Generalized/higher geometry and non-associative quantum mechanics

Peter Schupp

Jacobs University Bremen

with Richard Szabo, Fech Scen Khoo, et al

Recent Advances in Dualities and Generalized Geometries Zagreb, June 2017

Ouantum Structure of Spacetime

Outline

- Introduction
- Fluxes and generalized/higher geometry
- Interaction via deformation
- Nonassociativity and quantum mechanics

Introduction: Quantized Geometry

Quantum spacetime

 $quantum + gravity \Rightarrow$

Quantized geometry: apply the principles of QM to spacetime itself

- microscopic non-commutative/non-associative spacetime structures
- expect spacetime coarse-graining, natural regularization

Quantum fields on noncommutative spaces

- ► $[x^i, x^j] = i\theta^{ij} \neq 0$
- \blacktriangleright forbidden interactions, controlled Lorentz violation, UV/IR mixing
- ► NC Standard Model, NC GUTs, etc.
- ► Gravity on noncommutative spaces [♥,●] ≠ 0 twisted tensor calculus, deformed Einstein equations

All very interesting...but:

- no space-time coarse graining!
- $\theta \sim B^{-1}$, how to deal with $dB = H \neq 0$?
- \Rightarrow higher structures, deformations

Non-geometric flux backgrounds

T-dualizing a 6-torus with 3-form H-flux gives rise to geometric and

non-geometric fluxes
$$H_{ijk} \xrightarrow{T_k} f_{ij}^k \xrightarrow{T_j} Q_i^{jk} \xrightarrow{T_i} R^{ijk}$$

Hellermann, McGreevy, Williams (2004)
Hull (2005), Shelton, Taylor, Wecht (2005)
Lüst (2010), Blumenhagen, Plauschinn (2010)

Generalized (doubled) geometry (O(d, d) isometry, g, B, ...)

Non-geometry geometrized in membrane model quantization \Rightarrow non-associative \star -product

Mylonas, PS, Szabo (2012-2013)

H_{ijk} 3-form background flux

$$f_{ij}{}^k$$
 geometric flux, $[e_i, e_j]_L = f_{ij}{}^k e_k$

$$Q_i^{jk}$$
 globally non-geometric, T-fold

R^{ijk} locally non-geometric, non-associative

structure constant of a generalized bracket:

$$\begin{split} & [e_i, e_j]_C = f_{ij}{}^k e_k + H_{ijk} e^k \\ & [e_i, e^j]_C = Q_i{}^{jk} e_k - f_i{}^j{}_k e^k \\ & [e^i, e^j]_C = R^{ijk} e_k + Q^{ij}{}_k e^k \end{split}$$

Courant/Dorfman/Roytenberg bracket on $\Gamma(TM \oplus T^*M)$ governs worldsheet current and charge algebras

Alekseev, Strobl; Halmagyi; Bouwknegt; ...

Dorfman bracket

Generalizes the Lie bracket of vector fields $X \in \Gamma(TM)$ to $V = X + \xi \in \Gamma(TM \oplus T^*M)$:

$$[X + \xi, Y + \eta]_D = [X, Y] + \mathcal{L}_X \eta - \iota_Y d\xi \quad (+\text{twisting terms})$$

 $E = TM \oplus T^*M$ is called "generalized tangent bundle"

E with the Dorfman bracket, the natural pairing $\langle -, - \rangle$ of *TM* and *T***M* and the projection $h : E \to TM$ (anchor) forms a Courant algebroid.

