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Physical message/motivation of the talk:

Noncommutative (e.g. quantization deformed finite
dimensional) phase space backgrounds have additional
bi-/Hopf algebroid structure which allows considering
deformations as coming from a generalization of Drinfeld twists.

A variant of the formalism can also be applied to Lie algebroids,
e.g. at target spaces of sigma models. In principle, the
formalism could be modified for deformations of phase spaces
of classical field theories. One can tensor modules over
bialgebroids hence the “symmetry” passes to bundles,
differential calculi, multiparticle states, Fock space etc.
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Classical Drinfeld twist

F ∈ H ⊗ H (or F−1 in the usual convention) is a Drinfeld twist
for a bialgebra (H, µ,∆ : H → H ⊗ H, ε : H → C) if the
2-cocycle condition

(∆⊗ id)(F)(F ⊗ 1) = (id⊗∆)(F)(1⊗F) (1)

and the counitality (ε⊗ id)(F) = 1H = (id⊗ ε)(F) hold.

Then in any H-module algebra (A, µA) one has a deformed
product a ? b = µAF(a⊗ b) and coproduct ∆(h) = F−1∆(h)F
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Some candidates of Drinfeld twists have F ∈ B⊗ B where B is
bigger ambient Hopf algebra than H at hand. Aschieri et al.
allow for universal enveloping of Lie algebra of vector fields
B = U(VectM). Physically it should be Diff(M) but not a Hopf
algebra. E.g.

x
d

dx
· x d

dx
− x

d
dx

= x2 d
dx
· d

dx
NOT true in U(Vect(R)) – but true in Diff(M) (anticipate also:
Hopf algebroid, universal enveloping of tangent bundle as Lie
algebroid).
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Hopf algebroids – an analogue of groupoids in
noncommutative geometry, a formalism of quantum groupoids.
Main examples coming from usual groupoids, weak Hopf
algebras (quasiHopf weak Hopf algebras Mack, Schomerus
1992; weak bialgebras G. Böhm 1997) and now also, what is
our focus, from noncommutative phase spaces as a version of
Lu’s quantum action groupoids.
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For simplicity we shall not discuss antipode of the Hopf
algebroid; then we discuss an associative bialgebroid.
Main ingredients of a bialgebroid: total algebra H, base
algebra A, and

structure of a A⊗ Aop-ring η : A⊗ Aop → H; then left leg
α := η(−⊗ 1Aop) : A→ H and right leg
β := η(1A ⊗−) : Aop → H, also called the source and
target maps respectively; α(a)β(b) = η(a⊗ b) = β(b)α(a).
H is A-bimodule via

a.h.b := α(a)β(b)h

counital coproduct ∆ : H→ H⊗A H (comonoid in
H-bimodules) and some compatibilities
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Sweedler notation

To state the properties recall a bit notation on Hopf algebras
Sweedler notation: ∆(a) =

∑
a(1) ⊗ a(2).

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆∑∑
a(1)(1) ⊗ a(1)(2) ⊗ a(2) =

∑∑
a(1) ⊗ a(2)(1) ⊗ a(2)(2)

so we write simply ∑
a(1) ⊗ a(2) ⊗ a(3)

“only the order matters”
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Hopf algebra of functions

Hopf algebroid of a groupoid
(G1,G0, s, t : G1 → G0, ◦ : G1 t×s G1 → G1, i : G1 → G1) – an
analogue of Hopf algebra of functions on a group

A Hopf algebra is a bialgebra (B,m, η,∆, ε) with an antipode
map S : B→ Bop,

m ◦ (S⊗ id) ◦∆ = η ◦ ε = m ◦ (id⊗ S) ◦∆.

For a group G, Fun(G) is a Hopf algebra with
∆(f)(g1, g2) = f(g1 · g2) (using Fun(G× G) ∼= Fun(G)⊗ Fun(G)
and the antipode S : Fun(G)op → Fun(G) is (Sf)(g) = f(g−1),
g ∈ G, f ∈ Fun(G)
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(Co)modules

Algebras have actions, modules: ν : A⊗M→ M.
Coalgebras have coactions, comodules: ρ : M→ C⊗M.
Extend Sweedler to ρ(m) =

∑
m(−1) ⊗m(0).

Modules over bialgebras have a tensor product:
ν(a,m⊗ n) =

∑
νM(a(1),m)⊗ νN(a(2), n); dually comodules over

bialgebras have a tensor product. Over Hopf algebras we also
have duals (via antipode).
In physics, comultiplication so that the Hilbert space of
multiparticle state inherits symmetry via tensor product of
representations and quantum numbers appropriately “add”.
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An A⊗ Aop-ring (H, µ, α, β) and an A-coalgebra
(H,∆ : H→ H⊗A H, ε : H→ A) on an A-bimodule H form a left
associative A-bialgebroid (H, µ, α, β,∆, ε) if they satisfy the
following compatibility conditions:

(C1) the underlying A-bimodule structure of the A-coring
structure is determined by the source map and target map
(part of the A⊗ Aop-ring structure): r.a.r′ = α(r)β(r′)a.

