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Preliminary words

After so many excellent talks, not much is needed to motivate the
importance of Courant algebroids. Just some points:

>

>

The current algebra of 2d WZW-models is governed by the Courant
bracket ALEKSEEV, STROBL

Type Il supergravity can be understood as Einstein-type gravity w.r.t an
0(9,1) x O(1,9) structure on the generalized tangent bundle COIMBRA,
GRANA, MINASIAN, PETRINI, STRICKLAND-CONSTABLE, WALDRAM

Generalizations of Courant algebroids (Leibniz algebroids) found in M-theory
BARAGLIA, BERMAN, HULL, PERRY

Notion of connections on Courant algebroids for heterotic string JURCO, VYSOKY
Poisson-Lie T-duality deals with Courant algebroids KLIMCIK, SEVERA

The C-brackets in double field theory/exceptional field theory are generalizations
of the Courant bracket BERMAN, PERRY, HOHM, HULL, ZWIEBACH

(Membrane) Sigma models with Courant algebroids as target are used in
deformation quantization as a route to non-associative gravity ASCHIERI,
BLUMENHAGEN, FUucHS, MYLONAS, SCHUPP, SZABO



Preliminary words

> Lie 2-algebras for higher gauge theories Jurco, RITTER, SAMANN,
ScHMIDT, WOLF

» (Universal) sigma model for gauging along foliations has a Courant algebroid
target CHATZISTAVRAKIDIS, A.D., JONKE, STROBL

» Many more aspects and authors, | apologize for being very incomplete...
We use two results as motivation for our work:

Theorem 1 (Roytenberg, Weinstein).

Sections in a Courant algebroid give rise to a sh Lie algebra structure
with vanishing n-ary maps for n > 3.

By using Poisson brackets on T*T[1]M, Roytenberg showed
Theorem 2 (Roytenberg).

The Courant bracket is a derived bracket.



Recall: (Pre)-NQ-manifolds and derived brackets

Motivation: An easy calculation...

Recall from Christian’s talk: Given a manifold M, consider T[1]M with
local coordinates (x*,£*). Its cotangent bundle T* T[1]M locally has
(x“,gl‘,pu,g;) and is Poisson:

{pu:x"} =0, {&,,6"} =0y

Let's take the operator Q = £#p,,, and vector fields X = X*&7,
Y = Y&, then we can do the following exercise:

{te.xp v} ={{emuxer vee |
={ga.x¢ +X"p,. Y05}
= — YPO,XVE + XPD,YVES
=XVl

We say, that the Lie bracket is a derived bracket (due to
KOSMANN-SCHWARZBACH, ROYTENBERG, VOI{OI\'O\").



Recall: (Pre)-NQ-manifolds and derived brackets

Important definitions

Definition 1.

A symplectic pre-NQ-manifold of N-degree n is an N-graded manifold
M, together with symplectic form w of degree n and a vector field Q of
degree 1, satisfying Low = 0.

Examples
An important class where in addition Q% = 0, are the Vinogradov Lie
n-algebroids:
V(M) := T*[n| T[1]M .

They have the following properties:

> Local coordinates (x*,£*, (., pu) of degrees 0,1,n—1, n.

» Symplectic form w = dx* A dp,, + d§* A d(,

> Nilpotent vector field @ with Hamiltonian Q = £#p,,, i.e.

{Q,9} =0.



Conditions for L.-structure

A.D., SAMANN

If Q% =0, the above brackets form an L., structure. In our case we want
to investigate conditions that this is also true, especially for n = 2, where
we found the following

Theorem 3.

Consider the subset of C*°(M) consisting of functions and extended
vector fiels, i.e. C°(M) @ Cs°(M). If the Poisson brackets and the
maps (i; close on this subset, the latter is an L.-algebra if and only if

{Q*f. g} +{Q%, f} =0,
{Q°X, f} +{Q°f, X} =0,
{{Q2X7 Y}7 Z}[X,Y,Z] =0 )
for all functions f, g and extended vector fields X, Y ,Z. The notation

Q*f means {Q,{Q, f}} and the subscript [X, Y, Z] means the
alternating sum over X, Y, Z.



