T-fects: Near-core corrections and description in Doubled spaces

Valentí Vall Camell

Ludwig Maximilians Universität, Max Planck Institut für Physik München

Based on 1508.01193 + 1706.00835 with D. Lüst, S. Massai and E. Plauschinn

Recent advances in T/U-dualities and Generalized Geometries. Zagreb, June 6th-9th, 2017

Motivation and Summary

- Some CY_2 manifolds can be locally described as nontrivial T^2 meromorphic fibrations.
- Non-trivial fibrations on a compact base \Rightarrow degeneration points.
- These manifolds admit non-geometric modifications (monodromies in the T-duality group). [Font,Garcia-Etxebarria,Lüst,Massai,Mayrhofer]
- T-fects:
 - Local descriptions of such degenerations.
 - (Flat-) T^2 fibration breaks down close to the degeneration.

Structure of the talk

- T^2 fibrations and T-fects.
- T-fects and corrections in Double spaces.

T^2 fibrations (semi-flat approximation)

Moduli space of T^2 with metric g and B-field B $\frac{O(2,2,\mathbb{R})}{O(2,\mathbb{R}) \times O(2,\mathbb{R})}/O(2,2,\mathbb{Z})$

Parametrising the moduli space

The moduli space can be parametrised by 2 complex parameters:

Complex structure of the torus:
$$\tau = \frac{g_{12}}{g_{22}} + i \frac{\sqrt{\det g}}{g_{22}}$$

Kähler structure of the torus: $\rho = B_{12} + i \sqrt{\det g}$

In this language:

$$O(2,2) = SL(2)_{ au} imes SL(2)_{
ho} imes \mathbb{Z}_2^{ au \leftrightarrow
ho} imes \mathbb{Z}_2^{ au \leftrightarrow -ar{
ho}}$$

 $SL(2,\mathbb{Z})$ acts on τ (and ρ) as Möbius transformations: $\tau' = \frac{a\tau+b}{c\tau+d}$.

T^2 fibrations

- We let the torus moduli vary along the base.
- Semi-flat ansatz: $[\tau = \tau(z, \bar{z}) = \tau_1 + i\tau_2 \mid \rho = \rho(z, \bar{z}) = \rho_1 + i\rho_2]$

$$ds^{2} = e^{2\phi(z,\bar{z})}\rho_{2}\tau_{2} dz d\bar{z} + \frac{\rho_{2}}{\tau_{2}}|d\xi^{2} + \tau d\xi^{1}|^{2}$$

$$B = \rho_{1}d\xi^{1} \wedge d\xi^{2} \qquad [\text{Hellerman,McGreevy,Williams}]$$

• If τ and ρ are meromorphic functions of the base and $\nabla^2 \phi = 0$ \Rightarrow Configurations are 1/2- (or 1/4-) BPS (solutions of SUGRA e.o.m.).

T-fects

Monodromies

Ansatz:

$$\tau(r,\theta) = e^{\theta \mathbf{m}_{\tau}}[\tau_0(r)]$$

with
$$e^{\mathbf{m}_{\tau}} = M_{\tau} \in SL(2,\mathbb{Z})_{\tau}$$
.
(same for ρ)

The function $\tau_0(r)$ is fixed (up to constants) by Cauchy-Riemann equations.

- Embedding the solution into 10D \Rightarrow Transversal spaces of five-branes.
- Constructed for any monodromy in SL(2, Z)_τ × SL(2, Z)_ρ. Classified in terms of SL(2, Z) conjugacy classes.
- $M_{\tau} \Leftrightarrow$ geometric (τ -fects). $M_{\rho} \Leftrightarrow$ non-geometric (ρ -fects).
- They have logarithmic divergences. To construct global models several T-fects are needed.
- Semi-flat approximation breaks down close to the degeneration. In some cases we know how to add corrections by hand.

Valentí Vall Camell (LMU/MPI)

T-fects in Doubled spaces

Case I: The I_1 degeneration.