(C2) formula
∑

λ hλ ⊗ fλ 7→ ε(
∑

λ hλα(fλ)) defines an action
H⊗ A→ A which extends the left regular action
A⊗ A→ A along the inclusion A⊗ A α⊗A−→ H⊗ A.

(C3) the linear map h⊗ (g⊗ k) 7→ ∆(h)(g⊗ k),
H⊗ (H⊗ H)→ H⊗ H, induces a well defined action
H⊗ (H⊗A H)→ H⊗A H.
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The condition (C1) implies that the kernel IA = Kerπ of the
projection map

π : H⊗R H→ H⊗A H

of H-bimodules is a right ideal in the algebra H⊗R H,
generated by the set of elements of the form β(a)⊗1−1⊗α(a):

IA = {β(a)⊗R 1− 1⊗R α(a) | a ∈ A } · (H⊗R H) (2)

The third condition (C3) is here stated in the form of Lu. Let

H×AH =
{∑

bi⊗b′i ∈ H⊗AH
∣∣ ∑

i

bi⊗b′iα(a) =
∑

i

biβ(a)⊗b′i, ∀a ∈ A
}
,

which is an H-subbimodule of H⊗A H. Then the Takeuchi
product H×A H is, unlike H⊗A H, an associative algebra with
respect to the componentwise product.

Zoran Škoda Hopf algebroids in description of noncommutative phase spaces



Main example of a nc bialgebroid over commutative base is the
Heisenberg-Weyl associative algebra as total space over the
coordinate part as a base; more generally differential operators
Diff(M) over C∞(M). Action groupoid for infinitesimal action of
derivative part.
(Basic example of a noncommutative Hopf algebroid over a
commutative base) A = C∞(M) where M is a smooth manifold.
H = Diff(M) is the algebra of differential operators with
smooth coefficients. Define ∆(D)(f, g) = D(f · g). The base is
commutative and α = β is the canonical embedding of
functions into differential operators; the counit is taking the
constant term. Here I denotes the usual action of differential
operators on functions.
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The tangent bundle TM is an example of a Lie algebroid; the
universal enveloping of a Lie algebroid (more generally,
Lie-Rinehart pair) is a Hopf algebroid over the commutative
base. For the vector fields, UC∞(M)(Vect(M)) ∼= Diff(M), not true
for universal enveloping as Lie algebras! Namely in Weyl
algebra it is true and not true in the enveloping that

x
d

dx
· x d

dx
− x

d
dx

= x2 d
dx
· d

dx

Thus the symmetry observables should not be looked upon
within the usual enveloping which is a Hopf algebra but in the
Lie algebroid enveloping which is a Hopf algebroid. Thus some
no-go theorems for Drinfeld twists are non-physical and we
need to go beyond.
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Drinfeld twist for bialgebroids

F ∈ H⊗A H is a Drinfeld twist for a left A-bialgebroid
(H, µ, α, β,∆, ε) if the 2-cocycle condition

(∆⊗A id)(F)(F ⊗A 1) = (id⊗A ∆)(F)(1⊗A F) (3)

and the counitality (ε⊗A id)(F) = 1H = (id⊗A ε)(F) hold.

(inverse cocycle) In terms of F−1 and A∗ (next page), we can
alternatively write the cocycle condition (3) as

(F−1 ⊗A? 1)(∆⊗A? id)(F−1) = (1⊗A? F−1)(id⊗A? ∆)(F−1).
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If H is a left A-bialgebroid then (with notation F = f1 ⊗ f1) the
formula

a ? b = µF(I ⊗ I)(f⊗ g) = (f1 I a)(f1 I b) (4)

defines an associative algebra A? = (A, ?) structure on A with
the same unit; the formulas αF (a) = α(f1 I a)f1 and
βF (a) = β(f1 I a)f1 define respectively an algebra
homomorphism and antihomomorphism A? → H turning H into
an A?-ring; the formula

∆F (h) = F−1∆(h)F

defines a map ∆F : H→ H⊗A? H which is coassociative and
counital with the same counit. Moreover,
HF = (H, µ, αF , βF ,∆F , ε) is a left A?-bialgebroid.
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deformation quantization

Ping Xu (2000) extends the base algebra C∞(M) in Diff(M) to
C∞(M)[[h]] in Diff(M).

