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Part 0.

MOTIVATION
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Standard QM:

- The value a of an observable A is an eigenvalue: A|a⟩ = a|a⟩.
⇒ The system has some value only when |ψ⟩ is an eigenstate: |ψ⟩ = |a⟩.
- But Schrödinger equation ⇒ superposition |ψ⟩ =

∑
a′ ca′|a′⟩.

⇒ To get a value we need a collapse |ψ⟩ → |a⟩.

Several problems with a collapse:

- Contextual (happens only when measurement is performed,

not clear how exactly the system knows that it is measured).

- Nonlocal (happens in the whole universe at once).

Possible solution:

- Perhaps an observable (spin, position, ...) has some value v

even when |ψ⟩ is not an eigenstate |a⟩?
- If so, then perhaps collapse is not needed to get a value!

Can it resolve all mysteries of QM?
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- Such values v are often called “hidden variables”
because they are not a part of the standard quantum formalism.
- However, this name is misleading because v
are variables that we actually observe in experiments.
⇒ They may be “hidden” to theorists, not to experimentalists.
⇒ I will no longer call them “hidden variables”.

- Whatever those hypothetic values v are,
they must me compatible with existing experiments.
- But existing experiments are all compatible
with measurable predictions of standard QM.
⇒ The values must be compatible
with measurable predictions of standard QM.
⇒ This poses strong restrictions on possible physical laws for v.

- It turns out that v cannot obey some classical
properties that one would naively expect them to obey.
- Loosely speaking, v either must be |ψ⟩ itself (!),
or something that has some properties similar to |ψ⟩.
- Those restrictions have forms of various no-go theorems.
- In the rest I present those theorems in more detail.
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The theorems in a nutshell:

Naive property 1:

- Measurement just reveals values v that existed before measurement.

No-go theorem 1. (contextuality) refutes it:

- The measurement must somehow create or change values v.

Naive property 2:

- Since we might get rid of nonlocal collapse, the creation/change of v

might be governed by a local law.

No-go theorem 2. (nonlocality) refutes it:

- The creation/change of v must be governed by some nonlocal law.

Naive property 3:

- Since the actual value v might exist even without the eigenstate |a⟩,
the quantum state |ψ⟩ might be just our subjective knowledge,

it might not be objectively “real”.

No-go theorem 3. (ψ-onticity) refutes it:

- If v is objectively “real”, then so is |ψ⟩.
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Part 1.

PROOF OF CONTEXTUALITY
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The first proof: Bell (1966).

The most famous proof: Kochen-Specker (1967).

I present a much simpler proof: Mermin (1990), Peres (1990).

Multiplication table for 9 numbers:

a b c abc
e f g efg
i j k ijk
aei bfj cgk aei · bfj · cgk = abc · efg · ijk

Can we do the same for operators?

- Pauli matrices: σ2x = σ2y = σ2z = 1, σxσyσz = i, [σx, σy] = 2iσz
- Eigenvalues of σx, σy, σz are ±1.

- Spin operator: Sx = h̄
2σx, ...
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Consider a composite system of two spin-12 particles.

- In this system consider the following 9 observables:

σx ⊗ 1 1⊗ σx σx ⊗ σx 1
1⊗ σy σy ⊗ 1 σy ⊗ σy 1
σx ⊗ σy σy ⊗ σx σz ⊗ σz 1

1 1 −1 1 · 1 · (−1) ̸= 1 · 1 · 1

- operators in the same row commute (can be simultaneously measured)

- operators in the same column commute

However, −1 ̸= 1

⇒ Impossible to simultaneously assign values to all 9 observables.

⇒ Contextuality:

At least some of the values are created or changed by the measurement.

Note: We tried (and failed) to associate values with

composite operators (σx ⊗ σy, ...),

not with local operators (σx, σy, ...)

8



Part 2.

PROOF OF NONLOCALITY
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- In the proof of contextuality we proved that one cannot

associate values with composite observables (σx ⊗ σy, ...).

- We said nothing about values associated

with local observables (σx, σy, ...).

- To prove nonlocality, we need to prove that one

cannot associate values with local observables.

- However, nonlocality cannot be proved for any state.

- Nonlocality is state-dependent, it appears only for entangled states.

The first and most famous proof: Bell (1964).

- Uses | ↑⟩| ↓⟩+ | ↓⟩| ↑⟩, easy to prepare in experiments.

- However, the proof is not simple mathematically.
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I present the GHZ proof: Greenberger, Horne and Zeilinger (1989).

