

quantities to study because they provide the logarithmic negativity through the replica

limit (6) [20, 21].

Given the configurations of adjacent domains described in §3.1, instead of the n-th

moment of the partial transpose, we find it more interesting to consider the ratio E
n

defined in (8), which also provides the logarithmic negativity through the replica limit

(9) because of the normalisation condition Tr⇢
A

= 1. By repeating the same analysis

described in §3.1 evaluating E
n

as described in §2, we find that also E
n

at leading order

follows an area law behaviour in terms of the length of the curve shared by the adjacent

domains, i.e.

E
n

= a
n

P
shared

+ . . . (26)

where the dots denote subleading terms for large domains. The coe�cient a
n

depends on

the integer n and it it non universal, similarly to the coe�cient ã
n

of the area law for the

Rényi entropies S(n)
A

= ã
n

P
A

+ . . . .

a
n

=
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1� n

o

�
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n

o

odd n = n
o

2
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/2 even n = n
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A = ãnPA + . . .
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n

P
A

+ . . . .

The coe�cient an is related to

the coe�cient of the area law
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Negativity in a 2D harmonic lattice: Corner contributions

When only vertices corresponding to bipartitions or tripartitions of 2⇡ occur
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Figure 2. Configurations of adjacent domains on the lattice, identified by red circles
and blue dots, which have been employed to study the area law behaviour and some
corners contributions for E and E

n

. (riferirsi alle sezioni nel testo)

of them. In particular, in the bottom left panel A1 [ A2 is a disk of radius R
out

whose

center is located on a lattice site and one of the two subregions is a smaller disk of radius

R
in

< R
out

concentric to the previous one. In this case P
shared

= 2⇡R
in

. Notice that a

disk of given radius on the lattice could include a di↵erent number of sites depending

on whether the center of the disk is located on a lattice site or within a plaquette. Such

ambiguity does not a↵ect the leading order behaviour that we are considering, but it could

be relevant for subleading terms [14, 58]. In the bottom middle and right panels the line

@A1 \ @A2 contains a segment which is non-parallel to the vectors generating the square

lattice. We have considered only configurations which involve corners which are multiples

of ⇡/4.

Also for the logarithmic negativity between the adjacent domains shown in Fig. 2

we have observed the behaviour described in the left panel Fig. 1 for the equal adjacent

rectangles: by keeping fixed the region corresponding to the red circles while the sizes of

the one characterised by the blue dots increase with their ratios unchanged, E saturates

to a constant value.

In Fig. 3 we show some numerical results for the logarithmic negativity of the

configurations represented in Fig.2 [dati ottenuti con una doppia procedura di fit?].

Considering the configuration in the top left panel of Fig. 2, which is characterised by

the lengths `
in

and `
out

introduced above, in the left panel of Fig. 3 [adattare la figura] we

show E/`
out

as function of 0 < `
in

/`
out

< 1 when `
out

is kept fixed and the internal square
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Figure 5. Here some configurations in Fig. 2 have been used (top left, bottom middle

and bottom right).
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where the angle ✓
(k)
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corresponding to the i-th vertex of @A1 \ @A2 belong to A
k

. In

(33) we have assumed that, for any given vertex of @A1 \ @A2, either two or three curves
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i
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i

< 2⇡) respectively of the angle of 2⇡. This assumption has been
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From our numerical analysis, we find that the above considerations apply also for the
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Similar expression for En: corner function bn(✓
(1)
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Figure 6. Configurations of adjacent domains on the lattice, identified by red circles
and blue dots, which have been employed to find b(✓(1)

i

, ✓(2)
i

) for some values of arguments

such that ✓(1)
i

+ ✓(2)
i

< 2⇡.

quantity E
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defined in (8). Thus we have
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where a
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has been already discussed in §3.2 and the function b
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i
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) is related to

the one occurring in the logarithmic term of (33) through the replica limit (9), namely
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n
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i
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i

, ✓
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).

Among the vertices belonging to the curve @A1 \ @A2 which contribute to the

logarithmic term in (33) and (34), let us consider first the ones corresponding to a

bipartition of the angle of 2⇡, i.e. the ones such that ✓
(1)
i

+ ✓
(2)
i

= 2⇡. This kind of

vertices occurs in all the panels of Fig. 2 except the bottom left one and in all the panels

of Fig. 7 except the left one, while it does not occur at all in the configurations of Fig. 6.

