T-fects: Near-core corrections and description in Doubled spaces

Valentí Vall Camell
Ludwig Maximilians Universität, Max Planck Institut für Physik
München

Based on $1508.01193+1706.00835$ with D. Lüst, S. Massai and E. Plauschinn

Recent advances in T/U-dualities and Generalized Geometries. Zagreb, June 6th-9th, 2017

Motivation and Summary

- Some $C Y_{2}$ manifolds can be locally described as nontrivial T^{2} meromorphic fibrations.
- Non-trivial fibrations on a compact base \Rightarrow degeneration points.
- These manifolds admit non-geometric modifications (monodromies in the T-duality group). [Font,Garcia-Etxebarria,Lüst,Massai,Mayrhofer]
- T-fects:
- Local descriptions of such degenerations.
- (Flat-) T^{2} fibration breaks down close to the degeneration.

Structure of the talk

(1) T^{2} fibrations and T -fects.
(3) Special cases: NS5 \rightarrow KK-monopole \rightarrow Q-brane.

Description, corrections and T-duality.
(3) T-fects and corrections in Double spaces.
T^{2} fibrations (semi-flat approximation)
Moduli space of T^{2} with metric g and B-field B

$$
\frac{O(2,2, \mathbb{R})}{O(2, \mathbb{R}) \times O(2, \mathbb{R})} / O(2,2, \mathbb{Z})
$$

Parametrising the moduli space

The moduli space can be parametrised by 2 complex parameters:

$$
\text { Complex structure of the torus: } \tau=\frac{g_{12}}{g_{22}}+i \frac{\sqrt{\operatorname{det} g}}{g_{22}}
$$

Kähler structure of the torus: $\rho=B_{12}+i \sqrt{\operatorname{det} g}$
In this language:

$$
O(2,2)=S L(2)_{\tau} \times S L(2)_{\rho} \times \mathbb{Z}_{2}^{\tau \leftrightarrow \rho} \times \mathbb{Z}_{2}^{\tau \leftrightarrow-\bar{\rho}}
$$

SL($2, \mathbb{Z}$) acts on τ (and ρ) as Möbius transformations: $\tau^{\prime}=\frac{a \tau+b}{c \tau+d}$.

T^{2} fibrations

- We let the torus moduli vary along the base.
- Semi-flat ansatz: $\left[\tau=\tau(z, \bar{z})=\tau_{1}+i \tau_{2} \mid \rho=\rho(z, \bar{z})=\rho_{1}+i \rho_{2}\right]$

$$
\begin{array}{rlrl}
d s^{2} & =e^{2 \phi(z, \bar{z})} \rho_{2} \tau_{2} d z d \bar{z}+\frac{\rho_{2}}{\tau_{2}}\left|d \xi^{2}+\tau d \xi^{1}\right|^{2} \\
B & =\rho_{1} d \xi^{1} \wedge d \xi^{2} & \text { [Hellerman,McGreevy,Williams] }
\end{array}
$$

- If τ anf ρ are meromorphic functions of the base and $\nabla^{2} \phi=0$ \Rightarrow Configurations are 1/2- (or 1/4-) BPS (solutions of SUGRA e.o.m.).

T-fects

Monodromies

Ansatz:

$$
\begin{array}{r}
\tau(r, \theta)=e^{\theta \mathbf{m}_{\tau}}\left[\tau_{0}(r)\right] \\
\text { with } e^{\mathbf{m}_{\tau}}=M_{\tau} \in S L(2, \mathbb{Z})_{\tau} .
\end{array}
$$

$$
\text { (same for } \rho \text {) }
$$

The function $\tau_{0}(r)$ is fixed (up to constants) by Cauchy-Riemann equations.