Courant algebroid

vector bundle $E \xrightarrow{\pi} M$, anchor $h \in \text{Hom}(E, TM)$, \mathbb{R} -bilinear bracket [-, -], and fiber-wise metric $\langle -, - \rangle$, s.t. for $e, e', e'' \in E$:

$$[e, [e', e'']] = [[e, e'], e''] + [e', [e, e'']]$$
(1)

$$h(e)\langle e', e'\rangle = 2\langle [e, e'], e'\rangle = 2\langle [e', e'], e\rangle$$
(2)

Consequences:

$$[e, fe'] = h(e).f e' + f[e, e']$$
(3)

$$h([e, e']) = [h(e), h(e')]_L$$
 (4)

(2) can be polarized(1) and (3) are the axioms of a Leibniz algebroid

Generalized/higher geometry and gravity

Graded "super" Poisson manifold $T^*[2]T[1]M$

- ▶ degree 0: *xⁱ* "coordinates"
- degree 1: $\xi^{\alpha} = (\theta^i, \chi_i)$
- degree 2: p_i "momenta"

symplectic 2-form

$$\omega = dp_i \wedge dx^i + \frac{1}{2}G_{\alpha\beta}d\xi^{\alpha} \wedge d\xi^{\beta} = dp_i \wedge dx^i + d\chi_i \wedge \theta^i + d\theta_i \wedge \chi^i$$

even (degree -2) Poisson bracket

$$\{x^i, x^j\} = 0, \quad \{p_i, x^j\} = \delta^j_i, \quad \{\xi^{\alpha}, \xi^{\beta}\} = G^{\alpha\beta}$$

metric $G^{\alpha\beta}$: natural pairing of TM, T^*M

$$\{\chi_i, \theta^j\} = \delta_i^j$$
, $\{\chi_i, \chi_j\} = 0$, $\{\theta^i, \theta^j\} = 0$,

Generalized geometry as a derived structure Hamiltonian

$$\Theta = \xi^{lpha} h^i_{lpha}(x) p_i$$
 (+twisting terms)

For $e = e_{\alpha}(x)\xi^{\alpha}$ (degree 1, odd):

- pairing: $\langle e, e' \rangle = \{e, e'\}$
- anchor: $h(e)f = \{\{e, \Theta\}, f\}$

• bracket:
$$[e, e']_D = \{\{e, \Theta\}, e'\}$$

 $\{\Theta,\Theta\}=0\qquad \Leftrightarrow\qquad \text{Courant algebroid axioms}$

Deformation and interaction I: gravity deformation by a non-symmetric metric $\mathcal{G} = g + B$

$$\{\chi_i, \chi_j\} = 0 \quad \rightarrow \quad \{\chi_i, \chi_j\}' = 2g_{ij}(\mathbf{x})$$

$$\Rightarrow \text{ for } X = X^i(\mathbf{x})\chi_i \ . \ \mathbf{v} = \mathbf{v}^i(\mathbf{x})p_i:$$

$$\{\mathbf{v}, X\}' = \nabla_{\mathbf{v}}^G X \ , \quad \{\mathbf{v}, \mathbf{v}'\}' = [\mathbf{v}, \mathbf{v}']_{\text{Lie}} + \mathcal{R}(\mathbf{v}, \mathbf{v}')$$

choose Weitzenböck connection $\Rightarrow R(v, v') = 0$ and

$$\nabla_i^G \chi_j = -(\partial_i \mathcal{G}_{jl}) \,\theta^l$$

the derived bracket involves the Levi-Civita connection $\nabla^{\rm LC}$

$$[X, Y]' = [X, Y]_D + 2g(\nabla^{LC}X, Y) + H(-, X, Y)$$

plus skew symmetric torsion H = dB.

generalized Koszul formula for $\mathcal{G} = g + B$

$$2g(\nabla_Z X, Y) = \langle Z, [X, Y]' \rangle'$$

= $X \mathcal{G}(Y, Z) - Y \mathcal{G}(X, Z) + Z \mathcal{G}(X, Y)$
 $-\mathcal{G}(Y, [X, Z]_{Lie}) - \mathcal{G}([X, Y]_{Lie}, Z) + \mathcal{G}(X, [Y, Z]_{Lie})$
= $2g(\nabla_X^{LC} Y, Z) + H(X, Y, Z)$

 \Rightarrow non-symmetric Ricci tensor

$$R_{jl} = R_{jl}^{LC} - \frac{1}{2} \nabla_{i}^{LC} H_{jl}^{\ i} - \frac{1}{4} H_{lm}^{\ i} H_{ij}^{\ m}$$