Monodromy:
$$\tau \rightarrow \tau + 1$$

$$au(z) = i \log(\mu/z)$$

$$ds^{2} = h(r)(dr^{2} + r^{2}d\theta + (d\xi^{1})^{2}) \\ + \frac{1}{h(r)}(d\xi^{1} + \theta d\xi^{2})^{2}$$

with
$$h(r) = \log(\mu/r)$$
, $\mu = \text{constant}$.

Dehn twist

Monodromy for $\theta \rightarrow \theta + 1$:

|u|

$$\xi^1 \to \xi^1, \qquad \xi^2 \to \xi^2 - \xi^1$$

• Logarithmic behaviour.

The euclidian Taub-NUT space (KK-monopole)

$$ds^{2} = h(|\vec{x}|)|d\vec{x}|^{2} + \frac{1}{h(|\vec{x}|)}(d\xi^{2} + \omega)^{2}$$

with $|\vec{x}| \in \mathbb{R}^{3}$ and $\xi^{2} \sim \xi^{2} + 2\pi$.
• $h(|\vec{x}|) = 1 + \frac{1}{2|\vec{x}|}$.
• $d\omega = \star_{3}dh$.

Strings trajectories in the semiflat limit.

Momentum (n^i) /winding (m^i) change under $\theta \rightarrow \theta + 1$:

 $(n^1, n^2) \rightarrow (n^1 + n^2, n^2)$ $(m^1, m^2) \rightarrow (m^1, m^2 - m^1)$

 m^1 and n^2 not conserved.

• Isometry along ξ^1 is broken by the corrections to the semiflat limit.

Zero modes

- Shift along ξ^1 . Corrections localise the shrinking cycle around ξ^1_0 .
- Dyonic collective coordinate α : $B = \alpha d\Lambda$, $d\Lambda$ self-dual 2-form

$$\Lambda = \frac{1}{h(r)} (d\xi^2 + \theta d\xi^1)$$
 [Sen]

Case II: The (smeared) NS5 brane

Monodromy: ho
ightarrow
ho + 1

 $ho(z) = i \log(\mu/z)$

- No twistings.
- Constant volume fiber.
- Non-trivial B-field, glued with a gauge transformation: $B \rightarrow B + \text{constant}$.

NS5 brane solution

$$\begin{array}{rcl} ds^2 & = & h(|x^i|)dx^i dx_i \,, \ x^i \in \mathbb{R}^4 \\ e^{2\phi} & = & h(|x^i|), \ H = \star_4 dh(|x^i|), \end{array} \qquad \qquad h(|x^i|) = 1 + \frac{1}{|x^i|^2}$$

Compactifying on a T^2 and smearing

$$h(r,\xi^{1}\xi^{2}) = 1 + \sum_{\vec{n}\in\mathbb{Z}^{2}} \frac{1}{r^{2} + (\xi^{1} + 2\pi n_{1})^{2} + (\xi^{2} + 2\pi n_{2})^{2}}$$

= $\bigcup_{\text{semiflat term}} \left(\log(\mu/r) + \sum_{\vec{k}\in(\mathbb{Z}^{2})^{*}} \underbrace{\mathcal{K}_{0}(|k|r)}_{\sim e^{-|\vec{k}|r} \to 0, r \gg 1} e^{i(k_{1}\xi^{1} + k_{2}\xi^{2})} \right)$

Strings trajectories in the semiflat limit.

Momentum (n^i) /winding (m^i) change under $\theta \rightarrow \theta + 1$:

$$(n^1, n^2) \rightarrow (n^1 + m^2, n^2 - m^1)$$

 $(m^1, m^2) \rightarrow (m^1, m^2)$

nⁱ's are not conserved.

Zero modes

- Shift along ξ¹
- Shift along ξ^2

• Isometries along (ξ^1,ξ^2) are broken by the corrections to the semiflat limit.

T-duality in the semi-flat region.