Ping Xu’s theorem. If (M, {, }) is Poisson manifold and the
formal bidifferential operator F ∈ D[[h]] defines a deformation
quantization of (M, {, }) with a ? b = µF(f⊗ g). Then F is a
Drinfeld twist for the left C∞(M)[[h]]-bialgebroid of formal power
series in regular differential operators Diff[[h]]. Consequently,
each deformation quantization defines also a deformation of
that bialgebroid.
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For Lie type noncommutativity work with Meljanac; later M.
Stojić.
g – fixed Lie algebra over R with basis x̂1, . . . , x̂n
U(g) – universal enveloping algebra of g
S(g) – symmetric algebra of g.
x̂1, . . . , x̂n generate U(g) (noncommutative coordinates)
x1, . . . , xn generate S(g) (commutative coordinates)

[x̂µ, x̂ν ] = Cλµν x̂λ. (5)

∂1, . . . , ∂n – algebraically dual basis of g∗, proportional to
momenta p1, . . . , pn

Ŝ(g∗) – formal completion of S(g∗)
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Define also
O := exp(C) ∈ Mn(Ŝ(g∗))

φ :=
−C

e−C − 1
=
∞∑

N=0

(−1)NBN

N!
CN, φ̃ :=

C
eC − 1

=
∞∑

N=0

BN

N!
CN,

(6)
where BN are the Bernoulli numbers.

Cαβ := Cαβγ∂
γ ∈ Ŝ(g∗), (7)

x̂φρ :=
∑
τ

xτφτρ, ŷφρ :=
∑
τ

xτ φ̃τρ = β(x̂φ).
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ŷφν = x̂φµOµν ,

[x̂φµ, ŷ
φ
ν ] = 0.

Note
φ : U(g)→ Endop(Ŝ(g∗)).

φµν = φ(∂µ)(x̂ν)

Hence we can form a smash product algebra U(g)]Ŝ(g∗) – in
fact Heisenberg double – contains both x̂µ and pν and
Ŝ(g∗) ∼= U(g)∗ dual Hopf algebra! A−1 = (φµν ) inverse
Maurer-Cartan dA + A ∧ A = 0
Hopf algebroid: ∆(x̂µ) = x̂ν ⊗ 1, ∆(pµ) is from the dual Hopf
algebra U(g∗). This is a case of Lu/Brzeziński-Militaru scalar
extension by bc Yetter-Drinfeld module algebra. ŷµ I u = ux̂µ.
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In symmetric ordering, the deformed coproduct ∆ on
Ŝ(g∗) ∼= U(g)∗ is given by

∆∂µ = 1⊗ ∂µ + ∂α ⊗ [∂µ, x̂α] +
1
2
∂α∂β ⊗ [[∂µ, x̂α], x̂β] + . . .

or

∆∂µ = exp(∂α⊗ad (−x̂α))(1⊗∂µ) = exp(ad(−∂α⊗ x̂α))(1⊗∂µ).
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∆(p̂µ) = F−1
L ∆0(p̂µ)FL (8)

where FL is the product of the two exponentials:

FL = exp(−∂ρ ⊗ xρ) exp(∂σ ⊗ x̂σ) (9)
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R-linear map ψ : g→ g automorphism of Lie algebra g if
[ψ(x), ψ(y)] = ψ([x, y]) what for ψ(x̂α) = x̂βMβ

α takes the form

[x̂αMα
µ, x̂βMβ

ν ] = Cγαβ x̂γMα
µMβ

ν ,

degenerate Hopf pairing Fun(Autg)⊗ U(g)→ R by

〈f,X1X2 . . .Xr〉 =

d
dtn

d
dtn−1

· · · d
dt1

f(exp(t1 ad Xn) · · · exp(tn ad X1))|t1=0,...,tn=0

At g, this can be understood as (adX)(f) as adX is a tangent
vector at Inn g ⊂ Aut g.
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CσµνMγ
σ = CγαβMα

µMβ
ν (10)

hence Autg can be identified with the affine algebraic subgroup
of the automorphism of the underlying vector subspace.
The same equation as for O !!!
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The degenerate pairing induces a left Hopf action
I: Fun(Aut(g))⊗ U(g)→ U(g)

f I D = D(1)〈f,D(2)〉

(Stojić, ZŠ) Algebra U satisfy the compatibilities with the left
H-action I and the right H-coaction ρ : x̂µ 7→ x̂ν ⊗Mν

µ (giving
β : x̂µ 7→ x̂ν]Mν

µ !!!) making U into a braided commutative
Yetter-Drinfeld module algebra.