 \Rightarrow gravity action (= closed string effective action)

$$S_{\mathcal{G}} = \frac{1}{16\pi G_N} \int d^d x \sqrt{-g} \left(R^{LC} - \frac{1}{12} H_{ijk} H^{ijk} \right)$$

Jurco, Khoo, PS, Vysoky

QM with 3-cocycle

Deformation and interaction II: gauge theory

Note: $\vec{B} = \nabla \times \vec{A}$ implies $\nabla \cdot B = 0$, hence we cannot work with canonical momenta and covariant derivatives in the presence of magnetic sources. alternatively: deformed canonical commutation relations

$$[x^{i}, x^{j}]' = 0, \ [x^{i}, p_{j}]' = i\hbar, \ [p_{i}, p_{j}]' = i\hbar eF_{ij} \quad (\text{where } F_{ij} = \epsilon_{ijk}B_{k})$$

Let $\mathbf{p} = p_{i}\sigma^{i}$ and $H = \frac{\mathbf{p}^{2}}{2m} \implies$ Pauli Hamiltonian:
$$H = \frac{1}{2m} \left(\frac{1}{4} \{ \sigma^{i}, \sigma^{j} \} \{ p_{i}, p_{j} \}' + \frac{1}{4} [\sigma^{i}, \sigma^{j}] [p_{i}, p_{j}]' \right) = \frac{\vec{p}^{2}}{2m} - \frac{\hbar e}{2m} \vec{\sigma} \cdot \vec{B}$$

Lorentz-Heisenberg equations of motion:

$$\frac{d\vec{p}}{dt} = \frac{i}{\hbar} \left[H, \vec{p} \right]' = \frac{e}{2m} \left(\vec{p} \times \vec{B} - \vec{B} \times \vec{p} \right) , \quad \frac{d\vec{r}}{dt} = \frac{i}{\hbar} \left[H, \vec{r} \right]' = \frac{\vec{p}}{m}$$

in this formalism $\nabla \cdot B \neq 0$ is allowed (magnetic sources)

QM with 3-cocycle

Jacobi identity:

 $[p_1, [p_2, p_3]']' + [p_2, [p_3, p_1]']' + [p_3, [p_1, p_2]']' = \hbar^2 e \nabla \cdot \vec{B} = \hbar^2 e \mu_o \rho_m$

For $\rho_m \neq 0$: non-associativity, \nexists linear operator $\vec{p} = -i\hbar \nabla - e\vec{A}$

Translations are generated by $T(\vec{a}) = \exp(\frac{i}{\hbar}\vec{a}\cdot\vec{p})$:

$$T(\vec{a}_1)T(\vec{a}_2) = e^{rac{ie}{\hbar}\Phi_{12}}T(\vec{a}_1 + \vec{a}_2)$$

$$[T(\vec{a}_1)T(\vec{a}_2)]T(\vec{a}_3) = e^{\frac{ie}{\hbar}\Phi_{123}}T(\vec{a}_1)[T(\vec{a}_2)T(\vec{a}_3)]$$

$$\begin{split} \Phi_{12} &= \mathsf{flux} \text{ through triangle } (\vec{a_1}, \vec{a_2}) \\ \Phi_{123} &= \mathsf{flux} \text{ out of tetrahedron } (\vec{a_1}, \vec{a_2}, \vec{a_3}) = \mu_0 q_m \end{split}$$

Associativity of translations is restored for:

 $\frac{\mu_0 eq_m}{\hbar} \in 2\pi\mathbb{Z}$

(Dirac charge-quantization)

point-like magnetic monopoles ... else: need NAQM

Jackiw '85,'02

The operator-state formulation of QM cannot handle non-associative structures. . .

