FRUSTRATION OF BEING ODD

Vanja Marić

Humboldt College SCIENCE AND EDUCATIONAL CHALLENGES FACING EUROPE IN THE NEXT DECADE 11 October 2019, Zagreb

Outline

- Frustration in magnetic systems
- Research problem: Frustration and Quantum Mechanics
- Examination of particular models
- Conclusions

FERROMAGNETS

- ancient Greece
- spins like to point in the SAME direction

FERROMAGNETS

- ancient Greece
- spins like to point in the SAME direction

FERROMAGNETS

- ancient Greece
- spins like to point in the SAME direction

S

\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc ϕ spins \bigcirc $\widehat{\mathbb{O}}$ atoms \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $\widehat{\square}$ \bigcirc \bigcirc \bigcirc \bigcirc () \bigcirc \bigcirc \bigcirc \bigcirc

ANTIFERROMAGNETS

- 20th century
- spins like to point in the OPPOSITE directions

Frustration

• interactions in conflict

Picture taken from [Moessner,Ramirez 2006]

Interest

Applications

Materials with new properties

• Quantum technologies

Fundamental Side

- Organization of matter
- Spin ices, spin liquids
- Ability of such condensed matter systems to mimic different systems (e.g. Artificial light)

Interest

Applications

Materials with new properties

• Quantum technologies

Fundamental Side

- Organization of matter
- Spin ices, spin liquids
- Ability of such condensed matter systems to mimic different systems (e.g. Artificial light)

Frustration + Quantum Mechanics?

One dimensional systems

One dimensional systems

- Frustration of being Odd
- periodic boundary conditions and odd system size

One dimensional systems

- Frustration of being Odd
- periodic boundary conditions and odd system size

System described by the Hamiltonian (XY chain)

N = oddFRUSTRATED

$$H = \sum_{j=1}^{N} \sigma_j^x \sigma_{j+1}^x - \lambda \sum_{j=1}^{N} \sigma_j^y \sigma_{j+1}^y, \ \lambda \in (0,1)$$

Magnetization? (average value)

$$\langle \sigma_j^x \rangle = ?$$

Combination of analytical and numerical methods

Results

<u>Without frustration</u> (System size *N*=Even):

• Magnetization antiferromagnetic

Results

<u>Without frustration</u> (System size *N*=Even):

• Magnetization antiferromagnetic

<u>With frustration (N=Odd)</u>:

- Magnetization decreases to zero with the system size
- Magnetization ferromagnetic

Mesoscopic Ferromagnetic Order

N = 17

Results

<u>Without frustration</u> (System size *N*=Even): <u>With frustration (N=Odd)</u>: Magnetization decreases to zero with the Magnetization antiferromagnetic system size Magnetization ferromagnetic N = 17N = 16Not in agreement with the Landau theory! Mesoscopic Ferromagnetic Magnetiz 50[°]0 Order 10 20 30 40 50 System Size N

Conclusions

- Frustration with Quantum Mechanics destroys the antiferromagnetic order.
- Different behavior of systems of even and odd size, however large they are. (Importance of the boundary conditions.)
- Incompletness of the Landau theory.

Reference: V. Marić, S. M. Giampaolo, D. Kuić, and F. Franchini. "The Frustration of being Odd: How Boundary Conditions can destroy Local Order". arXiv:1908.10876, 2019.

• Results are generalized to other models, in some a new type of order is found (breaking of translational symmetry).

Reference: V. Marić, S. M. Giampaolo, D. Kuić, and F. Franchini. In preparation.

People involved in the project

Fabio Franchini


```
Salvatore Marco Giampaolo
```


Domagoj Kuić