- Embedding the solution into $10 \mathrm{D} \Rightarrow$ Transversal spaces of five-branes.
- Constructed for any monodromy in $S L(2, \mathbb{Z})_{\tau} \times S L(2, \mathbb{Z})_{\rho}$. Classified in terms of $S L(2, \mathbb{Z})$ conjugacy classes.
- $M_{\tau} \Leftrightarrow$ geometric (τ-fects). $M_{\rho} \Leftrightarrow$ non-geometric (ρ-fects).
- They have logarithmic divergences.

To construct global models several T-fects are needed.

- Semi-flat approximation breaks down close to the degeneration.

In some cases we know how to add corrections by hand.

Case I: The I_{1} degeneration.

Monodromy: $\tau \rightarrow \tau+1$

$$
\tau(z)=i \log (\mu / z)
$$

$$
\begin{aligned}
d s^{2}= & h(r)\left(d r^{2}+r^{2} d \theta+\left(d \xi^{1}\right)^{2}\right) \\
& +\frac{1}{h(r)}\left(d \xi^{1}+\theta d \xi^{2}\right)^{2}
\end{aligned}
$$

with $h(r)=\log (\mu / r), \mu=$ constant.

Dehn twist

Monodromy for $\theta \rightarrow \theta+1$:

$[u],[v]$ basis for $\pi_{1}\left(T^{2}\right)$

$$
\begin{aligned}
& {[u] \rightarrow[u]} \\
& {[v] \rightarrow[v]+[u]}
\end{aligned}
$$

Coordinate transformations:

$$
\xi^{1} \rightarrow \xi^{1}, \quad \xi^{2} \rightarrow \xi^{2}-\xi^{1}
$$

- Logarithmic behaviour.

The euclidian Taub-NUT space (KK-monopole)

$$
d s^{2}=h(|\vec{x}|)|d \vec{x}|^{2}+\frac{1}{h(|\vec{x}|)}\left(d \xi^{2}+\omega\right)^{2}
$$

with $|\vec{x}| \in \mathbb{R}^{3}$ and $\xi^{2} \sim \xi^{2}+2 \pi$.

- $h(|\vec{x}|)=1+\frac{1}{2|\vec{x}|}$.
- $d \omega=\star_{3} d h$.

The KK-monopole on S^{1} and the smearing limit.

$$
h\left(r, \xi^{1}\right)=1+\sum_{n \in \mathbb{Z}} \frac{1}{2 \sqrt{r^{2}+\left(\xi^{1}+2 \pi n\right)^{2}}}=\underbrace{\log (\mu / r)}_{\text {semiflat term }}+\sum_{k \neq 0} \underbrace{K_{0}(|k| r)}_{\sim e^{-|k| r \rightarrow 0, r \gg 1}} e^{i k \xi^{1}}
$$

Strings trajectories in the semiflat limit.
Momentum $\left(n^{i}\right) /$ winding $\left(m^{i}\right)$ change under $\theta \rightarrow \theta+1$:

$$
\begin{aligned}
&\left(n^{1}, n^{2}\right) \rightarrow\left(n^{1}+n^{2}, n^{2}\right) \\
&\left(m^{1}, m^{2}\right) \rightarrow\left(m^{1}, m^{2}-m^{1}\right) \\
& m^{1} \text { and } n^{2} \text { not conserved. }
\end{aligned}
$$

Example: unwinding trajectory

- Isometry along ξ^{1} is broken by the corrections to the semiflat limit.

Zero modes

- Shift along ξ^{1}. Corrections localise the shrinking cycle around ξ_{0}^{1}.
- Dyonic collective coordinate α : $B=\alpha d \Lambda, d \Lambda$ self-dual 2-form

$$
\begin{equation*}
\Lambda=\frac{1}{h(r)}\left(d \xi^{2}+\theta d \xi^{1}\right) \tag{Sen}
\end{equation*}
$$

Case II: The (smeared) NS5 brane

Monodromy: $\rho \rightarrow \rho+1$

$$
\rho(z)=i \log (\mu / z)
$$

- No twistings.
- Constant volume fiber.
- Non-trivial B-field, glued with a gauge transformation: $B \rightarrow B+$ constant.