Phase-space formulation of QM

- Observables and states are (real) functions on phase space.
- Algebraic structure introduced by a star product, traces by integration.
- State function (think: "density matrix"): $S_{\rho} \ge 0$, $\int S_{\rho} = 1$.
- Expectation values $\langle \mathcal{O} \rangle = \int \mathcal{O} \star S_{\rho}$.
- Schrödinger equation $H \star S_{\rho} S_{\rho} \star H = i\hbar \frac{\partial S_{\rho}}{\partial t}$
- "Stargenvalue" equation: $H \star S_{\rho} = S_{\rho} \star H = E S_{\rho}$.

Popular choices of star products

- Moyal-Weyl (symmetric ordering, Wigner quasi-probability function) Weyl quantization associates operators to polynomial functions via symmetric ordering: $x^{\mu} \rightsquigarrow \hat{x}^{\mu}$, $x^{\mu}x^{\nu} \rightsquigarrow \frac{1}{2}(\hat{x}^{\mu}\hat{x}^{\nu} + x^{\nu}\hat{x}^{\mu})$, etc. extend to functions, define star product $\widehat{f_1 \star f_2} := \widehat{f_1} \widehat{f_2}$.
- Wick-Voros (normal ordering, coherent state quantization)
 QHO states in Wick-Voros formulation:

► *xp-ordered star product:* *-exponential ≡ ordinary path integral

Deformation quantization of the point-wise product in the direction of a Poisson bracket $\{f, g\} = \theta^{ij} \partial_i f \cdot \partial_j g$:

$$f \star g = fg + \frac{i\hbar}{2} \{f,g\} + \hbar^2 B_2(f,g) + \hbar^3 B_3(f,g) + \dots ,$$

with suitable bi-differential operators B_n .

There is a natural gauge symmetry: "equivalent star products"

$$\star \mapsto \star' , \quad Df \star Dg = D(f \star' g) ,$$

with $Df = f + \hbar D_1 f + \hbar^2 D_2 f + \dots$

Kontsevich formality and star product

 U_n maps $n \ k_i$ -multivector fields to a $(2 - 2n + \sum k_i)$ -differential operator

$$U_n(\mathcal{X}_1, \dots, \mathcal{X}_n) = \sum_{\Gamma \in G_n} w_{\Gamma} D_{\Gamma}(\mathcal{X}_1, \dots, \mathcal{X}_n) .$$

The star product for a given bivector θ is:
$$f \star g = \sum_{n=0}^{\infty} \frac{(i\hbar)^n}{n!} U_n(\Theta, \dots, \Theta)(f, g)$$
$$= f \cdot g + \frac{i}{2} \sum \theta^{ij} \partial_i f \cdot \partial_j g - \frac{\hbar^2}{4} \sum \theta^{ij} \theta^{kl} \partial_i \partial_k f \cdot \partial_j \partial_l g$$
$$- \frac{\hbar^2}{6} \left(\sum \theta^{ij} \partial_j \theta^{kl} (\partial_i \partial_k f \cdot \partial_l g - \partial_k f \cdot \partial_i \partial_l g) \right) + \dots$$

Kontsevich (1997)

Aspects of quantization $\theta(x) \rightsquigarrow \star$

Formality condition

The U_n define a quasi-isomorphisms of L_∞ -DGL algebras and satisfy

$$\begin{split} \mathrm{d.}\, U_n(\mathcal{X}_1, \dots, \mathcal{X}_n) + & \frac{1}{2} \sum_{\substack{\mathcal{I} \sqcup \mathcal{J} = (1, \dots, n) \\ \mathcal{I}, \mathcal{J} \neq \emptyset}} \varepsilon_{\mathcal{X}}(\mathcal{I}, \mathcal{J}) \left[U_{|\mathcal{I}|}(\mathcal{X}_{\mathcal{I}}) , U_{|\mathcal{J}|}(\mathcal{X}_{\mathcal{J}}) \right]_{\mathrm{G}} \\ &= \sum_{i < j} (-1)^{\alpha_{ij}} U_{n-1}([\mathcal{X}_i, \mathcal{X}_j]_{\mathrm{S}}, \mathcal{X}_1, \dots, \widehat{\mathcal{X}}_i, \dots, \widehat{\mathcal{X}}_j, \dots, \mathcal{X}_n) , \end{split}$$

relating Schouten brackets to Gerstenhaber brackets.

