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o In special and general relativity simultaneity is relative but locality is
absolute. This follows from the assumption that spacetime is a universal
entity in which all of physics unfolds.

o However, all approaches to the study of the quantum-gravity problem
suggest that locality must be weakened and that the concept of spacetime
is only emergent and should be replaced by something more fundamental.

o A natural and pressing question is whether it is possible to relax the
universal locality assumption in a controlled manner, such that it gives us
a stepping stone toward the theory of quantum gravity?
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o Planck length, I, = v/AG, sets an absolute limit to how precisely an event
can be localized, Ax ~ I,. However, the Planck length is non zero only if
G and h are non zero, so this hypothesis requires a full fledged quantum
gravity theory.

o As an alternative, we can explore a “classical-non gravitational” regime of
quantum gravity which still captures some of the key delocalising features
of quantum gravity. In this regime, i and G are both neglected, while
their ratio is held fixed:

h
h,G —0; < ~ mp
Mass scale mp parameterizes non-linearities in momentum space.
Remarkably, these non linearities can be understood as introducing a non
trivial geometry on momentum space .

G. Amelino Camelia, Phys.Lett.B 510, 2001.
J. Magueijo, L. Smolin, Phys. Rev. Lett 88 190403,2002.
J.K. Glikman, Lect. Notes. Phys. 669, 2005.
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Kappa Minkowski Spacetime

[X*, X"] = i(a" XY — 2" X") (1)

a" is a set of four real numbers (Lorentz scalars)

1
ol = Viwae =+ ~ Ly =[]
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The above algebra is clearly not covariant under infinitesimal ISO(3,1)
transformation
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Kappa Minkowski Spacetime

[X*, X"] = i(a" XY — 2" X") (1)

a" is a set of four real numbers (Lorentz scalars)

1
ol = Viwae =+ ~ Ly =[]

The above algebra is clearly not covariant under infinitesimal ISO(3,1)
transformation

~

X* = XM= Xt 4 et
X* = X" = XE 4w X,

So to define the symmetry of this Kappa deformed space-time, one needs to
deform the transformation rules.
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Symmetry of the space

Let us first look into the Lie algebra (iso(1,3)) of the usual Poincare generators:

[MW» M/w] =i(mp M Nuo Mv - nMPMVU — Nvo Mup)
My, p] = i(MpPu = MupPv)
[P, P]=0 )

where M, and P, refers to Lorentz and translation generators respectively.
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Symmetry of the space

Let us first look into the Lie algebra (iso(1,3)) of the usual Poincare generators:

[MW» Mpv] = i(Nwp M;m + Mo Mup - UWMW — MNvo Mup)
(Muw, Ppl = i(nup P — 1upPo)
[P, P]=0 (2)

where M, and P, refers to Lorentz and translation generators respectively.

Strategy:

Demand (2) remains undeformed

!

Deform infinitesimal ISO(1,3) transformation, ensuring the covariance
of space-time algebra

1

Generators and the corresponding actions on space-time coordinates
are deformed.
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Deformed Symmetry Transformations

Infinitesimal transformation: 60X = ¢[G, X], where G and ¢ are generator and
parameter for a certain transformation.

Ansatz for deformed transformations:

[M;w’f(p] = "(77VP)A<M - 77#9)%1/) + "w;wp(ﬁa M; a) (3)
[P, Xo] = —inuw &(P; ) + ixyu (P, M; a) (4)
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Deformed Symmetry Transformations

Infinitesimal transformation: 60X = ¢[G, X], where G and ¢ are generator and
parameter for a certain transformation.

Ansatz for deformed transformations:

[MW’XP] = "(77VP)A<M - 77#9)%1/) + "w;wp(ﬁv M; a) (3)
[P, Xo] = —inuw &(P; ) + ixyu (P, M; a) (4)

The deformations contained in v, ¢, x has to be chosen wisely.

(i) Dimensional consistency
(ii) Order of deformation parameter 'a’
(iii) Proper commutative limit.