The presence of isometries in the semi-flat region allows dualisation.

(Smeared) NS5 \leftrightarrow I_1 degeneration (KK-monopole):

- $\rho(z) \leftrightarrow \tau(z)$. Or equivalently by gauging ξ^2 -isometry (Buscher rules).
- $m^2 \leftrightarrow n^2$.
- Non-vanishing α in the KK-monopole is mapped to a shift along $\xi^2.$

T-duality of massive modes

Corrections to the smearing limit in the NS5 brane

$$\mathcal{C}_{k_1,k_2} \sim e^{-\lambda r} e^{i\left(rac{k_1\xi^1}{R_1} + rac{k_2\xi^2}{R_2}
ight)}, \qquad ext{with} \ \lambda^2 = \left(rac{k_1}{R_1}
ight)^2 + \left(rac{k_2}{R_2}
ight)^2$$

 $R_i \rightarrow \text{Compactification radii. If } R_i \gg R_j \text{ (Direction } j \text{ is smeared):}$

$$\mathcal{C}_{k_1,k_2}\sim\mathcal{C}_{k_i}=\mathcal{C}_{k_i,k_j=0}\sim e^{-k_i r}e^{irac{\kappa_i \varepsilon}{\mathcal{R}_i}}$$

T-duality NS5 \rightarrow KK-monopole

- $\mathcal{C}_{k_1} \to \mathcal{C}_{k_1}$. Modes localising the shrinking cycle.
- $C_{k_2} \rightarrow \tilde{C}_{k_2} \sim e^{-k_2 r} e^{i \frac{k_2 \tilde{\xi}_2}{R_2}}$. $(\tilde{\xi} = \xi_L \xi_R)$ [Gregory, Harvey, Moore] Checked (for big r) by world-sheet instantons techniques. [Harvey, Jensen]

• General case:
$$\mathcal{C}_{k_1,k_2} \rightarrow \mathcal{C}_{k_1,\tilde{k}_2} \sim e^{-\lambda r} e^{i\left(rac{k_1\xi^1}{R_1} + rac{k_2\xi_2}{R_2}\right)}$$

• $\tilde{\xi}_2$ dual (winding) coordinate \leftrightarrow Dyonic coordinate α .

Case III: T-fold

Apply to the NS5 a fiberwise $SL(2,\mathbb{Z})$ rotation: $\rho(z) \rightarrow -1/\rho(z)$

Monodromy: $-rac{1}{
ho}
ightarrow -rac{1}{
ho} + 1$

$$ho(z) = rac{i}{\log(\mu/z)}$$

The Q-brane background (5^2_2 brane)

[de Boer, Sigemori; Haßler, Lüst]

$$ds^{2} = h(r)(dr^{2} + r^{2}d\theta) + \frac{h(r)}{h(r)^{2} + \theta^{2}} \left[(d\xi^{1})^{2} + (d\xi^{2})^{2} \right]$$

$$B = -\frac{\theta}{h(r)^{2} + \theta^{2}} d\xi^{1} \wedge d\xi^{2}, \quad \text{with } h(r) = \log(\mu/r)$$

• Volume of the fiber: $V_{\mathcal{T}^2}(\theta + 1) \neq V_{\mathcal{T}^2}(\theta) \Rightarrow$ Non-geometric.

Strings trajectories in the semiflat limit.

$$\begin{array}{rcl} \operatorname{Momentum}(n^{i})/\operatorname{winding}(m^{i}):\\ (n^{1},n^{2}) & \rightarrow & (n^{1},n^{2})\\ (m^{1},m^{2}) & \rightarrow & (m^{1}+n^{2},m^{2}-n^{1}) \end{array}$$

mⁱ's are not conserved

T-duality of massive modes

See that under the duality $\rho\leftrightarrow -1/\rho : \ \vec{m}\leftrightarrow \vec{n}.$

$$\mathcal{C}_{k_1,k_2} o \tilde{\mathcal{C}}_{k_1,k_2} \sim e^{-\lambda r} e^{i\left(rac{k_1\tilde{\xi}_1}{R_1} + rac{k_2\tilde{\xi}_2}{R_2}
ight)}$$

Consistent with the argumentations before.