This implies in particular $\Phi(d_{\Theta}\Theta) = \frac{1}{i\hbar} d_{\star} \Phi(\Theta)$, i.e.

 θ (non-)Poisson $\Leftrightarrow \star$ (non-)associative

Poisson sigma model

2-dimensional topological field theory, $E = T^*M$

$$S^{(1)}_{\mathrm{AKSZ}} = \int_{\Sigma_2} \left(\xi_i \wedge \mathrm{d} X^i + rac{1}{2} \, \Theta^{ij}(X) \, \xi_i \wedge \xi_j
ight) \, ,$$

with $\Theta = rac{1}{2} \, \Theta^{ij}(x) \, \partial_i \wedge \partial_j$, $\xi = (\xi_i) \in \Omega^1(\Sigma_2, X^*T^*M)$

perturbative expansion \Rightarrow Kontsevich formality maps

valid on-shell ($[\Theta, \Theta]_S = 0$) as well as off-shell, e.g. twisted Poisson Kontsevich (1997) Cattaneo, Felder (2000) geometric ladder / extended objects in background fields

AKSZ-model:	Poisson-sigma (open string) T*[1]M	Courant-sigma (open membrane) T*[2]T[1]M	
derived bracket:	Poisson	Dorfman	
	•	\bigcirc	
object:	point particle	closed string	
algebraic structure:	non-commutative	non-associative	

Courant sigma model

TFT with 3-dimensional membrane world volume Σ_3

$$\begin{split} \mathcal{S}_{\mathrm{AKSZ}}^{(2)} &= \int_{\Sigma_3} \left(\phi_i \wedge \mathrm{d}X^i + \frac{1}{2} \, \mathcal{G}_{IJ} \, \alpha^I \wedge \mathrm{d}\alpha^J - h_I{}^i(X) \, \phi_i \wedge \alpha^I \right. \\ &+ \frac{1}{6} \, \mathcal{T}_{IJK}(X) \, \alpha^I \wedge \alpha^J \wedge \alpha^K \Big) \end{split}$$

embedding maps $X : \Sigma_3 \to M$, 1-form α , aux. 2-form ϕ , fiber metric G, anchor h, 3-form T (e.g. H-flux, f-flux, Q-flux, R-flux).

AKSZ construction: action functionals in BV formalism of sigma model QFT's for symplectic Lie *n*-algebroids *E* Alexandrov, Kontsevich, Schwarz, Zaboronsky (1995/97) Membrane action with *R*-flux

$$S^{(2)}_R = \int_{\Sigma_3} \left(d\xi_i \wedge \mathrm{d} X^i + rac{1}{6} \, R^{ijk}(X) \, \xi_i \wedge \xi_j \wedge \xi_k
ight)$$

for constant backgrounds, using Stokes leads to boundary action

$$S_R^{(2)} = \int_{\Sigma_2} \left(\eta_I \wedge \mathrm{d} X' + rac{1}{2} \, \Theta^{IJ}(X) \, \eta_I \wedge \eta_J
ight) \, :$$

Poisson sigma-model with auxiliary fields $\eta_{\rm I}$ and

$$\Theta = (\Theta^{IJ}) = \begin{pmatrix} R^{ijk} p_k & \delta^i_j \\ -\delta_i^j & 0 \end{pmatrix} \longrightarrow \star \text{ (non-associative!)}$$
$$f \star g = \cdot \exp\left(\frac{i\hbar}{2} \left[R^{ijk} p_k \partial_i \otimes \partial_j + \partial_i \otimes \tilde{\partial}^i - \tilde{\partial}^i \otimes \partial_i \right] \right)$$

Mylonas, PS, Szabo (2012)

Noncommutative Jordan Algebras

(1)
$$x(yx) = (xy)x$$
 "flexible"

$$(2) \qquad x^2(yx) = (x^2y)x$$

properties (1) and (2) imply

(3)
$$x^m(yx^n) = (x^my)x^n$$
 "power associative"

and are necessary and sufficient conditions for

$$x \circ y := \frac{1}{2}(xy + yx)$$

to be Jordan, i.e. $x \circ y = y \circ x$ and $(x \circ y) \circ x^{\circ 2} = x \circ (y \circ x^{\circ 2})$.