M. Dimitrijevic, F. Meyer, L. Moller, J. Wess, Eur.Phys.J.C 36 (2004) 117-126.

S. Meljanac, A. Samsarov, M. Stojic, K.S. Gupta, Eur.Phys.J.C 53 (2008) 295-309.
T.R. Govindarajan, Kumar S. Gupta, E. Harikumar, S. Meljanac, J.Phys.Conf.Ser. 306
(2011) 012019; Phys.Rev.D 77 (2008) 105010.

S. Meljanac, A. Samsarov, J. Trampetic, M. Wohlgenannt, JHEP 12 (2011) 010.
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Now we employ two kinds of Jacobi identities:
(A)[X,[G, G]]+ cyclic comb. =0

(B) [G, [X, X]]+ cyclic comb.=0 = Stability of the spacetime algebra (1)
under transformation.

Results:

[Mﬂw o] = i(WVP)A(u - WVp)A(u) —i(auMy, — auMy,) (5)
[P, X] = =i [a&ﬁa +1y/1+ 32,52] +ia,P; $(P)=a"P, +\/1+ a2P?
(6)

For commutative limit a, — 0, the above deformed commutators reproduce

~

[Muwkp] = i(UVP)%u — NupXo); [Iﬁu:)%l/] = —iNuw (7)
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So the deformed transformations compatible with the space-time algebra (1)
are given by

Deformed translation: 6X* = ie®[P,, X"] = ¢“$(P) — (e,a" )P+

Deformed L.T: X" = féwaﬁ[l\%ﬁ,f(“] = WXy —w*Pa Mg #

The transformations are not vector-like, translation is momentum dependent.

Action of both translations depend on momentum of the state it acts
on — Worldlines of two particles with different momenta are translated,
by a different, momentum-dependant amounts, which means that the
two worldlines may cross for a local observer but miss each other for a
translated observer— Relative Locality? < Curved momentum space.

2G.Amelino-Camelia, L Freidel, J. Kowalski-Glikman, L. Smolin, PRD 84, 084010
(2011)
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“Demotion” of commutators to Dirac brackets

[f, gl —{f.glps = ;!I—To%[f’g] (8)

{X*, X"}pg =a" X" —a”"XH;
{P., X "}pg =0, ”[aaPa + V14 a2P2] +a,P”;
{P.,P.}pe =0 (9)

3" ~lp=vGh—0 whenh, G — 0

.at G 1 2 1
" a e 1A L _ .
a —h’lé;m0 7 N [M] = - (in ¢ = 1 unit)
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Construction of free particle Lagrangian

Dirac Brackets — Constraint Matrix — Constraints — First order
Lagrangian First Order Lagrangian:

Le = (X, P)X" + g.(X, P)P* — H(P, X) (10)
H= Hamiltonian of the system

Canonical momenta conjugate to X, and P,

px_ oL p 0L

FT ke T T e T
fulfilling,
X P
{Xuanu}:nul’ = {PI»HHV} (11)
Structure of Constraints:
¥, =M% — f.(X,P) = 0; Y2 =N —g.(X,P) =0. (12)
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Let, & = X, and £7) = P,

(€2, = {€9,P} — {2, TN A =5,y (13)
where a,b=1,2; p,v=0,1,2,3.
Example

euu = Cl,uXu - ClyXH = {Xquu}DB =0- {Xuv 2(11}(/\*1)1&15{2%7 XV}

orv " $(P) — a” P*
(NI o = (14)
1 G(P) + a*P* 0
0 —1Nuw — t(P)a, Py
N ™ = 67(P) (15)
v (P) + t(P)au Py Cuv

where t(P) = W
and C., = ¢ (P) [a,w + t(P)(0p0a®P, — OmaaPu)]
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Constraint Matrix:
(Aw)? ==, 20} (16)

(a.X)P, ]

=0 g= 0T (P)Xt (17)

First order Lagrangian for relativistic free particle

F= =P [x o+ S

Py~ ap) Pr e DF(P) = M) (1)

T is the evolution parameter of the system and e(7) is a Lagrangian multiplier
enforcing the mass-shell condition f(P?) — M? = 0 (M = mass of the particle
in Kk space-time).