• Dual (winding) coordinates \leftrightarrow dyonic coordinates.

T-fects in Double spaces

Factorised dualities in O(2,2)

Element $e_i \Leftrightarrow$ Buscher procedure along direction *i*.

$$\begin{array}{cccc} \underline{e_2:\tau\leftrightarrow\rho} & \underline{e_1:\tau\leftrightarrow-1/\rho} & \underline{e=e_2e_1:\rho\leftrightarrow-1/\rho} \\ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \end{pmatrix}, & \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{pmatrix}, & \begin{pmatrix} e=e_2e_1:\rho\leftrightarrow-1/\rho \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \end{pmatrix}$$

See that: $A_{\tau} = e_2^T A_{\rho} e_2$, $B_{\rho} = e_1^T A_{\tau} e_1 = e^T A_{\rho} e \dots$

- We describe T-fects as T^4 fibrations by noticing $SO(2,2) \subset SL(4)$. (Following the formalism used in [Hull,Reid-Edwards]).
- Extra toroidal coordinates, $(\tilde{\xi}_1, \tilde{\xi}_2) \Leftrightarrow$ winding coordinates.
- For all τ and ρ fects, the T^4 factorises into $T^2 \times T^2$.

Ricci-flat $T^2 \times T^2$ semi-flat fibration

$$ds^2 = e^{2\chi} \tau_2 \tilde{\tau}_2 dz d\bar{z} + \frac{1}{\tau_2} |d\xi^2 + \tau d\xi^1|^2 + \frac{1}{\tilde{\tau}_2} |d\tilde{\xi}_2 + \tilde{\tau} d\tilde{\xi}_1|^2$$

with $\tau(z)$, $\tau(z)$ meromorphic functions of the base. $\nabla^2 \chi = 0$.

- O(2,2) structure $\Rightarrow \tilde{\tau} = -1/\tau$.
- Describes τ -fects. Metrics for ρ -fects are obtained by $\xi^i \leftrightarrow \tilde{\xi}_i$.
- *I*₁ × *I*₁ degeneration? Corrections to the semi-flat limit not known.
- Global issues need further investigation. Naively, too many degenerations are obtained.

Next, this fibrations are studied within Double Field Theory.

General DFT facts

- Coordinate content: $X^M = (x^i, \tilde{x}_i)$. Momentum dual to \tilde{x}_i is winding.
- We combine g and B into an O(d, d) tensor called "generalised metric"

$$\mathcal{H} = \left(\begin{array}{cc} g - Bg^{-1}B & Bg^{-1} \\ -g^{-1}B & g^{-1} \end{array} \right)$$

For a T^2 , \mathcal{H} coincides with the metric obtained by embedding $SL(2)_{\tau,\rho} \subset SO(2,2) \subset SL(4)$.

- DFT background-independent action: $S = \int dX^M e^{-2\Phi} \mathcal{R}(\mathcal{H}) \mathcal{R}(\mathcal{H})$ "generalised Ricci scalar".
- Closure of the algebra \Rightarrow strong constraint: $\partial_M \partial^M ... = 0$
- Strong constraint \Leftrightarrow the fields depend only on half of the coordinates. Independence on $\tilde{x}_i \Leftrightarrow$ SUGRA. Independence on $x^i \Leftrightarrow$ isometry.
- DFT generalised duality: to all DFT configuration one can apply transformations of the type xⁱ ↔ x̃_i and obtain another DFT solution.