P. Jordan (1933), A.A. Albert (1946), R.D. Schafer (1955)

non-associative star product

$$f \star g = \cdot \exp\left(\frac{i\hbar}{2}\left[R^{ijk}p_k\partial_i\otimes\partial_j + \partial_i\otimes\tilde{\partial}^i - \tilde{\partial}^i\otimes\partial_i\right]\right)$$

Question: Are we dealing with a Jordan algebra?

$$x^{l} \star (x^{K} \star x^{l}) = (x^{l} \star x^{K}) \star x^{l} \quad \checkmark$$
$$(x^{l})^{\star 2} \star (x^{K} \star x^{l}) = ((x^{l})^{\star 2} \star x^{K}) \star x^{l} \quad \checkmark$$

but:

$$\vec{x}^2 \star (\vec{x}^2 \star \vec{x}^2) - (\vec{x}^2 \star \vec{x}^2) \star \vec{x}^2 = 2iR^2\vec{p} \cdot \vec{x} \neq 0$$

for $R^{ijk} \equiv R\epsilon^{ijk}$. \Rightarrow Answer: no

Alexander Held, PS (2014), Bojowald, Brahma, Büyükcam, Strobl (2016)

Günaydin-Zumino Model

Exchange x and p, replace R^{ijk} by H_{ijk} ...

$$[x^i,p_j]_{\star}=i\delta^i_j \qquad [x^i,x^j]_{\star}=0 \qquad [p_i,p_j]_{\star}=iH_{ijk}x^k$$

algebra of coordinates and physical (gauge invariant) momenta in a constant homogeneous magnetic charge density background

- coarse graining in momentum space
- three copies of \vec{p}^2 do not associate:

$$\vec{p}^2 \star (\vec{p}^2 \star \vec{p}^2) - (\vec{p}^2 \star \vec{p}^2) \star \vec{p}^2 = 2ie\rho_{\text{magnetic}}^2 \vec{x} \cdot \vec{p} \neq 0$$

 \Rightarrow cannot diagonalize? \Rightarrow no free stationary states??

• eigenfunctions: just need to make sure that $\langle \vec{x} \cdot \vec{p} \rangle = 0$, in fact:

$$p_i^2 \star \psi = \lambda_i \psi \quad \Rightarrow \quad \psi(x, p) \propto \exp(2ix^i(p_i - \lambda_i)), \qquad \lambda_i \in \mathbb{R}$$

Phase-space formulation of NAQM

- Operators: complex-valued functions on phase space the star product serves as operator product
- Observables: real-valued functions on phase-space
- Dynamics: Heisenberg-type time evolution equations

$$\frac{\partial A}{\partial t} = \frac{i}{\hbar} [H, A]_{\star}$$

these are in general not derivations of the star product!

non-associative star product

$$f \star g = \cdot \exp\left(rac{i\hbar}{2}\left[R^{ijk}p_k\partial_i\otimes\partial_j+\partial_i\otimes ilde{\partial}^i- ilde{\partial}^i\otimes\partial_i
ight]
ight)$$

Mylonas, PS, Szabo (2012-2013)

Trace properties

2-cyclicity (trace-less commutator) ,

positivity

$$\int d^{2d}x \ [f \star g - g \star f] = 0 \quad , \qquad \int d^{2d}x \ f^* \star f \ge 0$$