- simple mathematically

- uses a state of 3 entangled particles:

|GHZ⟩ =
1√
2
(| ↑⟩| ↑⟩| ↑⟩ − | ↓⟩| ↓⟩| ↓⟩)

- not easy to prepare in experiments

Here the following notation is used:

- eigenstates of operator σz: σz| ↑⟩ = +| ↑⟩, σz| ↓⟩ = −| ↓⟩
- tensor product ⊗ is understood

- for composite operators the following notation is used

σx ⊗ σy ⊗ σz ≡ σ
(1)
x σ

(2)
y σ

(3)
z

11



The state |GHZ⟩ satisfies

σ
(1)
x σ

(2)
x σ

(3)
y |GHZ⟩ = σ

(1)
x σ

(2)
y σ

(3)
x |GHZ⟩ = σ

(1)
y σ

(2)
x σ

(3)
x |GHZ⟩ = +|GHZ⟩

Now assume(!) that, for |GHZ⟩, we can associate a value (number) s

with each local observable, e.g. σ(1)x → s
(1)
x

⇒ The numbers must satisfy

s
(1)
x s

(2)
x s

(3)
y = s

(1)
x s

(2)
y s

(3)
x = s

(1)
y s

(2)
x s

(3)
x = +1

Multiply all three ⇒(
s
(1)
x s

(2)
x s

(3)
x

)2
s
(1)
y s

(2)
y s

(3)
y = +1 ⇒ s

(1)
y s

(2)
y s

(3)
y = +1

But QM tells us that

σ
(1)
y σ

(2)
y σ

(3)
y |GHZ⟩ = −|GHZ⟩

which is a contradiction!

⇒ The assumption was wrong, it is not possible

to simultaneously associate values with all local observables.
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- Contradiction ⇒ s-values could not have been preexisting

before measurement.

⇒ Measurement somehow creates or changes them (contextuality).

- Perfect correlation, e.g. s(1)x s
(2)
x s

(3)
y = 1.

correlation + contextuality ⇒ correlation could not have been

prearranged.

⇒ Correlation must somehow be arranged at the time of measurement.

⇒ The 3 measurement apparatuses must somehow communicate

with each other.

- But measurement apparatuses can be far away from each other.

⇒ Somehow they must communicate instantaneously

(or faster than c).

That’s the proof of nonlocality!
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Why can’t nonlocality be used to send signals faster than light?

- Signal is an anthropomorphic concept:

Array of symbols (e.g. 01101 . . . ) freely chosen by a human agent,

not randomly picked by nature.

- A human can prepare any |ψ⟩ at will.

- E.g. |ψ⟩ = | ↑⟩| ↑⟩+ | ↓⟩| ↓⟩ guarantees the correlation s
(1)
z s

(2)
z = 1.

- But a human cannot choose in advance whether it will be

(s(1)z , s
(2)
z ) = (1,1) or (s(1)z , s

(2)
z ) = (−1,−1).

- Instead, nature picks one of those randomly.

(Or perhaps pseudo-randomly, but we cannot distinguish

between random and pseudo-random in practice.)
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Some interpretations of QM still deny nonlocality.

- Different interpretations use different arguments.

The most frequent argument for locality: Signal locality.

- Nonlocality proved by the theorem cannot be used to send signals.

⇒ Nonlocality doesn’t have practical consequences.

⇒ It’s metaphysics, not physics.

Counterargument:

- If physics was only an empirical science,

nonlocality would be metaphysics.

- But physics is based on empirical data and logic.

- Proof of nonlocality is a combination of both

(correlation is an empirical fact, the rest is logic).

⇒ Proof of nonlocality is physical.

Which argument is more convincing?

- No consensus among experts.

⇒ I leave the decision to you!
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Part 3.

PROOF OF ψ-onticity
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What is the meaning of the quantum state |ψ⟩?
- Is it an objective property of a single system? (ψ-ontology)

- Or is it only a tool to calculate probability? (ψ-epistemology)

PBR theorem:

M.F. Pusey, J. Barrett, T. Rudolph, Nature Phys. 8, 476 (2012).

Consists of

1. Mathematical definition of the difference between

“ontological” and “epistemological”.

2. Technical proof (with the aid some auxiliary assumptions)

QM ⇒ |ψ⟩ is ontological (objectively real)!

Main assumption in the proof:

- Some objective properties λ exist.
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Example from classical probability - coin flipping:

To make it non-trivial, assume unfair coin flipping

p(head) ̸= p(tail)

- Are p(head) and p(tail) intrinsic properties of a single coin?
- If they are, we shall say that p(head) and p(tail) are real
(objective) properties of the coin.

Two possibilities:

1. Unfair coin
- p(head) ̸= p(tail) because the distribution of the coin-mass
is not uniform

- this is a property of the coin itself
- from the knowledge of λ = mass distribution
⇒ p(head), p(tail) can be determined uniquely

2. Unfair flipping
- p(head) ̸= p(tail) because the act of flipping is unfair
- this is not a property of the coin
- from the knowledge of λ = mass distribution
⇒ p(head), p(tail) can not be determined uniquely
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This motivates the general definition:

A probability distribution µ(λ) is ontic

(i.e., corresponds to something real)

iff it can be determined uniquely from the fundamental λ.

Otherwise, µ(λ) is called epistemic.
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Now apply to QM:

- QM is an unfair game (not all probabilities are equal).

- Is QM an unfair “coin” or an unfair “flipping”?