The Courant bracket as a derived bracket

ROYTENBERG, WEINSTEIN

For a manifold M, take V,(M). Locally, coordinates are (x*, &, Cu, pp)
of degrees 0,1,1,2. We get
> Q= &M p, squares to zero.
» Extended vectors, i.e. degree 1 objects, are now the “generalized
vectors”, i.e. V = X*(, + a8t W = YH(, + B.EH.
» For f € C*(M), {Q, f} gives the de Rham differential.
» For vectors V, W we get {{Q,V}, W} -V & W =
X, Y]#Cu + (LxB — Lya — 3d(1xB — tya)),£", ie. we get the
Courant bracket.
» 13 (see Christian's talk) gives the the defect to the Jacobi identity
for Courant algebroids.

So we recover generalized geometry on a Courant algebroid.



n = 2: Interpretation of the C-bracket

A.D., SAMANN, STASHEFF

We take the same setting as before, but instead of M as base, we take
T*M, i.e. we take V2(T*M). Local coordinates are now
(XM7 EMa CM? pM) of degree (07 17 13 2)

Problem: We now have too many ‘“vectors”. We solve this by defining
oM = (M 4 M) and BM = (M — Ve
and taking only 8™ as degree-1 coordinates. Taking
w= dx" Adpm + 2 nundd AdON, Q= 6Mpy,

we get a pre-NQ-manifold (as Q doesn't square to zero, but we have
Low = 0 for the corresponding vector field).



n = 2: Interpretation of the C-bracket

A.D., SAMANN, STASHEFF

With this we get the following results:
> n1(f) = OMOyf, i.e. the de Rham differential on the doubled space.
» For vectors X = Xy 0M, Y = Y™ we get, using
HMNXM(?N = XNaN etc.
12(X, Y) = (XMop Y = YMOuXk — 3 (YMOk X — XMk Yin))0"

i.e. the C-bracket of double field theory.
> u3 gives the defect to the Jacobi identity of the C-bracket.



n = 2: Interpretation of the C-bracket

So locally the formulas give us double field theory,
but what about the constraints for Q*?



n = 2: Interpretation of the C-bracket

A.D., SAMANN

To have a proper L,-structure, we still have to implement the
constraints of our theorem. What are they? Let f be a function and
X = Xu6M, Y and Z be extended vectors.
> {Q%f, g} +{Q%. f} = 20muf n""ong = 0
This is the strong constraint.
» {Q%X, )+ {Q%F, X} = 2(0mXx0MNoyf = 0
This is the strong constraint for vectors and functions.
> {({Q@°X, Y}, Z ix,v.z1 = 205 ((0M Xk)(Om YN) ZN)ix,v,2) = O
Additional constraint for vectors? ...Shows up in properties of the
Riemann tensor of double field theory

So the strong constraint together with the third constraint ensure the
L o-structure for vectors and functions.



Towards derived Riemannian geometry

Covariant derivatives

Definition 2.

An extended covariant derivative V on a pre-N Q-manifold M is a
linear map from the set X (M) of extended vectors to C*°(M), such that
the image Vx for X € X(M) gives a map {Vx, -} : X(M) = X (M),
which satisfies

{Ve, Y} = H{Vx, Y} and {Vx, Y} = {{Q X}, f}Y+{Vx, Y},

for all functions f and extended vectors Y. For arbitrary extended tensors
extend this by the graded Leibniz rule of the Poisson bracket

{(V,WaU}:={V, W} U+ (-1)Wlllw g {v, U},

where V., W, U € C*(M) and |W| denotes the degree.



Towards derived Riemannian geometry

Covariant derivatives

Some remarks
» For any V,, we have a Cartan calculs with generators

Lx ::{QXa'}a Lx ::{Xa'}7 d:{Q’}

Exterior covariant calculus? Work in progress...

» Pointwise, X" is a vector space, so we can consider also its dual. For
torsion and curvature we use X ;= X @ X'*.

» We also denote by 7 : X — X the projection to the first summand.
> In the following we will deal with V; and the restricted V), suitable
for double field theory. In these cases, one can show that the
following functions have the right properties:
Vx =Xtp, — XHT? 06",

Vx =XMpy — L XMy 0V6"



Towards derived Riemannian geometry

Extended torsion

Definition 3.

Let M be a pre-NQ-manifold. Given an extended connection V, we
define the extended torsion tensor T : @3X (M) — C=(M) for
X,Y,Z e X(M) by

T(X, Y, 2) = 3 Alterz (-1 { X, {Vo01, 2} })

(_1)n(\Y|+1)

* 2

({X7 {QZ, Y}} - {Z? {QX? Y}}) 3
where | X|,|Y| denote the respective degrees, m is the above defined
projection and n = 1,2 is the degree of the underlying Vinogradov
algebroid.

With this definition, we are able to show the following results relating
extended torsion to standard ones:



Towards derived Riemannian geometry

Extended torsion

Theorem 4.