Zoran Škoda Hopf algebroids in description of noncommutative phase spaces



YD condition where ρ(X) = X[0] ⊗ X[1], ∆(f) = f(1) ⊗ f(2).

f(1)X[0] ⊗ f(2)X[1] = f(1) I X[0] ⊗ f(2)X[1]

Braided commutativity:

X[0](X[1] I Y) = YX
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For groups and groupoids YD condition is just equivariance for
adjoint action!
YD modules are modules over DRINFELD double. Heisenberg
double an example and dual Hopf algebra an example. bc YD
module algebra A gives a Hopf A-algebroid (Lu,
Brzezinski-Militaru) H]A, ∆(h) = h(1) ⊗ h(2).
Vafa, Dixon, Jeffreys 1985 Strings on orbifolds: twisted and
multisectors and orbifold Euler characteristics. Lupercio, Uribe,
Ruan around 2000: twisted sectors correspond to work over
loop orbifold which corresponds to the inertia groupoid –
selfmorphisms as objects and conjugations as morphisms.
Hinich and independently Škoda 2003/2004: Drinfeld-Majid
center of the monoidal category of bundles over an orbifold is
equivalent to monoidal category of equivariant bundles over
inertia orbifold. Baranovsky: orbifold cohomology from cyclic
homology. antiYD modules coefficients for Hopf cyclic
homology (Rangipour et al).
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Kowalzig: YD module algebras over Hopf algebroids give
Batalin-Vilkovisky modules over Gerstenhaber algebra (graded
Poisson) (noncommutative differential calculus).
Graded Poisson: cup product and graded Poisson bracket (on
V[1])
BV module: graded module (think of forms) formal Lie
derivative L with mixed Leibniz rule and differential B satisfying
Cartan homotopy formula Lφ(x) = B(φ ∩ x)− (−1)pφ ∩ B(x)
Q: what it gives in our case ? (open)
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M – manifold. A Lie algebroid over M a smooth vector bundle
A→M with

a k-Lie bracket [, ] on the space of sections of A;
a map of vector bundles a : A→ TM, called the anchor
map, such that

[X, fY] = f[X, Y] + a(X)(f)Y

for all sections X, Y of A, f ∈ C∞(M).
More generally, let

O – a commutative algebra over R
L – a symmetric O-bimodule

One says that O is a Lie-Rinehart algebra if there is a R-linear
Lie bracket [, ] on L, and a morphism of O-modules
a : L→ DerR(O), such that

[X, fY] = f[X, Y] + a(X)(f)Y. (11)

DerR(O) Lie algebra of R-linear derivations of O.
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The universal enveloping algebra U(L) of a Lie algebroid or
Lie-Rinehart algebra is the tensor algebra TOL over module O
modulo the ideal, generated by the ideal of the relations

XY− YX = [X,Y], (12)
XfY− fXY = a(X)(f)Y. (13)

We want to repeat the construction of the Heisenberg double
Hopf algebroid Fun(Aut g)]U(g) with a Lie algebra g replaced by
a Lie algebroid or even a Lie-Rinehart algebra L.
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U(L) has a comultiplication over O inherited from TOL There is
a PBW map from the symmetric algebra over O to the universal
enveloping but is not respecting the coproduct! In presence of a
Lie algebroid connection it can be corrected. Like in Lie algebra
case.
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Choose a basis eα of ΓL as a C∞(M)-module. The
automorphism of L as a Lie algebroid is an automorphism as a
vector bundle, given by a matrix M with entries in C∞(M) such
that it commutes with the anchor map a and preserves the
bracket. In terms of M,

a(eα) = Mβ
αa(eβ)

Mα
µMβ

νCραβ −Mσ
µa(eσ)(Mρ

ν) + Mσ
ν a(eσ)(Mρ

µ) = CγαβMρ
γ

These are algebraic conditions on M and derivatives of M in the
setup of infinite-dimensional geometry over a ring C∞(M).
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We do not know how to do such differential algebra. However,
the matrix function G – if the duals of U(L)∗ and ŜO(L∗) are
properly identified via the transpose of the corrected
coexponential map – has a meaning (passing between left and
right invariant vector fields);
Therefore take the O-subalgebra generated by these matrix
elements. This enables constructions of structure maps
(including the pairing) like in Hopf algebroid (but some maps
exist only dually).
Szlachanyi’s approach known to work: extension by YD module
of commutative Hopf algebroid U(L) (over C∞(M)).
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Notice that canonical transformation of the exchange of
momenta and coordinates changes the Hopf algebroid. Phase
space Hopf algebroid knows which of the two is reflected in
algebraic and which in coalgebraic sector. Only as algebra, the
deformed and undeformed case are the same at the phase
space level, but the configuration space part differs. So Hopf
algebroid remembers the polarization and how much of the
phase space Poisson noncommutativity is squeezed into the
configuration part after the deformation quantization.

THANKS!
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