Analogy: coin flipping ↔ QM

set {head, tail} ↔ set of all different states in the Hilbert space {|ψ⟩}

(|ψ⟩ is different from |ψ′⟩ iff |ψ′⟩ ̸= c|ψ⟩.)

- In general, experimentalists do not have a full control

over all fundamental degrees of freedom λ.

⇒ When they prepare |ψ⟩ in the laboratory, this actually means

that they have prepared some probability distribution µ(λ):
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Assume that for states |ψ1⟩, |ψ2⟩ their λ-distributions overlap:

- For λ ∈ overlap, one cannot know whether λ belongs

to µ1(λ) or µ2(λ)

⇒ λ does not uniquely determine µ(λ)

⇒ (by definition) µ(λ) is not ontic

⇒ |ψ⟩ is not ontic

⇒ To prove that |ψ⟩ is not ontic, it is sufficient to prove

that there is at least one pair |ψ1⟩, |ψ2⟩ (|ψ1⟩ ̸= c|ψ2⟩)
for which µ1(λ) and µ2(λ) do overlap.
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⇒ The converse (that |ψ⟩ is ontic)
is much more difficult to prove:
- One needs to prove that for any pair |ψ1⟩, |ψ2⟩ (|ψ1⟩ ̸= c|ψ2⟩)
the overlap does not exist:

- Yet, the PBR theorem proves exactly this!

This is not only difficult to prove (sketch in the next section),
but also very surprising:

- The absence of overlap µ1(λ)µ2(λ) = 0 ∀ λ
is not surprising when ⟨ψ1|ψ2⟩ = 0.

- What is surprising is that µ1(λ)µ2(λ) = 0 ∀ λ
even when ⟨ψ1|ψ2⟩ ̸= 0.
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- Why is that surprising? Because

⟨ψ1|ψ2⟩ ̸= 0[
1 =

∫
da|a⟩⟨a|

]
⇒

∫
da⟨ψ1|a⟩⟨a|ψ2⟩ ̸= 0

⇒ ⟨ψ1|a⟩⟨a|ψ2⟩ ̸= 0 for some a[
ρi(a) = |⟨a|ψi⟩|2

]
⇒ ρ1(a)ρ2(a) ̸= 0 for some a

and yet µ1(λ)µ2(λ) = 0 ∀λ.

- In other words, QM-distributions overlap,

but corresponding λ-distributions do not overlap!
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Sketch of the proof:

- Here I present the proof of the absence of overlap

for a simple example of a pair of non-orthogonal states.

(PBR also generalize it to an arbitrary pair.)

2-dimensional Hilbert space with orthogonal basis |0⟩, |1⟩.
Another orthogonal basis |+⟩, |−⟩

|±⟩ =
|0⟩ ± |1⟩√

2

Non-orthogonal pair |0⟩, |+⟩:

⟨0|+⟩ = 1/
√
2

Goal: prove that µ0(λ)µ+(λ) = 0 ∀λ
Strategy: assume the opposite and derive a contradiction!
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- Assume overlap ⇒ finite probability p that λ ∈ overlap.

Consider two similar systems:

- Each prepared either in |0⟩ or |+⟩
(but experimentalist does not know in which one it is prepared).

- Probability of overlap in each is p.

- Assume they are statistically independent.

⇒ Probability of overlap in both is Pjoint = p · p > 0.
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⇒ Consequence of the assumed overlap:

There is a probability Pjoint > 0 that
the outcome will be consistent with all four

possibilities for the initial preparation
(|0⟩|0⟩, |0⟩|+⟩, |+⟩|0⟩, and |+⟩|+⟩)

Now compare it with predictions of QM:
- Measure the joint system in a specially chosen
complete orthogonal basis:

|ϕ1⟩ =
1√
2
[|0⟩|1⟩+ |1⟩|0⟩], |ϕ2⟩ =

1√
2
[|0⟩|−⟩+ |1⟩|+⟩],

|ϕ3⟩ =
1√
2
[|+⟩|1⟩+ |−⟩|0⟩], |ϕ4⟩ =

1√
2
[|+⟩|−⟩+ |−⟩|+⟩]

- This basis has the property (notation: |ab⟩ ≡ |a⟩|b⟩)

⟨ϕ1|00⟩ = 0, ⟨ϕ2|0+⟩ = 0, ⟨ϕ3|+0⟩ = 0, ⟨ϕ4|++⟩ = 0

⇒ Whatever the outcome of a single measurement will be
(|ϕ1⟩, |ϕ2⟩, |ϕ3⟩, or |ϕ4⟩), it is certain that it will eliminate
one of the possibilities (|00⟩, |0+⟩, |+0⟩, or |++⟩).
⇒ Pjoint = 0
⇒ Contradiction with the Consequence above! Q.E.D.

26



Forthcoming talks:

Quantum Foundations III:

Decoherence

Quantum Foundations IV:

Quantum theory of measurement and Bohmian mechanics

Quantum Foundations V:

Relativistic QFT from a Bohmian perspective: A proof of concept

Quantum Foundations VI:

Suggestions welcome
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