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Preliminary words

After so many excellent talks, not much is needed to motivate the
importance of Courant algebroids. Just some points:

I The current algebra of 2d WZW-models is governed by the Courant
bracket Alekseev, Strobl

I Type II supergravity can be understood as Einstein-type gravity w.r.t an
O(9, 1) × O(1, 9) structure on the generalized tangent bundle Coimbra,
Graña, Minasian, Petrini, Strickland-Constable, Waldram

I Generalizations of Courant algebroids (Leibniz algebroids) found in M-theory
Baraglia, Berman, Hull, Perry

I Notion of connections on Courant algebroids for heterotic string Jurco, Vysoky

I Poisson-Lie T-duality deals with Courant algebroids Klimcik, Ševera

I The C-brackets in double field theory/exceptional field theory are generalizations
of the Courant bracket Berman, Perry, Hohm, Hull, Zwiebach

I (Membrane) Sigma models with Courant algebroids as target are used in
deformation quantization as a route to non-associative gravity Aschieri,
Blumenhagen, Fuchs, Mylonas, Schupp, Szabo



Preliminary words

I Lie 2-algebras for higher gauge theories Jurco, Ritter, Sämann,
Schmidt, Wolf

I (Universal) sigma model for gauging along foliations has a Courant algebroid
target Chatzistavrakidis, A.D., Jonke, Strobl

I Many more aspects and authors, I apologize for being very incomplete...

We use two results as motivation for our work:

Theorem 1 (Roytenberg, Weinstein).
Sections in a Courant algebroid give rise to a sh Lie algebra structure
with vanishing n-ary maps for n > 3.

By using Poisson brackets on T ∗T [1]M, Roytenberg showed

Theorem 2 (Roytenberg).
The Courant bracket is a derived bracket.



Recall: (Pre)-NQ-manifolds and derived brackets
Motivation: An easy calculation...

Recall from Christian’s talk: Given a manifold M, consider T [1]M with
local coordinates (xµ, ξµ). Its cotangent bundle T ∗T [1]M locally has
(xµ, ξµ, pµ, ξ

∗
µ) and is Poisson:

{pµ, xν} = δνµ {ξ∗µ, ξν} = δνµ .

Let’s take the operator Q = ξµpµ, and vector fields X = Xµξ∗µ,
Y = Y νξ∗ν , then we can do the following exercise:

{
{Q,X},Y

}
=
{
{ξµpµ,X νξ∗ν},Y ρξ∗ρ

}
=
{
ξµ∂µX

νξ∗ν + X νpν ,Y
ρξ∗ρ

}
=− Y ρ∂ρX

νξ∗ν + X ρ∂ρY
νξ∗ν

= [X ,Y ]νLieξ
∗
ν .

We say, that the Lie bracket is a derived bracket (due to
Kosmann-Schwarzbach, Roytenberg, Voronov).



Recall: (Pre)-NQ-manifolds and derived brackets
Important definitions

Definition 1.
A symplectic pre-NQ-manifold of N-degree n is an N-graded manifold
M, together with symplectic form ω of degree n and a vector field Q of
degree 1, satisfying LQω = 0.

Examples

An important class where in addition Q2 = 0, are the Vinogradov Lie
n-algebroids:

Vn(M) := T ∗[n]T [1]M .

They have the following properties:

I Local coordinates (xµ, ξµ, ζµ, pµ) of degrees 0, 1, n − 1, n.

I Symplectic form ω = dxµ ∧ dpµ + dξµ ∧ dζµ
I Nilpotent vector field Q with Hamiltonian Q = ξµpµ, i.e.
{Q,Q} = 0.



Conditions for L∞-structure
A.D., Sämann

If Q2 = 0, the above brackets form an L∞ structure. In our case we want
to investigate conditions that this is also true, especially for n = 2, where
we found the following

Theorem 3.
Consider the subset of C∞(M) consisting of functions and extended
vector fiels, i.e. C∞0 (M)⊕ C∞1 (M). If the Poisson brackets and the
maps µi close on this subset, the latter is an L∞-algebra if and only if

{Q2f , g}+ {Q2g , f } =0 ,

{Q2X , f }+ {Q2f ,X} =0 ,

{{Q2X ,Y },Z}[X ,Y ,Z ] =0 ,

for all functions f , g and extended vector fields X ,Y ,Z . The notation
Q2f means {Q, {Q, f }} and the subscript [X ,Y ,Z ] means the
alternating sum over X ,Y ,Z .



The Courant bracket as a derived bracket
Roytenberg, Weinstein

For a manifold M, take V2(M). Locally, coordinates are (xµ, ξµ, ζµ, pµ)
of degrees 0, 1, 1, 2. We get

I Q = ξµpµ squares to zero.

I Extended vectors, i.e. degree 1 objects, are now the “generalized
vectors”, i.e. V = Xµζµ + αµξ

µ, W = Y µζµ + βµξ
µ.

I For f ∈ C∞(M), {Q, f } gives the de Rham differential.

I For vectors V ,W we get {{Q,V },W } − V ↔W =
[X ,Y ]µζµ + (LXβ − LYα− 1

2d(ιXβ − ιYα))µξ
µ, i.e. we get the

Courant bracket.

