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Black Hole uniqueness 
theorems

A 4-dimensional, asymptotically flat, static (electro-) 
vacuum space-time that is non-singular on and  
outside an event horizon is given by the Schwarzschild 
(Reissner-Nordström) black hole solution.

[Israel]

A 4-dimensional, asymptotically flat, stationary  
(electro-)vacuum space-time that is non-singular  
on and outside an event horizon is given by the  
Kerr-Newman black hole solution (determined by  
            ).M,Q, J [Carter, Hawking, Robinson, Wald, …]
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Counterexamples
Higher dimensions: Black ring solution in 5D,  
horizon has topology S2 ⇥ S1

[Emparan, Reall]

Other matter:   Yang-Mills fields [Volkov, Gal’tsov; …]

Scalar field R�rµ�
⇤rµ�� 1

2m
2�⇤�

[Herdeiro, Radu]

Different asymptotics: In 4D with anti-de Sitter  
asymptotics, horizon topology can be any Riemann- 
surface 

…
[Ammineborg, Bengtsson, 

Holst, Peldan]



Torus can be replaced by plane: black brane

There can be phase transitions between different 
black solutions when changing parameters, e.g. 
Reissner-Nordström (RN) black hole with AdS- 
asymptotics, can become unstable in the presence of 

Charged scalars  
(„holographic superconductors“)

[Hartnoll, Herzog,Horowitz]

Chern-Simons (CS) terms [Nakamura, Ooguri, Park]

Translates to phase transition in the dual field theory 
via AdS/CFT 

focus of this talk



AdS/CFT correspondence
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Generalizes to other dimensions and other 
gauge theories

�

N = 4, SU(N) Yang-Mills in ‘t Hooft limit, 

Supergravity in the space AdS5

i.e. for large   , and large N �‘tHooft = g2
Y MN

Original AdS/CFT correspondence: [Maldacena]



Short review of AdS/CFT at 
finite T and charge density

AdS/CFT
dictionary

J. Maldacena
(Editor)
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AdSCFT
Thermal ensemble
at temperature  T

Charged black brane
with gauge field 

At ⇠
⇢

rD�3
and charge density
⇢

Reissner-
Nordström (RN):

with

f = 1� 2M
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+

Q2

r2(D�2)

Q ⇠ ⇢



AdSCFT
Source and VEV of
gauge invariant
operator O�

�(t, ~x, r ! 1)

Examples: 

Tab

gab

Ja Aa

Energy-momentum 
tensor

Metric

Current Gauge field



RN black hole
(4D, asymptotically flat, spherical horizon)

Charged black hole solution of 
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RN metric can be written as

ds2 = ��
r2

dt2 +
r2

�
dr2 + r2d⌦2

with 

� = (r � r+)(r � r�)

where
r± = M ±

p
M2 �Q2

r+ : event horizon

Black hole for M � |Q|

TH =
p
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2Mr2
+

|Q|!M�! 0



Extremal RN black 
holes

|Q| = M

TH = 0

r+ = r� = M

ds2 = �
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Near horizon geometry: r = M(1 + �)Introduce

ds2 ⇠ (��2dt2 + M2��2d�2) + M2d⌦2

AdS2 ⇥ S2to lowest order in �



Overview of remainder

Review instability of 5D asymptotically AdS 
RN black brane [Nakamura, Ooguri, Park]

Motivation to include higher derivative corrections

Instability with higher derivative corrections

Outlook
[work in progress with 
Danny Brattan, Abhiram 
Kidambi and Amos Yarom]



Instability of Nakamura, 
Ooguri & Park

5D RN black holes in AdS unstable to helical phase if  
CS-term in 

large enough, i.e. ↵ > ↵c ⇡ 0.2896 [Nakamura, Ooguri, Park]

In dual CFT,    determines the anomaly of the current  
dual to 

↵
A

@aJ
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3D CS-term

S =

Z
d

3
x
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� 1

4F
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Fµ⌫ + 

4 ✏
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Fµ⌫A⇢

�
In 3D CS term leads to massive gauge fields:

@µF
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2 ✏
⌫⇢�F⇢� = 0Equation of motion:

Dual field strength: F̃µ ⌘ 1
2✏

µ⌫⇢F⌫⇢ i.e. Fµ⌫ = ✏µ⌫⇢F̃⇢

Equation of motion and

[Deser, Jackiw, Templeton]
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@⇢F̃� � @�F̃⇢ � F⇢� = 0
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CS-term in 3D leads to mass term ⇠ 2

[Nakamura, Ooguri, Park]: CS-term in 5D can turn the  
Maxwell theory tachyonic



Instability in 5D

Instability most likely to occur at T = 0

) consider extremal RN

Near horizon geometry AdS2 ⇥ R3

) look for modes with m2
AdS2

< m2
BF = � 1

4r22

r2 : AdS2 -radius



The BF bound
[Breitenlohner, Freedman]

         -spacetime is stable even in presence of scalars 
with negative mass-square in the Lagrangian if
AdSD

m2r2D � �(D � 1)2/4

AdSD-radius

Positive contribution to energy from gradient terms  
dominates over negative potential energy.
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Near horizon analysis
Ansatz:

with

[Nakamura, Ooguri, Park; Donos, Gauntlett]

Killing vectors: @
x2 , @

x3

@

x1 � k(x2@x3 � x3@x2)

E = 2
p
6with 

near horizon electrical field

R3

AdS2 with r ! r22
r
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12and

! = cos(kx1)dx2 � sin(kx1)dx3
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To linear order in        :b,Q

with  = �12r2Q0

Strategy: (1) Determine effective mass m2(k,↵)

(2) Determine           minimizing            m2(k,↵)k0(↵)

for fixed ↵ ) m2
min(↵) = m2(k0(↵),↵)

(3) Find      for which ↵c m2
min(↵) < m2

BF

for ↵ > ↵c

(⇤AdS2 � k2) + E⇤AdS2b = 0

(⇤AdS2 � k2)b� 4↵Ekb+ E = 0



Concretely:
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↵c coincides with value obtained by looking for 
normalizable fluctuations in full geometry, which  
grow in time.  [Nakamura, Ooguri, Park]

For ↵ > ↵c instability appears for range of    and   k
e.g. ↵

↵c
⇡ 1.47

[Taken from:  
Donos, Gauntlett]
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Figure 1: The curve denotes the critical temperature at which the AdS-RN black

brane becomes unstable and also where the new branches of helical black holes, given

in figure 2, appear. The plot is for � = 1.7 and µ = 1.

We will now set � = 1.7, and hence �/�c ⇡ 1.47, but we have checked that several

other values lead to qualitatively similar results. For this value the linearised analysis

of [6], which we summarise in appendix B, leads to the curve presented in figure 1

which denotes, for a given value of k, the temperature at which the AdS-RN black

brane becomes unstable. Hence for k in the range 0.47 . k . 3.05 we expect to be

able to find the new black hole solutions.

The new helical black hole solutions are obtained by solving the equations of

motion numerically for the ansatz (2.4) with boundary conditions at the asymptotic

AdS5 boundary given in (2.9), and at the black hole horizon given in (2.10). We

use the scaling symmetries (2.6) to set f0 = µ = 1. As mentioned earlier a simple

parameter count indicates that we expect, generically, a two-parameter family of

solutions which we take to be labelled by temperature T and wave-number k. In

practise we fix a specific value of k and then construct a one parameter family of

solutions labelled by the temperature T . We considered twenty di↵erent values of k,

in the range 0.6  k  1.8 (focussing on the peak of the curve in figure 1), and we

have displayed our results in figures 2 - 4.

Figure 2 shows the two-parameter family of solutions and their free energy w. We

first note that the boundary of the surface projected onto the (k, T ) plane reproduces

the curve of critical temperatures as a function of k where the AdS-RN black brane

becomes unstable given in figure 1. We next note that for any fixed temperature the

helical black holes have less free energy than the AdS-RN black hole for any value

of k. Thus, from figure 2 we deduce that there is a second order phase transition at

T = Tc ⇡ 0.0627 at k = kc ⇡ 1.32 with the system moving from a homogeneous and

isotropic phase to a spatially modulated helical phase. As the temperature is lowered

we need to find the value of k for which the black hole has the lowest free energy. This

10

T

Instability occurs 
 in this region

[Donos, Gauntlett]

Solution with particular         minimizes free energy at  
fixed    

k(T )
T



[Wikipedia:Cholesteric  
                  liquid crystals]

Holographic interpretation: Gauge field    dual to a  
current    in CFT;    acquires helical order. 