*P? = m? is the eigen-value of the Casimir of 1SO(1,3) group.
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‘Curved” momentum space and deformed dispersion relation

T 3Bl -1 m agP" 5 2y g2

F= X [6TUPI (5" + gy =g )| P~ eF(PY) — M)
L7 dr = —X"E(P)»"dP, — e(7)(f(P*) — M?)dT (19)
L7dr = —X“6, "dps — e(7)(P* — m*)dr for usual free relativistic particle

ep = Ex"dP, = dey, # 0 — Non-holonomic basis in momentum space.

Presence of non-trivial E, *(P) indicates that they may correspond non-trivial
tetrads of "curved” momentum space.
It basically stems from

{Xb, P} =(EY(P)’ . =6, p(P)—a,P”
{XP, X} =a’ X —aX?
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q° = X"E, " (P) (20)
{¢",P.}ps =0",, {4",9"}p.6 = {Pu,P.}ps =0 (21)

So we can construct a metric out of the tetrads in momentum space as
& (P) = nab(E " (P)) w(ET(P))° (22)

&uw(P)= ¢277w —¢(apPy +a,Py) + az'DuPV (23)

Problem: Not covariant even under Lorentz transformation! -particularly
because of the presence of a,'s, which are not vectors.
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— So the momentum space P ~ differentiable manifold.

— However, square of the geodesic distance between two points in momentum
space P = D* = M?.

Geodesic distance:

P v — . dp*
D(0, P)=/ V &uv(p)dp+ dp” =/ dr’ /g (p)pHp” i p" = d’;, (24)
0 0

— The geodesic distance (24) in a curved manifold should be invariant under
diffeomorphism, which cannot be achieved with the non-tensorial metric

B (P).
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— Too extract any sensible meaning about the extremal distance, we can
formally think of a covariantly transforming metric g, (P) such that g,.(P)
will be treated as a particular form of the metric g,..(P) in a fiducial frame.

— Formally promote both a"’s and P"'s to vectors under diffeomorphism,
which will induce the following transformation in the metric tensor

P> OPP

8os(P) = guw(P) = 550 5 5 Bas(P) (25)
o _ 0P 0P”
e = e = gpu gpv 1o
dP" OP¥ 2 s
P? = 1apPP’ = 1 — G- — PP’ = o P*P’ = i 26
N W= Gu g o 8s g Z (26)
With this
Bas(P)P* PP = P*(1+ a®P?) = j*(1 + o*1i%) (27)

becomes invariant.
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Deformed mass-shell condition
The mass-shell condition is defined as C = D* = M?,
Distance function D(P) := D(0, P) satisfies following differential equation
0"D(P) gu.(P)0"D(P) =1
Equivalently,
9" C(P)guw(P)9"C(P)=4C (28)
To solve it we make the following ansatz: C = f(P?)

Geometrically this just means that D(0, P1) = D(0, P»), if P, and P> both
belong to the same hyperboloid: P} = P = m?

PO

5)
ey TP

1
! 7
v

o
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M =+/C = D(0, P) = (29)

/ V12 1+u2 / \/1+22
a? = nu.ata”
Case-1 (a® = 0)

It follows quite trivially from (29), there is no noncommutative effect in the
dispersion relation as M = m = v/ P2,

Case-2 (a? < 0)
In this case (29) can be simplified to

M = \/%C@[sinfl(m\/—iaz)] (30)

Taylor series expansion around the commutative limit a — 0, is given by

A2 3
i — A2
M_\/_T@A’LFJ“TOJ“ ] for A\=my/—-a2< 1 (31)

Since sin"* A for A > 1 is undefined, m <

Ve

The corresponding bound for M is given by M <

N
ﬁa
)
3
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Case-3 (a° > 0)

