Non-Geometric Non-Abelian Supertubes

Masaki Shigemori

(Queen Mary University of London)

José J. Fernández-Melgarejo, Minkyu Park & MS, arXiv:170x.xxxx

> 8 June 2017 Zagreb, Croatia

Recent Advances in T/U-dualities and Generalized Geometries

Introduction

Duality

Duality = symmetry in string theory

- DFT, EFT: make it manifest
- Twisting in compact directions \rightarrow non-geom flux cpt'n
- Twisting in noncompact directions \rightarrow exotic branes

Exotic branes

More examples

Can do the same using U-duality in lower D

Various possible twists

Various kinds of brane

Example: 5_2^2 -brane

Compactify 8,9 directions $\rightarrow SL(2,\mathbb{Z})$ duality $\tau \equiv B_{89} + i \operatorname{vol}(T_{89}^2)$

	Т	2	3	4	5	6	7	8	9	$\tau \rightarrow \tau + 1$ $U = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	1`
NS5	•	•	0	0	0	0	0	~	~		1,
\bigvee T-duality along x^8											
	1	2	3	4	5	6	7	8	9		
ККМ	•	•	0	0	0	0	0	$\textcircled{\bullet}$	~		
$- \mathbf{T} - \mathbf{duality} \ \mathbf{along} \ x^9 \qquad \mathbf{T} \qquad (1)$											
	1	2	3	4	5	6	7	8	9	$\tau \rightarrow \frac{\tau}{\tau + 1}$ $U = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$	1
5 ² ₂	•		0	0	0	0	0	$\textcircled{\bullet}$	$\textcircled{\bullet}$	-i + 1 (1	
										non-geometric	,

Relevance of codim-2 branes

- Codim-2 object problematic
 - Log divergences

$$V \sim \frac{1}{r^{d-2}} \longrightarrow V \sim \log\left(\frac{\mu}{r}\right)$$

- Are they relevant? Why care?
- Supertube transition [Mateos+Townsend 2001]

Exotic supertubes

[de Boer+Shigemori'10,'12]

Can be created out of ordinary branes

- More common than previously thought
- Relevance for black hole physics
 - → Cf. Fuzzball proposal, Microstate geometry program

The (ultimate) goal

- Explicitly construct a config of codim-2 branes with black hole charges
 - → It would represent a non-geometric BH microstate

Previously...

[Park+MS 2015]

- Explicitly constructed configs of multiple tubes in sugra
- ► They are <u>unbound</u>
- Not a BH microstate 🟵
- Related to $[U_1, U_2] = 0$?

This talk [Fernández-Melgarejo+Park+MS]

- Now $[U_1, U_2] \neq 0$
- ▶ Still unbound... ⊗
 - Is the obstacle merely technical...?

"Harmonic solutions"

Susy solutions in 4D sugra

• Type IIA on $T^6 = T_{45}^2 \times T_{67}^2 \times T_{89}^2$

> D = 4, $\mathcal{N} = 2$ sugra with 2 vector multiplets (ignore hypers)

The most general (timelike class) susy solution: completely specified by harmonic functions in R³:

$$H = (V, K^{I}, L_{I}, M), \qquad I = 1,2,3$$
$$\Delta H(\mathbf{x}) = 0 \qquad \mathbf{x} \in \mathbb{R}^{3}$$

[Behrndt-Lüst-Sabra '97] [Bates-Denef '03] [Gutowski-Reall '04] [Bena-Warner '04] [Meessen-Ortin '06]

"harmonic solutions"

10D IIA fields

$$ds_{10,\text{str}}^2 = -\frac{1}{\sqrt{V(Z - V\mu^2)}} (dt + \omega)^2 + \sqrt{V(Z - V\mu^2)} dx^i dx^i + \sqrt{\frac{Z - V\mu^2}{V}} \left(Z_1^{-1} dx_{45}^2 + Z_2^{-1} dx_{67}^2 + Z_3^{-1} dx_{89}^2 \right) e^{2\Phi} = \frac{(Z - V\mu^2)^{3/2}}{V^{3/2}Z}, \qquad B_2 = \left(V^{-1} K^I - Z_I^{-1} \mu \right) J_I, \qquad \dots$$

 $Z = Z_1 Z_2 Z_3 \qquad J_1 \equiv dx^4 \wedge dx^5, \quad J_2 \equiv dx^6 \wedge dx^7, \quad J_3 \equiv dx^8 \wedge dx^9$

$$Z_{I} = L_{I} + \frac{1}{2}C_{IJK}V^{-1}K^{J}K^{K}$$
$$\mu = M + \frac{1}{2}V^{-1}K^{I}L_{I} + \frac{1}{6}C_{IJK}V^{-2}K^{I}K^{J}K^{K}$$

$$*_3 d\omega = V dM - M dV + \frac{1}{2} \left(K^I dL_I - L_I dK^I \right)$$

General codim-3 solutions

$$H = (V, K^{I}, L_{I}, M), \qquad H(\boldsymbol{x}) = h + \sum_{p} \frac{\Gamma_{p}}{|\boldsymbol{x} - \boldsymbol{a}_{p}|}$$