NS5 brane solution

$$
\begin{aligned}
d s^{2} & =h\left(\left|x^{i}\right|\right) d x^{i} d x_{i}, x^{i} \in \mathbb{R}^{4} \\
e^{2 \phi} & =h\left(\left|x^{i}\right|\right), H=x_{4} d h\left(\left|x^{i}\right|\right),
\end{aligned}
$$

$$
h\left(\left|x^{i}\right|\right)=1+\frac{1}{\left|x^{i}\right|^{2}}
$$

Compactifying on a T^{2} and smearing

$$
\begin{aligned}
h\left(r, \xi^{1} \xi^{2}\right) & =1+\sum_{\vec{n} \in \mathbb{Z}^{2}} \frac{1}{r^{2}+\left(\xi^{1}+2 \pi n_{1}\right)^{2}+\left(\xi^{2}+2 \pi n_{2}\right)^{2}} \\
& =\underbrace{\log (\mu / r)}_{\text {semiflat term }}+\sum_{\vec{k} \in\left(\mathbb{Z}^{2}\right)^{*}} \underbrace{K_{0}(|k| r)}_{\sim e^{-|\vec{k}| r} \rightarrow 0, r \gg 1} e^{i\left(k_{1} \xi^{1}+k_{2} \xi^{2}\right)}
\end{aligned}
$$

Strings trajectories in the semiflat

 limit.Momentum $\left(n^{i}\right) /$ winding $\left(m^{i}\right)$ change under $\theta \rightarrow \theta+1$:

$$
\begin{aligned}
& \quad\left(n^{1}, n^{2}\right) \rightarrow\left(n^{1}+m^{2}, n^{2}-m^{1}\right) \\
&\left(m^{1}, m^{2}\right) \rightarrow\left(m^{1}, m^{2}\right) \\
& n^{i} \text { 's are not conserved. }
\end{aligned}
$$

- Isometries along $\left(\xi^{1}, \xi^{2}\right)$ are broken by the corrections to the semiflat limit.

T-duality in the semi-flat region.

The presence of isometries in the semi-flat region allows dualisation.
(Smeared) NS5 $\leftrightarrow I_{1}$ degeneration (KK-monopole):

- $\rho(z) \leftrightarrow \tau(z)$. Or equivalently by gauging ξ^{2}-isometry (Buscher rules).
- $m^{2} \leftrightarrow n^{2}$.
- Non-vanishing α in the KK-monopole is mapped to a shift along ξ^{2}.

T-duality of massive modes

Corrections to the smearing limit in the NS5 brane

$$
\mathcal{C}_{k_{1}, k_{2}} \sim e^{-\lambda r} e^{i\left(\frac{k_{1} \xi^{1}}{k_{1}}+\frac{k_{2} \xi^{2}}{R_{2}}\right)}, \quad \text { with } \lambda^{2}=\left(\frac{k_{1}}{R_{1}}\right)^{2}+\left(\frac{k_{2}}{R_{2}}\right)^{2}
$$

$R_{i} \rightarrow$ Compactification radii. If $R_{i} \gg R_{j}$ (Direction j is smeared):

$$
\mathcal{C}_{k_{1}, k_{2}} \sim \mathcal{C}_{k_{i}}=\mathcal{C}_{k_{i}, k_{j}=0} \sim e^{-k_{i} r} e^{i \frac{k_{i} \xi_{i}^{i}}{R_{i}}}
$$

