Crystal Structure Prediction From First Principles

Emine Kucukbenli – SISSA, Italy
Crystals

- Condensed Matter Physics
- Solid State Physics
- Ordered solid matter => Crystals
- Lattice + Basis

A two-dimensional Bravais lattice with different choices for the basis
Crystals

- Condensed Matter Physics
- Solid State Physics
- Ordered solid matter => Crystals
- Lattice + Basis

Cholesterol crystals

Crystals

- Condensed Matter Physics
- Solid State Physics
- Ordered solid matter => Crystals
- Lattice + Basis

Uric acid crystals

Not a perfect representation but a good one to start from
Studying Crystals

• What keeps crystals together?

An ordered system of N-many atoms bound by Coulomb interaction.

$$[T_I + T_e + W_{eI} + W_{ee} + W_{II}] \Psi_\alpha(r, R) = E_\alpha \Psi_\alpha(r, R)$$

$$\Psi(r, R) = \Phi(r|R)\chi(R), \quad M_I >> m_e$$

$$[T_e + W_{eI} + W_{ee} + W_{II}] \Phi_\nu(r|R) = E_\nu(R) \Phi_\nu(r|R)$$

$$V(r, R) = \frac{e^2}{2} \frac{Z_I Z_J}{|R_I - R_J|} - \frac{Z_I e^2}{|r_i - R_I|} + \frac{e^2}{2} \frac{1}{|r_i - r_j|}$$
Studying Crystals

- What keeps crystals together?

\[
U = \sum_{i<j} \sum 4\varepsilon_{ij} \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6}
+ \sum_{i<j} \sum \frac{q_i q_j}{4\pi\varepsilon_0 r_{ij}}
+ \sum_{bonds} \frac{1}{2} k_b (r - r_0)^2
+ \sum_{angles} \frac{1}{2} k_a (\theta - \theta_0)^2
+ \sum_{tortions} k_\phi \left[1 + \cos(n\phi - \delta) \right]
\]

Papadimitriou et al., Molecular Simulation 41, (2015)
Studying Crystals from First Principles

- No experimental parametrization of the potential; but physical assumptions are accepted.
 - A mapping of the QM-MB equation to a simpler one under certain assumptions:
 - Heavy nuclei
 - Ground state
 - Core-valance
 - Wavefunction in the form of Slater determinants or similar
 - For DFT, the functional form LDA/GGA etc.
Density Functional Theory

- The most popular first principles approach (2/10 most cited papers in all fields, all times)
- Affordable, Accurate, Available.
- Describing ground state density and potential as Legendre conjugate pairs $E[V] \leftrightarrow F[n]$
- Predictive for several ground state properties across the Periodic Table, as a first principles approach should be.
Density Functional Theory

\[V_{eff}(r, R) = V_{ext}(r, R) + e^2 \int \frac{n(r')}{|r - r'|} dr' + \frac{\delta E_{xc}[n]}{\delta n(r)} \]

\[\left[-\frac{\hbar^2}{2m} \nabla^2 + V_{eff}(r, R)\right] \phi_i(r) = \varepsilon_i \phi_i(r) \]

\[n(r) = 2 \sum_i |\phi_i(r)|^2 \]

Flowsheet:

1. **guess rho_in**
2. **compute V_KS**
3. **diagonalize H_KS**
4. **compute rho_out**
5. **rho_in = rho_out ?**
 - **yes**
 - **compute energy, forces and other properties**
 - **no**
 - **mix to get new rho_in**
Studying Crystals with DFT

• Given a lattice + basis calculate
 - E: Ground state energy per unit cell
 - F_i: Force vector on each atom
 - S_{ij}: Stress on the unit cell and the pressure the cell feels

• What is the energetically most favorable lattice for this material?