— Describes multi-center config of branes in IIA on T_{456789}^{6}

Example: 4-charge BH

Susy BH in 4D (4 supercharges)

 $\begin{array}{c} N^{0} \text{ D6}(456789) \\ N_{1} \text{ D2}(45) \\ N_{2} \text{ D2}(67) \\ N_{3} \text{ D2}(89) \end{array} \end{array} V = 1 + \frac{N^{0}}{r} \\ L_{I} = 1 + \frac{N_{I}}{r} \\ L_{I} = 1 + \frac{r}{r} \end{array}$

 $K^I = 0$ No D4

M=0 No D0

- Single-center
- Macroscopic entropy: $S \sim \sqrt{N^0 N_1 N_2 N_3}$

Duality

• Duality group includes: $SL(2,\mathbb{Z})_1 \times SL(2,\mathbb{Z})_2 \times SL(2,\mathbb{Z})_3$ T-duality in T_{89}^2 & shift in B_{89}

Transformation rule of harmonic func:

$$U = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SU(2, \mathbb{Z})$$
$$\implies \begin{pmatrix} K^3 \\ V \end{pmatrix} \rightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} K^3 \\ V \end{pmatrix}$$

And similarly for

$$\begin{pmatrix} -2M \\ L_3 \end{pmatrix}, \quad \begin{pmatrix} -L_1 \\ K^2 \end{pmatrix}, \quad \begin{pmatrix} -L_2 \\ K^1 \end{pmatrix}$$

Torus moduli

• Complexified Kähler modulus for T_{89}^2 :

$$\tau^{3} = B_{89} + i \operatorname{vol}(T_{89}^{2})$$
$$= \left(\frac{K^{3}}{V} - \frac{\mu}{Z_{3}}\right) + \frac{i\sqrt{V(Z - V\mu^{2})}}{Z_{3}V} \qquad R_{8} = R_{9} = l_{s}$$

We likewise have τ^1 , τ^2 for T^2_{45} , T^2_{67}

Transforms under $SL(2, \mathbb{Z})_3$ as:

$$\tau^3 \rightarrow \frac{a\tau^3 + b}{c\tau^3 + d}, \qquad U = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SU(2, \mathbb{Z})$$

Codim-2 solutions [Park+MS 2015]

Harmonic functions can have codim-2 singularities too

There is a physical reason to consider them: supertube transition.

$D2+D2\rightarrow NS5$ (1)

NS5 along general curve in \mathbb{R}^3 :

D2(45)
D2(67)

$$\begin{array}{l} \sum_{\substack{\text{supertube}\\\text{transition}}} \sum_{\substack{x = F(\lambda)\\ \lambda}} NS5(\lambda 4567) \text{ dipole} \\
\end{array}$$

$$V = 1, \quad K^{1} = 0, \quad K^{2} = 0, \quad K^{3} = \gamma \\
L_{1} = f_{2}, \quad L_{2} = f_{1}, \quad L_{3} = 1, \quad M = -\frac{\gamma}{2} \\
f_{1} = 1 + \frac{Q_{1}}{L} \int_{0}^{L} \frac{d\lambda}{|x - F(\lambda)|}, \quad f_{2} = 1 + \frac{Q_{1}}{L} \int_{0}^{L} \frac{|\dot{F}(\lambda)|^{2} d\lambda}{|x - F(\lambda)|} \\
d\gamma = *_{3} d\alpha, \quad \alpha_{i} = \frac{Q_{1}}{L} \int_{0}^{L} \frac{\dot{F}_{i}(\lambda) d\lambda}{|x - F(\lambda)|}$$

$D2+D2\rightarrow NS5$ (2)

$$V = 1$$
, $K^1 = 0$, $K^2 = 0$, $K^3 = \gamma$
 $L_1 = f_2$, $L_2 = f_1$, $L_3 = 1$, $M = -\frac{\gamma}{2}$

$$\begin{pmatrix} K^{3} \\ V \end{pmatrix} \rightarrow \begin{pmatrix} K^{3} + 1 \\ V \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} K^{3} \\ V \end{pmatrix}$$
$$\tau^{3} \rightarrow \tau^{3} + 1$$
$$SL(2, \mathbb{Z}) \text{ monodromy } U = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