I µ3 (see Christian’s talk) gives the the defect to the Jacobi identity
for Courant algebroids.

So we recover generalized geometry on a Courant algebroid.



n = 2: Interpretation of the C-bracket
A.D., Sämann, Stasheff

We take the same setting as before, but instead of M as base, we take
T ∗M, i.e. we take V2(T ∗M). Local coordinates are now
(xM , ξM , ζM , pM) of degree (0, 1, 1, 2).

Problem: We now have too many “vectors”. We solve this by defining

θM := 1√
2

(ξM + ηMNζN) and βM := 1√
2

(ξM − ηMNζN) ,

and taking only θM as degree-1 coordinates. Taking

ω = dxM ∧ dpM + 1
2 ηMNdθ

M ∧ dθN , Q = θMpM ,

we get a pre-NQ-manifold (as Q doesn’t square to zero, but we have
LQω = 0 for the corresponding vector field).



n = 2: Interpretation of the C-bracket
A.D., Sämann, Stasheff

With this we get the following results:

I µ1(f ) = θM∂M f , i.e. the de Rham differential on the doubled space.

I For vectors X = XMθ
M , Y = YMθ

M we get, using
ηMNXM∂N = XN∂N etc.

µ2(X ,Y ) = (XM∂MYK−YM∂MXK− 1
2 (YM∂KXM−XM∂KYM))θK ,

i.e. the C-bracket of double field theory.

I µ3 gives the defect to the Jacobi identity of the C-bracket.



n = 2: Interpretation of the C-bracket

So locally the formulas give us double field theory,
but what about the constraints for Q2?



n = 2: Interpretation of the C-bracket
A.D., Sämann

To have a proper L∞-structure, we still have to implement the
constraints of our theorem. What are they? Let f be a function and
X = XMθ

M , Y and Z be extended vectors.

I {Q2f , g}+ {Q2g , f } = 2∂M f ηMN∂Ng = 0
This is the strong constraint.

I {Q2X , f }+ {Q2f ,X} = 2(∂MXKθ
K )ηMN∂N f = 0

This is the strong constraint for vectors and functions.

I {{Q2X ,Y },Z}[X ,Y ,Z ] = 2θK ((∂MXK )(∂MY N)ZN)[X ,Y ,Z ] = 0
Additional constraint for vectors? ...Shows up in properties of the
Riemann tensor of double field theory

So the strong constraint together with the third constraint ensure the
L∞-structure for vectors and functions.



Towards derived Riemannian geometry
Covariant derivatives

Definition 2.
An extended covariant derivative ∇ on a pre-NQ-manifold M is a
linear map from the set X (M) of extended vectors to C∞(M), such that
the image ∇X for X ∈ X (M) gives a map {∇X , ·} : X (M)→ X (M),
which satisfies

{∇fX ,Y } = f {∇X ,Y } and {∇X , fY } = {{Q,X}, f }Y + f {∇X ,Y } ,

for all functions f and extended vectors Y . For arbitrary extended tensors
extend this by the graded Leibniz rule of the Poisson bracket

{V ,W ⊗ U} := {V ,W } ⊗ U + (−1)(n−|W |)|U|W ⊗ {V ,U} ,

where V ,W ,U ∈ C∞(M) and |W | denotes the degree.



Towards derived Riemannian geometry
Covariant derivatives

Some remarks

I For any Vn, we have a Cartan calculs with generators

LX := {QX , ·} , ιX := {X , ·} , d := {Q, ·} .

Exterior covariant calculus? Work in progress...

I Pointwise, X is a vector space, so we can consider also its dual. For
torsion and curvature we use X̂ := X ⊕ X ∗.

I We also denote by π : X̂ → X the projection to the first summand.

I In the following we will deal with V1 and the restricted V2 suitable
for double field theory. In these cases, one can show that the
following functions have the right properties:

∇X =Xµpµ − XµΓρµνζρξ
ν ,

∇X =XMpM − 1
2 X

MΓMNKθ
NθK .



Towards derived Riemannian geometry
Extended torsion

Definition 3.
Let M be a pre-NQ-manifold. Given an extended connection ∇, we
define the extended torsion tensor T : ⊗3X̂ (M)→ C∞(M) for
X ,Y ,Z ∈ X̂ (M) by

T (X ,Y ,Z ) := 3AltXYZ
(

(−1)n|X |
{
X , {∇π(Y ),Z}

})
+

(−1)n(|Y |+1)

2
({X , {QZ ,Y }} − {Z , {QX ,Y }}) ,

where |X |, |Y | denote the respective degrees, π is the above defined
projection and n = 1, 2 is the degree of the underlying Vinogradov
algebroid.