For these vertices we can make an observation similar to the one that lead to (28). Indeed,

because of the local nature of the function b
n

(✓
i

, 2⇡ � ✓
i

), it is reasonable to assume that

such vertex would provide the same contribution in the case of a bipartition of the ground

state, when (7) holds. This observation leads us to propose the following relation between

b
n

(✓, 2⇡ � ✓) and the corner function b̃
n

(✓) for this kind of vertices
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Figure 7. Configurations of adjacent domains on the lattice, identified by red circles
and blue dots, which have been employed as crosschecks for the values of b(✓(1)

i

, ✓(2)
i

)
given in Figs. 5 and 8.

By employing the replica limit (9), the relation (35) provides the corresponding

contribution to the logarithmic negativity in (33), namely

b(✓, 2⇡ � ✓) = b̃1/2(✓) (36)

The numerical checks of (36) for some values of ✓ are shown in Fig. 5. The analysis has

been done by employing some configurations of Fig. 2. [elaborare?]. Unfortunately, an

expression for the function b̃1/2(✓) obtained as the analytic continuation n ! 1/2 of the

formula for b̃
n

(✓) found in [12] is not available.

As for the vertices corresponding to a tripartition of the angle 2⇡, which are the

endpoints of the curve @A1 \ @A2 and for which ✓
(1)
i

+ ✓
(2)
i

< 2⇡, we do not see why

the function b
n

(✓(1)
i

, ✓
(2)
i

) should be related to the corner function b̃
n

(✓). By employing

the configurations shown in Fig. 6, we have studied b(✓, �) for some particular pairs of

values and the numerical results are shown in Fig. 8. [elaborare. crosschecks fatti con le

configurazioni di Fig. 7, indicati con markers neri in Fig. 8] It would be very interesting

to have an analytic expression for the corner function b(✓, �).

From our numerical analysis we find also b
n

(✓(1)
i

, ✓
(2)
i

) for n > 2, but, in order to

check the relation (35) we need to control the unusual corrections to the scaling in 2 + 1

dimensions. This means that one needs to extend to 2 + 1 dimensions the analysis done

by Calabrese and Cardy in 1+1 dimensions [66]. [commentare sui lavori recenti in 2+1 in

cui lo fanno?] Recent relevant work for us is [68] (see fig. 5 there): they studied the scalar
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Figure 7. Configurations of adjacent domains on the lattice, identified by red circles
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Figure 8. Stability analysis of the fitted values of the corner function b(✓(1), ✓(2)) for
some pair of angles such that ✓(1) + ✓(2) < 2⇡. The data corresponding to coloured
markers have been obtained by employing the configurations in Fig. 6, while the data
corresponding to black markers have been found through the configurations in Fig. 7.
The numerical values are reported in (37).

model (10) that we have considered throughout this manuscript, it is described by the

massless scalar field in 2 + 1 dimensions, which is a CFT. Denoting by " the UV cuto↵

that must be introduced to regularise the model, the logarithmic negativity of adjacent

domains diverges when " ! 0. The numerical analysis described above tells us that the

expansion of the logarithmic negativity as " ! 0 reads
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✓ X
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◆
log(P
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where the coe�cient ↵ in front of the area law term is non universal. A similar expression

can be written for E
n

in (8), namely
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where ↵
n

is non universal as well. The corner functions b(✓(1)
i

, ✓
(2)

i

) and b
n

(✓(1)
i

, ✓
(2)

i

)

are independent of the UV details of the regularisation and therefore they are the most

important quantities to study for these kinds of configurations. In (38) and (39), like for

their lattice versions (33) and (34), we have assumed that the vertices in @A
1

and @A
2

correspond to either a bipartition or a tripartition of the angle of 2⇡.