: correct monodromy for NS5

$D6+D2 \rightarrow 5^2_2$

$$V = f_2, \quad K^1 = \gamma, \quad K^2 = \gamma, \quad K^3 = 0$$

$$L_1 = 1, \quad L_2 = 1, \quad L_3 = f_1, \quad M = 0$$

$$\begin{pmatrix} -L_1 \\ K^2 \end{pmatrix} \rightarrow \begin{pmatrix} -L_1 \\ L_1 + K^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} -L_1 \\ K^2 \end{pmatrix} \qquad \tau^3 \rightarrow \frac{\tau^3}{-\tau^3 + 1}$$

: correct monodromy for 5_2^2

Plan of attack

The goal

Construct a config of supertubes with non-commuting (non-Abelian) monodromies:

The issue

Getting full solution in 3D is technically hard

Colliding limit

• Take the limit $L \ll R$

Colliding limit

• Take the limit $L \ll R$

Far region

• Looks like one ring in 3D with $U = U_2 U_1$

Far region

• Looks like one ring in 3D with $U = U_2 U_1$

Near region

$D \sim L \ll R$

Two infinite straight branes in 2D

Strategy

- Construct solutions in two regimes
- Match two solutions in intermediate regime

Near region

Non-Abelian supertubes in 2D

- Assume that there are two different types of circular supertubes, like NS5 and 5²/₂
- Zooming in, can use 2D approximation

Config with $\tau^3(z)$

Focus on configs with $\tau^1 = \tau^2 = i$, $\tau^3 = \tau^3(z)$. General solution:

$$V = \frac{1}{2}(g + \bar{g}) \qquad K^{1} = K^{2} = \frac{i}{2}(g - \bar{g}) \qquad K^{3} = \frac{i}{2}(f - \bar{f})$$
$$L_{1} = L_{2} = \frac{1}{2}(f + \bar{f}) \qquad L_{3} = \frac{1}{2}(g + \bar{g}) \qquad M = -\frac{i}{4}(f - \bar{f})$$

f(z), g(z): holomorphic

$$\tau^3(z) = \frac{if(z)}{g(z)}$$

The question:

Find a pair of holomorphic functions

f(z), g(z)

such that the quantity

has non-trivial $SL(2,\mathbb{Z})$ monodromy around some singular points on the z plane, and

 $\tau^3(z) = \frac{if(z)}{a(z)}$

 $\operatorname{Im} \tau^3(z) \geq 0$

Z

$$-L$$
 L

$$z$$
 plane, and

A config of non-Abelian supertubes

Use SW's very original solution

Behavior near singularities

 $\blacktriangleright z \sim L$ (monopole)

 $V = L_3 \sim -\log|z - L| \qquad \qquad K^1 = K^2 \sim \arg(z - L)$ $K^3 = -2M \sim 0$ $L_1 = L_2 \sim \text{const.}$ $\rightarrow D6(456789) + D2(89) \rightarrow 5^{2}_{2}(34567,89)$ $\blacktriangleright z \sim -L$ (dyon) $V = L_3 \sim -\arg(z + L)$ $K^1 = K^2 \sim -\log|z + L|$ $L_1 = L_2 \sim -\log |z + L|$ $K^3 = -2M \sim \arg (z + L)$ $\implies D4(6789) + D4(4589) \rightarrow 5^2_2(34567,89) \\ D2(45) + D2(67) \rightarrow NS5 (34567)$

We do have non-commutative pair of supertubes

Behavior for $|z| \gg L$

• $z \sim L$ (monopole)

$$V = L_3 \sim \frac{1}{\sqrt{z}} \qquad \qquad K^1 = K^2 \sim \frac{i}{\sqrt{z}}$$
$$L_1 = L_2 \sim \frac{1}{\sqrt{z}} \log z \qquad \qquad K^3 = -2M \sim \frac{i}{\sqrt{z}} \log z$$

 \rightarrow To be matched with the far-region behavior

Define
$$V \sim \frac{1}{\sqrt{z}} \equiv G_{\text{match}} \qquad K^3 \sim \frac{i}{\sqrt{z}} \log z \equiv F_{\text{match}}$$

Setup

One circular ring in 3D with monodromy

- Need to find a pair of harmonic $\binom{F}{G} \rightarrow \binom{-F+2G}{-G}$
- Near the ring, they must behave like the large-|z| limit of 2D harmonic funcs we found