T-duality NS5 \rightarrow KK-monopole

- $\mathcal{C}_{k_{1}} \rightarrow \mathcal{C}_{k_{1}}$. Modes localising the shrinking cycle.
- $\mathcal{C}_{k_{2}} \rightarrow \tilde{\mathcal{C}}_{k_{2}} \sim e^{-k_{2} r} e^{j \frac{k_{2} \tilde{\xi}_{2}}{\mathcal{K}_{2}}}$.
$\left(\tilde{\xi}=\xi_{L}-\xi_{R}\right)$
[Gregory, Harvey, Moore]
Checked (for big r) by world-sheet instantons techniques.
[Harvey, Jensen]
- General case: $\mathcal{C}_{k_{1}, k_{2}} \rightarrow \mathcal{C}_{k_{1}, \tilde{k}_{2}} \sim e^{-\lambda r} e^{i\left(\frac{k_{1} \xi^{1}}{R_{1}}+\frac{k_{2} \tilde{\varepsilon}_{2}}{R_{2}}\right)}$
- $\tilde{\xi}_{2}$ dual (winding) coordinate \leftrightarrow Dyonic coordinate α.

Case III: T-fold

Apply to the NS5 a fiberwise $S L(2, \mathbb{Z})$ rotation: $\rho(z) \rightarrow-1 / \rho(z)$

$$
\begin{aligned}
& \text { Monodromy: } \\
& -\frac{1}{\rho} \rightarrow-\frac{1}{\rho}+1
\end{aligned}
$$

$$
\rho(z)=\frac{i}{\log (\mu / z)}
$$

The Q-brane background (52 brane)
[de Boer,Sigemori; Haßler,Lüst]

$$
\begin{aligned}
d s^{2} & =h(r)\left(d r^{2}+r^{2} d \theta\right)+\frac{h(r)}{h(r)^{2}+\theta^{2}}\left[\left(d \xi^{1}\right)^{2}+\left(d \xi^{2}\right)^{2}\right] \\
B & =-\frac{\theta}{h(r)^{2}+\theta^{2}} d \xi^{1} \wedge d \xi^{2}, \quad \text { with } h(r)=\log (\mu / r)
\end{aligned}
$$

- Volume of the fiber: $V_{T^{2}}(\theta+1) \neq V_{T^{2}}(\theta) \Rightarrow$ Non-geometric.

Strings trajectories in the semiflat limit.

Momentum $\left(n^{i}\right) /$ winding $\left(m^{i}\right)$:

$$
\begin{aligned}
\left(n^{1}, n^{2}\right) & \rightarrow\left(n^{1}, n^{2}\right) \\
\left(m^{1}, m^{2}\right) & \rightarrow\left(m^{1}+n^{2}, m^{2}-n^{1}\right)
\end{aligned}
$$

m^{i} 's are not conserved

Zero modes

Under T-duality:

$\frac{\text { NS5 }}{\text { Shifts }} \rightarrow \frac{\text { Q-brane }}{\text { Gauge }}$| transformations |
| :--- |

\Rightarrow Two dyonic coordinates.

T-duality of massive modes

See that under the duality $\rho \leftrightarrow-1 / \rho: \vec{m} \leftrightarrow \vec{n}$.

$$
\mathcal{C}_{k_{1}, k_{2}} \rightarrow \tilde{\mathcal{C}}_{k_{1}, k_{2}} \sim e^{-\lambda r} e^{i\left(\frac{k_{1} \tilde{\xi}_{1}}{R_{1}}+\frac{k_{2} \tilde{\xi}_{2}}{R_{2}}\right)}
$$

Consistent with the argumentations before.

- Dual (winding) coordinates \leftrightarrow dyonic coordinates.

T-fects in Double spaces

Embedding $S L(2)$ monodromies into $S O(2,2)$

$$
\begin{array}{ll}
\frac{A_{\rho}: \rho \rightarrow \rho+1}{} & \left.\frac{A_{\tau}: \tau \rightarrow \tau+1}{\left(\begin{array}{ll|ll}
1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 \\
\hline 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),} \quad \begin{array}{cc|cc}
B_{\rho}:-1 / \rho \rightarrow-1 / \rho+1 \\
\hline 0 & 1 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right),
\end{array}
$$

Factorised dualities in $O(2,2)$
Element $e_{i} \Leftrightarrow$ Buscher procedure along direction i.