The divergent terms in the " ! 0 expansion of E and E
n

are determined by local

e↵ects close to the curve @A
1

\ @A
2

, consistently with the intuition that E and E
n
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Figure 9. Configurations of adjacent domains in the plane . . .

provide information about the entanglement between A1 and A2. This leads to relate the

coe�cients ↵ and ↵
n

in (37) and (38) to the area law coe�cients ↵̃ and ↵̃
n

of S
A

and S
(n)
A

like in (28) and (29). Moreover, whenever for the i-th vertex we have ✓(1)
i

+ ✓
(2)
i

= 2⇡, the

relations (35) and (36) for the corner functions b(✓, 2⇡ � ✓) and b
n

(✓, 2⇡ � ✓) hold also in

the continuum limit. We expect that a corner function which is not related to the one

entering in S
A

or S(n)
A

occurs when the i-th vertex corresponds to a partition of the angle

of 2⇡ in three (i.e. ✓(1)
i

+ ✓
(2)
i

< 2⇡) or higher number of components.

In Fig. 9 we shown some configurations of adjacent regions in the plane for which it

is worth considering the logarithmic term in E and E
n

due to the corners. For all of them

except the one in the bottom right panel the expressions (37) and (38) can be employed.

For the configurations in the top left and middle panels the logarithmic divergence

does not occur in E and E
n

, in contrast with the remaining configurations, where the curve

@A1\@A2 contains corners. As for the configuration in the top right panel, the coe�cient

of the logarithmic term of E and E
n

is related to the corner functions b̃(✓) and b̃
n

(✓)

entering in the logarithmic term of S
A

or S(n)
A

respectively. Thus, for the configurations

in the top panels of Fig. 9 one can construct the following UV finite quantity [check these

formulas: does the log term cancel? Assume that there is only one scale for the domains]

E � 1

2
I
(1/2)
A

1

,A

2

(39)

For integer n also the following combinations, depending on the parity of n, are UV finite
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where the second expression provides (39) after the analytic continuation n
e

! 1. In

a 2 + 1 dimensional CFT, the quantities in (39) and (40) should give nontrivial scale
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Conclusions & open issues

Thank you!

Figure 19: Minimal surface corresponding to three disjoint and equal red circles in the plane z = 0 (the z
axis points downward). This surface has 13147 vertices and 26624 faces, while the number of edges is given
by Euler formula with vanishing genus and 3 boundaries. This kind of surfaces occurs in the computation
of the holographic tripartite information for the union of three disjoint disks.

5 Conclusions
In this paper we have studied the area of the minimal surfaces in AdS4 occurring in the computation of the
holographic entanglement entropy and of the holographic mutual information, focussing on their dependence
on the shape of the entangling curve ⇥A in the boundary of AdS4.

Our approach is numerical and the main tool we have employed is the program Surface Evolver, which
allows to construct triangulated surfaces approximating a surface anchored on a given curve ⇥A which is a
local minimum of the area functional. We have computed the holographic entanglement entropy and the
holographic mutual information for entangling curves given by (or made by the union of) ellipses, superellipses
or the boundaries of two dimensional spherocylinders, for which analytic expressions are not known. We have
also obtained the transition curves for the holographic mutual information of disjoint domains delimited by
some of these smooth curves (see Figs. 15, 16 and 17), providing a solid numerical benchmark for analytic
expressions that could be found in future studies. We focused on these simple examples, but the method
can be employed to address more complicated domains.

Besides the fact that the surfaces constructed by Surface Evolver are triangulated, a source of approx-
imation in our numerical analysis is the way employed to define the curve spanning the minimal surface.
Indeed, once the cuto� � > 0 in the holographic direction has been introduced to regularize the area of the
surfaces, the numerical data have been found by defining ⇥A at z = �. It would be interesting to understand
better this regularization with respect to some other ones and also to decrease � in a stable and automatically
controlled way in order to get numerical data which provide better approximations of the analytic results.

There are many possibilities to extend our work. The most important ones concern black hole geometries
and higher dimensional generalizations. An interesting extension involves domains A made by three or more
regions (see [70] for some results in two dimensional conformal field theories and [71–73] for a holographic
viewpoint). In Fig. 19 we show a minimal surface anchored to an entangling curve made by three disjoint
circles. The area of this surface provides the holographic entanglement entropy between the union of the three
disjoint disks and the rest of the plane, which is the most di⇥cult term to evaluate in the computation of the
holographic tripartite information [71]. Another important application of the numerical method employed
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