Toroidal coordinates

$$x^{1} = \frac{\sqrt{u^{2} - 1}}{u - \cos\sigma} R \cos\psi, \qquad x^{2} = \frac{\sqrt{u^{2} - 1}}{u - \cos\sigma} R \sin\psi, \qquad x^{3} = \frac{\sin\sigma}{u - \cos\sigma} R$$

$$dx_{123}^2 = (dx^1)^2 + (dx^2)^2 + (dx^3)^2 = \frac{R^2}{(u - \cos \sigma)^2} \left[\frac{du^2}{u^2 - 1} + (u^2 - 1)d\psi^2 + d\sigma^2 \right]$$

$$1 \le u < \infty, \qquad 0 \le \psi < 2\pi, \qquad 0 \le \sigma < 2\pi.$$

- Near-ring limit: $u \to \infty$
- \mathbb{R}^3 infinity: $u \to 1, \sigma = 0$

Ansatz

$$H = \sqrt{u - \cos\sigma} e^{im\sigma} f(u)$$

Laplace eq separates

$$\Delta H \propto (1 - 4m^2)f + 8uf' + 4(u^2 - 1)f'' = 0$$

• regular soln at 3D infinity (u = 1):

 $H \propto P_{m-1/2}(u)$ (Legendre func/polynom)

How do we determine *m*?

Matching

• Near the ring $(u \rightarrow \infty)$, toroidal coordinates give

 $u^{-1}e^{i\sigma} \leftrightarrow z$

 $G \rightarrow -G$

$$G_{\rm match} \sim 1/\sqrt{z} \leftrightarrow \sqrt{u} \ e^{-i\sigma/2}$$

$$\implies m = -1/2$$

$$\Rightarrow H = \sqrt{u - \cos \sigma} \ e^{i\sigma/2} \equiv G$$

υ,σ,ψ

Z

This one has monodromy

Cf. We need $\binom{F}{G} \rightarrow \binom{-F+2G}{-G}$

Ansatz 2

 $H = \sqrt{u - \cos \sigma} e^{im\sigma} (f(u) + i\sigma g(u))$ Again, Laplace eq separates $4(u^{2}-1)f''(u) + 8uf'(u) + (1-4m^{2})f(u) = 8mg(u)$ $4(u^{2}-1)g''(u) + 8ug'(u) + (1-4m^{2})g(u) = 0.$ f: Legendre. g: known once f is known **Take** m = -1/2 $H = \frac{1}{2}\sqrt{u - \cos\sigma} e^{\frac{i\sigma}{2}} (i\log(u+1) + \sigma) \equiv F$

• Near-ring $(u \rightarrow \infty)$ behavior:

$$H \sim i\sqrt{u} \ e^{\frac{i\sigma}{2}} \log(ue^{-i\sigma}) \leftrightarrow \frac{i}{\sqrt{z}} \log z = F_{\text{match}} \checkmark$$

Monodromy

$$\begin{pmatrix} F \\ G \end{pmatrix} = \sqrt{u - \cos \sigma} e^{i\sigma/2} \begin{pmatrix} \frac{1}{\pi} \left[i \log(u+1) + \sigma \right] \\ 1 \end{pmatrix}$$

$$\rightarrow -\sqrt{u - \cos \sigma} e^{i\sigma/2} \begin{pmatrix} \frac{1}{\pi} \left[i \log(u+1) + \sigma \right] + 2 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -F + 2G \\ -G \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} F \\ G \end{pmatrix} \checkmark$$

Discussion

Summary

- We found expressions in far & near regions
- They match in the intermediate region

$$\binom{F}{G} = \begin{cases} \sqrt{u - \cos \sigma} e^{i\sigma/2} \begin{pmatrix} \frac{1}{\pi} \left[i \log(u+1) + \sigma \right] \\ 1 \end{pmatrix} & \text{far} \\ \frac{1}{\sqrt{z}} \begin{pmatrix} i \log z \\ 1 \end{pmatrix} & \text{near} \end{cases}$$

Matching can be made better order by order

Some physical analysis

Condition on metric signature

Far-region solution with 1 tube breaks down for $u \ge \log \frac{8R}{L} - 1$ (recall that tube is at $u = \infty$) Very close to tube, description in terms of

2 tubes must take over

Similar to O7 decomposing into (p,q) 7-branes

Some physical issues...

The behavior at 3D infinity:

$$V \sim \frac{1}{r}, \qquad K^{I} \sim M \sim 0, \qquad L_{1} = L_{2} \sim \frac{\log(R/L)}{r}, \qquad L_{3} \sim \frac{1}{r}$$

$$\Box \text{ Has D6,D2 charges (those of 4D BH)}$$

$$\Box \text{ Asymptotic moduli} = 0 \rightarrow AdS_{2} \times S^{2}$$

$$\Box \text{ No condition on } L, R \rightarrow \text{ unbound } \circledast$$

• Angular momentum J = 0

What supports supertubes?
Good for microstates? cf. Sen

Conclusions

55

Conclusions

- Explicitly constructed a config of non-geometric non-Abelian supertubes
- ▶ Unbound ⊗
 - Not a BH microstate
 - Way out? h(z)?

- > Split attractor flow, marginal stability, wall crossing, QQM, ...
- Codim-1
- DFT/EFT?

Thanks!