$\underline{e_{2}: \tau \leftrightarrow \rho}$	
$\left(\begin{array}{ll\|ll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$,	$e_{1}: \tau \leftrightarrow-1 / \rho$ 0 0$\|$1 0
0	1

See that: $A_{\tau}=e_{2}^{T} A_{\rho} e_{2}, \quad B_{\rho}=e_{1}^{T} A_{\tau} e_{1}=e^{T} A_{\rho} e \ldots$

- We describe T-fects as T^{4} fibrations by noticing $S O(2,2) \subset S L(4)$. (Following the formalism used in [Hull,Reid-Edwards]).
- Extra toroidal coordinates, $\left(\tilde{\xi}_{1}, \tilde{\xi}_{2}\right) \Leftrightarrow$ winding coordinates.
- For all τ - and ρ - fects, the T^{4} factorises into $T^{2} \times T^{2}$.

Ricci-flat $T^{2} \times T^{2}$ semi-flat fibration

$$
d s^{2}=e^{2 \chi} \tau_{2} \tilde{\tau}_{2} d z d \bar{z}+\frac{1}{\tau_{2}}\left|d \xi^{2}+\tau d \xi^{1}\right|^{2}+\frac{1}{\tilde{\tau}_{2}}\left|d \tilde{\xi}_{2}+\tilde{\tau} d \tilde{\xi}_{1}\right|^{2}
$$

with $\tau(z), \tau(z)$ meromorphic functions of the base. $\nabla^{2} \chi=0$.

- $O(2,2)$ structure $\Rightarrow \tilde{\tau}=-1 / \tau$.
- Describes τ-fects. Metrics for ρ-fects are obtained by $\xi^{i} \leftrightarrow \tilde{\xi}_{i}$.
- $I_{1} \times I_{1}$ degeneration?

Corrections to the semi-flat limit not known.

- Global issues need further investigation. Naively, too many degenerations are obtained.

Next, this fibrations are studied within Double Field Theory.

General DFT facts

- Coordinate content: $X^{M}=\left(x^{i}, \tilde{x}_{i}\right)$. Momentum dual to \tilde{x}_{i} is winding.
- We combine g and B into an $O(d, d)$ tensor called "generalised metric"

$$
\mathcal{H}=\left(\begin{array}{cc}
g-B g^{-1} B & B g^{-1} \\
-g^{-1} B & g^{-1}
\end{array}\right)
$$

For a T^{2}, \mathcal{H} coincides with the metric obtained by embedding $S L(2)_{\tau, \rho} \subset S O(2,2) \subset S L(4)$.

- DFT background-independent action: $S=\int d X^{M} e^{-2 \Phi} \mathcal{R}(\mathcal{H})$ $\mathcal{R}(\mathcal{H})$ "generalised Ricci scalar".
- Closure of the algebra \Rightarrow strong constraint: $\partial_{M} \partial^{M} \ldots=0$
- Strong constraint \Leftrightarrow the fields depend only on half of the coordinates. Independence on $\tilde{x}_{i} \Leftrightarrow$ SUGRA. Independence on $x^{i} \Leftrightarrow$ isometry.
- DFT generalised duality: to all DFT configuration one can apply transformations of the type $x^{i} \leftrightarrow \tilde{x}_{i}$ and obtain another DFT solution.

T-fects in DFT

T-fects as DFT solutions.
$" d s_{D F T}^{2} "=\mathcal{H}_{M N} d \xi^{M} d \xi^{N}=e^{2 \phi} \tau_{2} d z d \bar{z}+\frac{1}{\tau_{2}}\left|d \xi^{2}+\tau d \xi^{1}\right|^{2}+\frac{1}{\tilde{\tau}_{2}}\left|d \tilde{\xi}_{2}+\tilde{\tau} d \tilde{\xi}_{1}\right|^{2}$ with $\tau(z)=-1 / \tilde{\tau}(z)$ meromorphic functions of the base and $\nabla^{2} \phi=0$.