A
J J

Ground states with helical order exist in condensed 
matter physics, e.g. in some displays with liquid  
crystals

End point of instability: Black brane with helical  
order found numerically by Donos & Gauntlett



5D minimal             SUGRA:N = 2

But ↵c � ↵s

↵c
⇡ 0.003

↵s =
1

2
p
3
⇡ 0.2887 < ↵c

Could higher derivative corrections to      and      lead 
to               , i.e. an instability?

↵s ↵c

↵s > ↵c

[Gauntlett, Varela]

Minimal 5D SUGRA relevant: Every            super- 
symmetric compactification to          can be truncated  
to minimal            SUGRA.

AdS5

N = 2

N = 2



Higher derivative terms
Most general form up to 4 derivatives (modulo field 
redefinitions and partial integration) [Myers, Paulos, Sinha]
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Leave     arbitrary for moment, but for sensible derivative 
expansion need

ci
8i : ci ⌧ 1

Following above strategy, need to take into account
[Myers, Paulos, Sinha]

Correction to condition for extremality:
q2

r60
= 2[1� 48(c1 � 2(2c3 + c4))]

Correction to          -radius:AdS2 r22 =
1

12
+ (4c2 + 16c3 + 8c4)

) m2
BF = � 1

4r22
= �(3� 144c2 � 576c3 � 288c4)

AIf     vector in            gravity supermultiplet: 
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, c3 =
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24

, c4 = �5c1
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1� 288c1
2
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Ansatz (corrections to background from                           ): 

ds

2 =
�dt

2 + dr
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Plug this into Einstein & Maxwell eqs.

[Myers, Paulos, Sinha]



Result: 

↵c = ↵(0)
c + 11.82c1 + 37.06c2 + 183.67c3 + 55.00c4 � 12.61c5

i.e. in supersymmetric case:

↵c = ↵(0)
c � 14.16c1

1

8

c� a

c

But ↵s also decreases with positive c1

[cf. also Takeuchi]



↵c = ↵(0)
c � 14.16c1

↵s = ↵(0)
s (1� 288c1)

c1 =
1

8

c� a

c
= �1.30027⇥ 10�5



Results on 
In            SCFT:N = 1 [Hofmann, Maldacena]

1

2
 a

c
 3

2

with a

c
=

3

2
for free theory with only vector multiplets.

However, 

„Normal“ large CFTs (with 
gauge group) have c > a

Certain non-Lagrangian theories constructed by 

[Buchel, Myers, Sinha]

[Gaiotto; Gaiotto, Maldacena]

a� c

c
=

1

2
6⌧ 1

c� a

N SU(N), SO(N), Sp(N)

can have c1 < 0



Violations of the KSS bound:
⌘

s
=

1

4⇡

✓
1� c� a

c
+ . . .

◆

[Brigante, Liu, Myers, Shenker, Yaida; Buchel, Myers, Sinha]

Mixed current-gravitational anomaly: [Anselmi, Freedman, 
Grisaru, Johansen]

c� a

In 4D CFTs with          , universal term in entanglement  
entropy can become negative for certain higher 
genus entangling surfaces

a > c

[Perlmutter, Rangamani, Rota]

DaJ
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c� a

24⇡2
RabcdR̃

abcd

…



Summary
Black hole uniqueness theorems less stringent for  
AdS-asymptotics

Phase transitions possible between different black  
solutions when changing parameters (e.g.   )

Holographic interpretation: Phase transition in the  
dual CFT

Discussed 1 example, instability of 5D RN black brane 
in the presence of a CS-term

T



Outlook
Find unstable mode in full geometry, including higher 
derivative terms (not just near horizon)

What is the actual ground state of a given theory (i.e. 
are there other instabilities when coupling to further  
fields)?

Fruitful cross-fertilization between black holes with  
AdS asymptotics and field theory / condensed matter  
physics (e.g. discovery of new black branes with  
helical structure) [For more details: Sean Hartnoll, „Lectures on  

holographic methods for condensed matter 
physics“, arxiv: 0903.3246]