1 _
M= Esinh Y(am); a=Va? (32)
oh-te €1+ _9(e) + .. for [¢] < 1
sin =
:I:[ln|2£| + g~ e (%) - ] for £6>1
(33)
where £ 1= am.
24
ﬂM ”¢J
i o a?<0 |
=0
a* >0
0
0 1 2 anmi "5
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Relativistic and non-relativistic limits of « Minkowski
spacetime algebra
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What we learned previously

Map between commutative and non-commutative coordinates:

Xt = (Eil(P; a))u o q”
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Spacetime contraction in ¢ — oo limit

~

c—00

0
0 0_ o q . i i
q—>qg—c|;n;ot(6)—|'m<c>. 9 —aq=q

Inverse metric:

—il ; —1, 0 i .

= | ;c)=| 23, 57 — A
7= fim ) = i (G2 o~
6'78 0

— - ® -
0q;  9ql

10 _ 0 5,,-6@3)

Spacetime contraction in ¢ — 0 limit:

¢ — q° = lim t(c) = lim (q—) c g —q.=¢
c—0 c—0 Cc

Metric:

T 0 i T 2 s i j — _ 8 i j
g—gmn(q,q.C)—jm(cdtQ@dt diidq ®dq’)— d;dqe ® dat

Symmetries of ~ Minkowski space-time and emergence of a curved momentu




-Galilean spacetime

X — X2 = lim T(c) = lim <X> : X — Xi=X
c— 00 c—ro0 (o}
30 ) 0 . .30
X gl (ax, . a,X> (34)
C C C
X6, = —ia'x; (35)
(X xE] =i (% - ax]) (36)

Non-relativistic limit of x Minkowski Bopp map:

—

-3

0

Xgozqg

—

X0=qb |3 Pyt y/1+ (3

" 1+(a2(?i>2

(%)

J

Symmetries of

Anwesha akraborty
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For consistency we must set a’ = 0, a’ # 0 = space-like NC parameter

Coordinate algebra:
(R0, %] = - xg: [Xi %] =i (% - #X])

Phase space Algebra

puf]=i0(a7):  o(aF) =2 B4 e ()
X
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-Carrollian spacetime

X® — X2 = lim T(c) = lim X, X — X =X
c—0 c—0 c

0 . o\ . %
im | 25, %7| = i lim <3—>X’—a’x—

c—0 C c—0

0
) hG B . . ,
2’ — a2 = lim (a—)wtp: — ~10 s a—a.=a (37)
c—r C

[)?3, )?g'] = (aE)?g' - 423)

[)A(C", )?g'] = (ai)?g' - af;)?c")
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~ =\ 2
Xe = qy/1+ (a2 (Ps)

X! =ad. <a2/33 +/1+ (a2 (“g)2>

For consistency we must set a' = 0, a2 # 0 = time-like NC parameter.

Coordinate algebra:
[xe. %] =Xl [XLx]= o

Phase space Algebra
B %) = -y f14 2 (B)’: [P %] = it <aﬁo rifie (/30)2)

T. Trzesniewski, JHEP 2024 (2024) 200.
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Deformed Poincare symmetry compatible with x deformed space-time algebra

!

Momentum dependent transformation — Indication of Relative locality and
curved momentum space

i
Free particle Lagrangian construction to identify the momentum space viel-bein
I
Momentum space metric and geodesic distance
3

Deformed dispersion relation
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Deformed Poincare symmetry compatible with x deformed space-time algebra

!

Momentum dependent transformation — Indication of Relative locality and
curved momentum space

i
Free particle Lagrangian construction to identify the momentum space viel-bein
I
Momentum space metric and geodesic distance
1

Deformed dispersion relation

o It is quite interesting to see how one can construct multi-particle actions
in presence of interactions (taken to be simple collisions) and explore more
features of momentum space geometry.
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P Nandi, AC, S K Pal, B Chakraborty, F G Scholtz, Symmetries of
Kk Minkowski space-time: A possibility of exotic momentum space
geometry?, JHEP 07 (2023) 142.

Deeponjit Bose, AC, Biswajit Chakraborty, arXiv:2401.05769

THANK YOU
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