- Same fiber as the T^{4} fibration, different base pre-factor.
- \mathcal{H} is not a metric. Interpreted as such it is not Ricci-flat.
- It is a solution of DFT equations of motion. (It is "generalised-Ricci-flat")
- The coordinates on the base can be formally doubled and then \mathcal{H} is an $O(d, d)$ matrix.

Corrections and generalised duality

- Consider corrections to the smearing limit of the NS5, uplift it to DFT and apply generalised duality.
- The result is a solution of the DFT e.o.m. that reproduce the discussed corrections.

B-field for the localised NS5 $\left[h=\log (\mu / r)+\sum_{k_{1}, k_{2}} \mathcal{C}_{k_{1}, k_{2}}\left(r, \xi^{1}, \xi^{2}\right)\right]$:

- Gauge choice: $B=\theta d \xi^{1} \wedge d \xi^{2}+\Pi_{1} d \theta \wedge d \xi^{1}+\Pi_{2} d \theta \wedge d \xi^{2}$
- $\Pi_{i}=\Pi_{i}\left(r, \xi^{1}, \xi^{2}\right)$ and $d B=\star_{4} d h$. $\Pi_{i} \rightarrow 0$ for $r \gg 1$

The localised KK-monopole

$$
\begin{aligned}
d s^{2} & =\tilde{h}\left[d r^{2}+r^{2} d \theta^{2}+\left(d \xi^{1}\right)^{2}\right]+\frac{1}{\tilde{h}}\left[d \xi^{2}+\theta d \xi^{1}+\tilde{\Pi}_{2} d \theta\right]^{2} \\
B & =\tilde{\Pi}_{1} d \theta \wedge d \xi^{1}, \quad \text { with } \tilde{h}=h\left(r, \xi^{1}, \tilde{\xi}_{2}\right), \tilde{\Pi}_{i}=\Pi_{i}\left(r, \xi^{1}, \tilde{\xi}_{2}\right)
\end{aligned}
$$

The localised Q-brane

$$
\begin{aligned}
d s^{2} & =\tilde{h}\left[d r^{2}+r^{2} d \theta^{2}\right]+\frac{\tilde{h}}{\tilde{h}^{2}+\theta^{2}}\left[\left(d \xi^{1}+\tilde{\Pi}_{1} d \theta\right)^{2}+\left(d \xi^{2}+\tilde{\Pi}_{2} d \theta\right)^{2}\right] \\
B & =\frac{-\theta}{\tilde{h}^{2}+\theta^{2}}\left(d \xi^{1}+\tilde{\Pi}_{1} d \theta\right) \wedge\left(d \xi^{2}+\tilde{\Pi}_{2} d \theta\right)
\end{aligned}
$$

with $\tilde{h}=h\left(r, \tilde{\xi}_{1}, \tilde{\xi}_{2}\right), \tilde{\Pi}_{i}=\Pi_{i}\left(r, \tilde{\xi}_{1}, \tilde{\xi}_{2}\right)$
DFT equations of motion explicitly checked.

Conclusions

- We describe T^{2} fibrations and T-fects. Local descriptions can be constructed for any monodromy in $S L(2, \mathbb{Z})_{\tau} \times S L(2, \mathbb{Z})_{\rho}$
- We describe corrections to the duality chain: NS5 brane \rightarrow KK-monopole \rightarrow Q-brane.
- Winding modes are crucial to understand near-core physics.

Winding non-conservation \Leftrightarrow dual-coordinates dependence \Leftrightarrow Dyonic modes

- Winding physics is not catured by supergravity.

Dual-coordinate dependent corrections can only be seen by string-like objects.

- We construct new DFT solutions that capture these corrections
- Open questions:
- How is this discussion generalised to any monodromy (outside geometric orbit)?
- What happens with the strong constraint in the general case?