3-cyclicity (trace-less associator)

$$\int \mathrm{d}^{2d} x \ \left[(f \star g) \star h - f \star (g \star h) \right] = 0$$

inequivalent quartic expressions

$$\int f_1 \star (f_2 \star (f_3 \star f_4)) = \int (f_1 \star f_2) \star (f_3 \star f_4) = \int ((f_1 \star f_2) \star f_3) \star f_4$$
$$\int f_1 \star ((f_2 \star f_3) \star f_4) = \int (f_1 \star (f_2 \star f_3)) \star f_4$$

Two conjugate associative algebras

left and right compositions

$$(A \circ B) \star C := A \star (B \star C) , \qquad C \star (A \bar{\circ} B) := (C \star A) \star B$$
$$(A_1 \circ A_2 \circ \ldots \circ A_n) \star C = A_1 \star (A_2 \star \ldots (A_n \star C) \ldots))$$
$$\blacktriangleright A \circ 1 = A = 1 \circ A$$

• $A \circ B$ is typically not a function; some notable exceptions:

$$x^{i} \circ x^{i} = x^{i} \star x^{i} = (x^{i})^{2}$$
 $p_{i} \circ p_{i} = p_{i} \star p_{i} = (p_{i})^{2}$

 \blacktriangleright convention: $\bar{\circ}$ is evaluated before \circ

A state ρ is an expression of the form

$$\rho = \sum_{\alpha=1}^{n} \lambda_{\alpha} \, \psi_{\alpha} \, \bar{\circ} \, \psi_{\alpha}^{*} \qquad \text{with} \qquad \int |\psi_{\alpha}|^{2} = 1$$

 λ_{α} are probabilities and ψ_{α} are phase space wave functions:

Expectation value:

$$\langle A \rangle = \int A \star \rho = \sum_{\alpha} \lambda_{\alpha} \int \psi_{\alpha}^* \star (A \star \psi_{\alpha}) = \int A \cdot S_{\rho} ,$$

with state function

$$\mathcal{S}_
ho = \sum_lpha \lambda_lpha \psi_lpha \star \psi^*_lpha \;, \qquad \int \mathcal{S}_
ho = 1 \;.$$

Expectation values of observables (= real functions) are real

$$\langle A \rangle^* = \sum_{\alpha} \lambda_{\alpha} \int (A \star \psi_{\alpha})^* \star \psi_{\alpha} = \sum_{\alpha} \lambda_{\alpha} \int \psi_{\alpha}^* \star (A^* \star \psi_{\alpha}) = \langle A^* \rangle$$

Expectation value of compositions

$$\langle A \circ B \circ \ldots \circ C \rangle = \int (A \circ B \circ \ldots \circ C) \star (\sum_{\alpha} \lambda_{\alpha} \psi_{\alpha} \bar{\circ} \psi_{\alpha}^{*})$$

 $= \sum_{\alpha} \lambda_{\alpha} \int [A \star (B \star \ldots (C \star \psi_{\alpha})] \star \psi_{\alpha}^{*}$

Nonassociative quantum mechanics

Positivity

$$egin{aligned} \langle A^* \circ A
angle &= \sum_{lpha} \lambda_{lpha} \int \psi_{lpha}^* \star [A^* \star (A \star \psi_{lpha})] = \sum_{lpha} \lambda_{lpha} \int (\psi_{lpha}^* \star A^*) \star (A \star \psi_{lpha}) \ &= \sum_{lpha} \lambda_{lpha} \int (A \star \psi_{lpha})^* \cdot (A \star \psi_{lpha}) = \sum_{lpha} \lambda_{lpha} \int |A \star \psi_{lpha}|^2 \geq 0 \end{aligned}$$

 \rightsquigarrow semi-definite, sesquilinear form

$$(A,B) := \langle A^* \circ B \rangle = \sum_{\alpha} \lambda_{\alpha} \int (A \star \psi_{\alpha})^* \cdot (B \star \psi_{\alpha})$$