T-fects in DFT

T-fects as DFT solutions.

$$"ds_{DFT}^{2}" = \mathcal{H}_{MN}d\xi^{M}d\xi^{N} = e^{2\phi}\tau_{2}dzd\bar{z} + \frac{1}{\tau_{2}}|d\xi^{2} + \tau d\xi^{1}|^{2} + \frac{1}{\tilde{\tau}_{2}}|d\tilde{\xi}_{2} + \tilde{\tau} d\tilde{\xi}_{1}|^{2}$$

with $\tau(z) = -1/\tilde{\tau}(z)$ meromorphic functions of the base and $\nabla^2 \phi = 0$.

- Same fiber as the T^4 fibration, different base pre-factor.
- $\bullet \ \mathcal{H}$ is not a metric. Interpreted as such it is not Ricci-flat.
- It is a solution of DFT equations of motion. (It is "generalised-Ricci-flat")
- The coordinates on the base can be formally doubled and then \mathcal{H} is an O(d, d) matrix.

Corrections and generalised duality

- Consider corrections to the smearing limit of the NS5, uplift it to DFT and apply generalised duality.
- The result is a solution of the DFT e.o.m. that reproduce the discussed corrections.

B-field for the localised NS5 $\left[h = \log(\mu/r) + \sum_{k_1,k_2} C_{k_1,k_2}(r,\xi^1,\xi^2)\right]$:

- Gauge choice: $B = \theta d\xi^1 \wedge d\xi^2 + \Pi_1 d\theta \wedge d\xi^1 + \Pi_2 d\theta \wedge d\xi^2$
- $\Pi_i = \Pi_i(r,\xi^1,\xi^2)$ and $dB = \star_4 dh$. $\Pi_i \to 0$ for $r \gg 1$

The localised KK-monopole

$$ds^{2} = \tilde{h} \left[dr^{2} + r^{2} d\theta^{2} + (d\xi^{1})^{2} \right] + \frac{1}{\tilde{h}} \left[d\xi^{2} + \theta d\xi^{1} + \tilde{\Pi}_{2} d\theta \right]^{2},$$

$$B = \tilde{\Pi}_{1} d\theta \wedge d\xi^{1}, \qquad \text{with } \tilde{h} = h(r,\xi^{1},\tilde{\xi}_{2}), \tilde{\Pi}_{i} = \Pi_{i}(r,\xi^{1},\tilde{\xi}_{2})$$

The localised Q-brane

$$ds^{2} = \tilde{h} \left[dr^{2} + r^{2} d\theta^{2} \right] + \frac{\tilde{h}}{\tilde{h}^{2} + \theta^{2}} \left[(d\xi^{1} + \tilde{\Pi}_{1} d\theta)^{2} + (d\xi^{2} + \tilde{\Pi}_{2} d\theta)^{2} \right],$$

$$B = \frac{-\theta}{\tilde{h}^{2} + \theta^{2}} \left(d\xi^{1} + \tilde{\Pi}_{1} d\theta \right) \wedge \left(d\xi^{2} + \tilde{\Pi}_{2} d\theta \right),$$

with $\tilde{h} = h(r, \tilde{\xi}_1, \tilde{\xi}_2), \ \tilde{\Pi}_i = \Pi_i(r, \tilde{\xi}_1, \tilde{\xi}_2)$

DFT equations of motion explicitly checked.

Conclusions

- We describe T^2 fibrations and T-fects. Local descriptions can be constructed for any monodromy in $SL(2,\mathbb{Z})_{\tau} \times SL(2,\mathbb{Z})_{\rho}$
- We describe corrections to the duality chain: NS5 brane \rightarrow KK-monopole \rightarrow Q-brane.
- Winding modes are crucial to understand near-core physics.
 Winding non-conservation ⇔ dual-coordinates dependence ⇔ Dyonic modes
- Winding physics is not catured by supergravity.
 Dual-coordinate dependent corrections can only be seen by string-like objects.
- We construct new DFT solutions that capture these corrections
- Open questions:
 - How is this discussion generalised to any monodromy (outside geometric orbit)?
 - What happens with the strong constraint in the general case?