=> Crystal structure prediction

 - Structural properties,
 - Electronic&optical properties,
 - All these properties under pressure, at higher temperatures, in contact to humidity etc.
Story 1: Ritonavir

1996 - in the market – Non-refrigerated capsules
1998 – removed from the market in form II
1996 - in the market – Non-refrigerated capsules
1998 – removed from the market in form II

Bauer et al., Pharmaceutical Research 18 (2001)
Story 2: Cholesterol

- Different crystal forms are associated with different diseases

Only GBC patients
Is CSP a formidable problem?

- CSP problem: Name a chemical or stoichiometric formula; find the (local) minima of the free energy landscape under given thermodynamic conditions (often at certain T,P)
- “What is the most stable structure of glycine at ambient conditions?” “What is the carbon structure that is stable at very high pressures”
- Challenges:
 - A too vast space of possibilities.
 - Free energy landscape is very expensive to obtain accurately
How to tackle CSP?

- Exploit vs Explore
- Pauling, 1929 CSP for ionic crystals

![Diagram showing critical radius ratio and polyhedrons with minimum radius ratios for different coordination numbers.](image)
How to tackle CSP?

- Exploit: Data mining
- Binary alloys: choose the most common structures known + various compositions (114) of 55 alloys (55x114)
- Principle component analysis to project “Energy vs Structure” onto the smallest manifold (d=10-20)
- As few as possible first principles energies (d) the rest via linear combination

How to tackle CSP?

Explore: Use smart algorithms to explore as much of the landscape as possible

Well, not so smart but.. The random search

Random generation of initial guess str.
Meaningful constraints
Geometry optimization
How to tackle CSP?

Explore: Use smart algorithms to explore as much of the landscape as possible

Molecular dynamics / Monte Carlo walkers

- Simulated annealing
- Metadynamics
- Basin hopping
- Minima hopping
- Genetic algorithm
How to tackle CSP?

Explore: Use smart algorithms to explore as much of the landscape as possible

Molecular dynamics
How to tackle CSP?

Explore: Use smart algorithms to explore as much of the landscape as possible

Molecular dynamics
- Metadynamics

\[H = T + V + V_{\text{bias}} \]

\[V_{\text{bias}}(s): \ s \text{ collective variable} \]

\[V_{\text{bias}}(\vec{s}) \approx \tau \sum_{j=0}^{t_{\text{sim}}} \omega \exp \left(-\frac{1}{2} \left| \frac{\vec{s} - \vec{s}_j}{\sigma} \right|^2 \right). \]

Laio & Parinello, PNAS 2002
How to tackle CSP?

Explore: Use smart algorithms to explore as much of the landscape as possible

Molecular dynamics

- Metadynamics

\[H = T + V + V_{\text{bias}} \]

\(V_{\text{bias}}(s) : s \) collective variable

Sun et al, PNAS 106 (2009)
How to tackle CSP?

Explore: Use smart algorithms to explore as much of the landscape as possible

Simulated annealing & Stochastic methods

- Define a configuration space, cost function, move class.
- Minima hopping: Start at a local minimum; perform MD at temp T; Geometry optimization to find the closest minimum; Accept/Reject the new minimum based on its energy; increase or decrease the temperature.
Genetic algorithm

• Start with a set of random structures ->
 -> Parent population
• Geometry optimization (local minima)
• Heredity operations, mutation, strangers ->
 Children's population
• Cost function comparison to determine the next
generation
Genetic algorithm

(a) heredity

Slice from parent #1 + slice from parent #2 = non-optimized offspring → optimized offspring

(b) lattice mutation

(c) softmode mutation

(d) permutation

USPEX operations
Success stories

They are many.

CSP problem has been “solved” for the last several years

Case of Glycine
Success stories

Case of Glycine

Success stories

Case of Glycine

Pham et al arXiv:1605.00733
Success stories

- How to identify families of structures “clustering”
Remaining Challenges for you

• Vast space to explore = Cost -> Machine learning algorithms, better exploitation of known landscapes

• Data Analysis & representation -> Dynamic variation of “fingerprint” tolerance, different fingerprinting

• Can we learn more Pauling rules? Extract insights from results