The extended torsion is C*°(M)-linear in every entry (n=1,2). For
M=V (M), let X € X*(M) and Y,Z € X (M), then the extended
torsion reduces to the torsion operator

T(X,Y,Z)=(X,VyZ—-NzY —[Y,Z]), where the bracket is the Lie
bracket of vector fields. More generally, this is true whenever we take one
element of X*(M) and the other two in X(M). In all other cases the
extended torsion vanishes. In case of double field theory and V,, for
extended vector fields X, Y, Z, the extended torsion tensor equals the
Gualtieri torsion of generalized geometry.



Towards derived Riemannian geometry

Extended curvature

Definition 4.
Let M be a pre-NQ-manifold. Given an extended connection V, the

extended curvature operator R : @*X (M) = C®(M) for
X,Y,Z,W € B(M) is defined by

RX,Y,Z, W) :=
1 n
5({{{VX’VY} = Vi) 2}, W} —(=D)"(Z = W)
+ {{{VZ’VW} — Vv wi—{vw.z} X} Y} —(-1)"(X « Y)) .

Reminder: p, is the C-bracket in the derived-bracket form.



Towards derived Riemannian geometry

Extended curvature

Theorem 5.
For M =Vi(M), let X,Y,Z € X(M) and W € X*(M). Then the
extended curvature reduces to the standard curvature:

R(X,Y,Z, W)= (W,VxVyZ -~ VyVxZ -~ Vixy|Z) -

Furthermore, if X,Y,Z,W € X(M) or if two, three or all of X, Y, Z, W
are in X*(M), we have R(X,Y,Z, W) = 0. Moreover, for vanishing
extended torsion, in case of double field theory the extended curvature is
the Hohm-Zwiebach curvature. In this case, C*°(M)-linearity holds by
the constraints given in theorem 3.

It is the last sentence, where the algebraic setting becomes important for
geometry.



Outlook

What we did...

We found a unifying language to describe the Lie bracket, Courant
bracket and C-bracket. The strong constraint plays a role to ensure an
Lo-structure on functions and vectors.

> In all three cases, arbitrary tensors can be defined, extended Lie
derivatives and the action of infinitesimal extended diffeomorphisms
(see Christian’s talk!)

» We are lead torwards a “derived geometry”, including torsion,
Gualtieri-torsion and Riemann tensors (so far for n =1,2). This is
very preliminary and still ongoing work! Math question: Is there a
general notion of torsion and curvature for any Vinogradov
algebroid?



Outlook

Open questions

» Everything was local. Global analysis? Gerbes, groupoids... What is
the global description of double field theory? T-duality?

» For higher Vinogradov algebroids V,(M), degree n — 1-objects are
X = XHCN + XN1~~Nn—1£ILl o ,5/%-1 )

i.e. sections of TM @ A" T*M. For n = 3, we get the easiest case
of exceptional generalized geometry, where the U-duality group is
SL(5,R). How about the other exceptional tangent bundles?

» What are torsion and Riemann tensors in exceptional generalized
geometries? Do they have a meaning in Poisson geometry on certain
Vinogradov algebroids?

» Quantization: If we can write the brackets in terms of Poisson
brackets, we can do deformation quantization!



Appendix: Remark about quantization

A.D, IN DISCUSSION WITH J.STASHEFF

In string theory/double field theory, higher derivative corrections (i.e.
corrections in the sigma model coupling o) to the bilinear form 1 and
the C-bracket were computed by Houwm, Zwiesack:

(V, W) = (V,W) — o dpVWF |
[V WIE = [V, WIE = o' (050 vPapW @ — v & W) .

Idea: We constructed the C-bracket in terms of Poisson brackets. Instead
of Poisson brackets, take the star-commutator. For (M, ) with constant
7, take the standard Moyal-Weyl product for the constant Poisson
structure:

PT* TIymM = 8,,“ A axu + 8@ A agu + 8Xu A 8@‘“ + w“"@xu A 8@ .



Appendix: Remark about quantization

A.D, IN DISCUSSION WITH J.STASHEFF

Theorem 6.
Let V = VH(, 4+ V,,&" and W = WH(, + W,E" be the lifts of two
generalized vectors to T* T[1]M. Then we have

LIV = (V W)a +O((@)).

Furthermore, we have

s (VY WY = ({Qwy V') = V. Wl + O((@)).

i.e. the o’-deformations encountered in string theory can be understood
in terms of appropriate star commutators.
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