Models and Simulations of Friction at the Nanoscale

Franco Pellegrini SISSA, Trieste

Why Friction?

Friction: "Force resisting the relative motion of surfaces in contact"

Friction in physics 101

Static friction:

A block on a ramp

$$F_{max} = \mu_s N$$

Kinetic friction:

 $F = \mu_k N$

Free body diagram of just the block

Drag? F~v, F~v²

History of tribology

Leonardo da Vinci (1452-1519)

History of tribology

Amonton (1699):

- The force of friction is directly proportional to the applied load
- The force of friction is independent of the apparent area of contact

Coulomb (1785):

- Kinetic friction is independent of the sliding velocity

Microscopic theory

What is the area of contact?

Microscopic theory

What is the area of contact?

Microscopic theory

Bowden-Tabor (1950): Friction **is** proportional to the **real** area of contact. But area of contact is (mostly) proportional to load.

→ We need to understand the microscopic behavior of surfaces

1-100nm

Surface roughness

Roughness power spectrum

$$C(q) = \frac{1}{(2\pi)^2} \int \mathrm{d}^2 x \, \langle h(x)h(\mathbf{0}) \rangle \mathrm{e}^{-\mathrm{i}q \cdot x}$$

Experimental setups

Surface force apparatus

Quartz crystal microbalance

Atomic force microscopy

(and Friction force microscopy)

Stick-slip

Hysteresis

5

Toy Models

The Prandl-Tomlinson model (1928)

$$U(x,t) = U_0 \cos\left(\frac{2\pi}{a}x\right) + \frac{K}{2}(x-\nu t)^2$$

$$m\ddot{x} + m\gamma\dot{x} = -\frac{\partial U(x,t)}{\partial x} + \hat{f}(t)$$

Depending on K/U₀, transition from smooth sliding to stick-slip

In stick-slip regime F~log v

The Prandl-Tomlinson model (1928)

The Prandl-Tomlinson model (1928)

Stick-slip

Smooth sliding

Frenkel-Kontorova model (1938)

From Tomlinson to FK

Depending on a_b/a_c ratio at different K/U₀ there is transition from pinned to free sliding (Aubry transition)

Graphene flake on graphene

Kinks & anti-kinks

Kinks & anti-kinks

MD and Langevin

$$m\ddot{x} + m\gamma\dot{x} = -\frac{\partial U(x,t)}{\partial x} + \hat{f}(t)$$

MD and Langevin

MD and Langevin

Interesting effects

Area scaling?

Thermolubricity

Breakdown of Coulomb's law for small systems at $v \sim exp(-\Delta E/KT)$

Thermolubricity

Ageing

Fractures

Suggested reading

- A. Vanossi, N. Manini, M. Urbakh, S. Zapperi, E. Tosatti, "Modeling friction: From nanoscale to mesoscale", Rev. Mod. Phys. 85, 529 (2013)
- O.M. Braun, Yu.S. Kivshar, **"The Frenkel-Kontorova Model:** Concepts, Methods, and Applications", Springer (2004)
- B.N.J. Persson, "Sliding Friction", Springer (2000)
- S.Yu. Krylov, J.W.M. Frenken, "The physics of atomic-scale friction: Basic considerations and open questions", Phys. Status Solidi B 251, 711–736 (2014)