With this definition, we are able to show the following results relating
extended torsion to standard ones:



Towards derived Riemannian geometry
Extended torsion

Theorem 4.
The extended torsion is C∞(M)-linear in every entry (n = 1, 2). For
M = V1(M), let X ∈ X ∗(M) and Y ,Z ∈ X (M), then the extended
torsion reduces to the torsion operator
T (X ,Y ,Z ) = 〈X ,∇YZ −∇ZY − [Y ,Z ]〉, where the bracket is the Lie
bracket of vector fields. More generally, this is true whenever we take one
element of X ∗(M) and the other two in X (M). In all other cases the
extended torsion vanishes. In case of double field theory and V2, for
extended vector fields X ,Y ,Z , the extended torsion tensor equals the
Gualtieri torsion of generalized geometry.



Towards derived Riemannian geometry
Extended curvature

Definition 4.
Let M be a pre-NQ-manifold. Given an extended connection ∇, the
extended curvature operator R : ⊗4X̂ (M)→ C∞(M) for
X ,Y ,Z ,W ∈ X̂ (M) is defined by

R(X ,Y ,Z ,W ) :=

1

2

({{
{∇X ,∇Y } − ∇µ2(X ,Y ),Z

}
,W
}
− (−1)n(Z ↔W )

+
{{
{∇Z ,∇W } − ∇{∇Z ,W}−{∇W ,Z},X

}
,Y
}
− (−1)n(X ↔ Y )

)
.

Reminder: µ2 is the C-bracket in the derived-bracket form.



Towards derived Riemannian geometry
Extended curvature

Theorem 5.
For M = V1(M), let X ,Y ,Z ∈ X (M) and W ∈ X ∗(M). Then the
extended curvature reduces to the standard curvature:

R(X ,Y ,Z ,W ) = 〈W ,∇X∇YZ −∇Y∇XZ −∇[X ,Y ]Z 〉 .

Furthermore, if X ,Y ,Z ,W ∈ X (M) or if two, three or all of X ,Y ,Z ,W
are in X ∗(M), we have R(X ,Y ,Z ,W ) = 0. Moreover, for vanishing
extended torsion, in case of double field theory the extended curvature is
the Hohm-Zwiebach curvature. In this case, C∞(M)-linearity holds by
the constraints given in theorem 3.

It is the last sentence, where the algebraic setting becomes important for
geometry.



Outlook
What we did...

We found a unifying language to describe the Lie bracket, Courant
bracket and C-bracket. The strong constraint plays a role to ensure an
L∞-structure on functions and vectors.

I In all three cases, arbitrary tensors can be defined, extended Lie
derivatives and the action of infinitesimal extended diffeomorphisms
(see Christian’s talk!)

I We are lead torwards a “derived geometry”, including torsion,
Gualtieri-torsion and Riemann tensors (so far for n = 1, 2). This is
very preliminary and still ongoing work! Math question: Is there a
general notion of torsion and curvature for any Vinogradov
algebroid?



Outlook
Open questions

I Everything was local. Global analysis? Gerbes, groupoids... What is
the global description of double field theory? T-duality?

I For higher Vinogradov algebroids Vn(M), degree n − 1-objects are

X = Xµζµ + Xµ1...µn−1ξ
µ1 · · · ξµn−1 ,

i.e. sections of TM ⊕ ∧n−1T ∗M. For n = 3, we get the easiest case
of exceptional generalized geometry, where the U-duality group is
SL(5,R). How about the other exceptional tangent bundles?

I What are torsion and Riemann tensors in exceptional generalized
geometries? Do they have a meaning in Poisson geometry on certain
Vinogradov algebroids?

I Quantization: If we can write the brackets in terms of Poisson
brackets, we can do deformation quantization!



Appendix: Remark about quantization
A.D, in discussion with J.Stasheff

In string theory/double field theory, higher derivative corrections (i.e.
corrections in the sigma model coupling α′) to the bilinear form η and
the C-bracket were computed by Hohm, Zwiebach:

〈V ,W 〉α′ = 〈V ,W 〉 − α′ ∂PVQ∂QW
P ,

[V ,W ]Kα′ = [V ,W ]KC − α′
(
∂K∂QV

P∂PW
Q − V ↔W

)
.

Idea: We constructed the C-bracket in terms of Poisson brackets. Instead
of Poisson brackets, take the star-commutator. For (M, π) with constant
π, take the standard Moyal-Weyl product for the constant Poisson
structure:

PT∗T [1]M = ∂pµ ∧ ∂xµ + ∂ζµ ∧ ∂ξµ + ∂xµ ∧ ∂ζµ + πµν∂xν ∧ ∂ξµ .



Appendix: Remark about quantization
A.D, in discussion with J.Stasheff

Theorem 6.
Let V = V µζµ + Vµξ

µ and W = W µζµ + Wµξ
µ be the lifts of two

generalized vectors to T ∗T [1]M. Then we have

1

α′
{V ,W }? = 〈V ,W 〉α′ +O((α′)2) .

Furthermore, we have

1

2(α′)2

({
{Q,V }∗,W

}∗ − {{Q,W }∗,V}∗) = [V ,W ]α′ +O((α′)2) ,

i.e. the α′-deformations encountered in string theory can be understood
in terms of appropriate star commutators.


	Preliminary words
	Recall: (Pre)-NQ-manifolds and derived brackets
	Courant bracket
	C-bracket

	Towards derived Riemannian geometry
	Outlook
	Appendix: Remark about quantization