 $\Rightarrow \mathsf{Cauchy}\text{-}\mathsf{Schwarz} \text{ inequality}$

$$|(A,B)|^2 \le (A,A)(B,B)$$

→ uncertainty relations

Uncertainty relations

uncertainty in terms of shifted coordinates $\widetilde{X}^{\prime}=X^{\prime}-\langle X^{\prime}\rangle$

$$(\Delta X^{\prime})^{2} = \langle (X^{\prime})^{\star 2} \rangle - \langle X^{\prime} \rangle^{2} = \langle \widetilde{X}^{\prime} \star \widetilde{X}^{\prime} \rangle = \langle \widetilde{X}^{\prime} \circ \widetilde{X}^{\prime} \rangle = (\widetilde{X}^{\prime}, \widetilde{X}^{\prime})$$

Cauchy-Schwarz

$$(\Delta X')^2 (\Delta X^J)^2 \ge |(\widetilde{X}', \widetilde{X}^J)|^2 = \frac{1}{4} |\langle [X', X^J]_{\circ} \rangle|^2 + \frac{1}{4} |\langle \{\widetilde{X}', \widetilde{X}^J\}_{\circ} \rangle|^2$$

 \Rightarrow Born-Jordan-Heisenberg-type uncertainty relation

$$\Delta X' \cdot \Delta X^J \geq \frac{1}{2} \big| \langle [X', X^J]_{\circ} \rangle \big|$$

Position-momentum uncertainty

 $[p_i, p_j]_\circ = [p_i, p_j]_\star = 0$ and $[p_i, x^j]_\circ = [p_i, x^j]_\star = i\hbar\delta_i^j$ and therefore

$$\Delta p_i \cdot \Delta p_j \ge 0$$
 and $\Delta x^i \cdot \Delta p_j \ge \frac{\hbar}{2} \delta_j^i$

Position-position uncertainty

$$\begin{split} [x^{i}, x^{j}]_{\circ} \star \psi &\equiv x^{i} \star (x^{j} \star \psi) - x^{j} \star (x^{i} \star \psi) = [x^{i}, x^{j}]_{\star} \star \psi - \hbar^{2} R^{ijk} \partial_{k} \psi \\ &= i\hbar R^{ijk} \left(p_{k} \psi - \frac{i\hbar}{2} \partial_{k} \psi + i\hbar \partial_{k} \psi \right) = i\hbar R^{ijk} \psi \star p_{k} \end{split}$$

and therefore

$$\Delta x^{i} \cdot \Delta x^{j} \geq rac{\hbar}{2} |R^{ijk} \langle p_{k}
angle'|$$

featuring the opposite (!) state $\rho' = \sum_{\alpha=1}^n \lambda_\alpha \, \psi_\alpha^* \, \bar{\circ} \, \psi_\alpha$

Eigenfunctions and eigenstates

"star-genvalue equation"

$$A \star f = \lambda f$$
 with $\lambda \in \mathbb{C}$

complex conjugation implies $f^* \star A^* = \lambda^* f^*$

real functions have real eigenvalues

$$f^* \star (A \star f) - (f^* \star A) \star f = (\lambda - \lambda^*)(f^* \star f)$$
$$(\lambda - \lambda^*) \int f^* \star f = (\lambda - \lambda^*) \int |f|^2 = 0.$$

eigenfunctions with different eigenvalues are orthogonal

Associator and common eigen states if $X' \star S = \lambda'S$ and $X' \star S = \lambda'S$ and $X^{K} \star S = \lambda^{K}S$ then

$$\int [(X^{I} \star X^{J}) \star X^{K}] \star S = \int (X^{I} \star X^{J}) \star (X^{K} \star S)$$
$$= \lambda^{K} \int (X^{I} \star X^{J}) \star S = \lambda^{K} \int X^{I} \star (X^{J} \star S) = \lambda^{K} \lambda^{J} \lambda^{I}$$

likewise $\int [X^I \star (X^J \star X^K)] \star S = \lambda^I \lambda^K \lambda^J$.

taking the difference implies

$$[[X^{I}, X^{J}, X^{K}]]_{\star} = \lambda^{K} \lambda^{J} \lambda^{I} - \lambda^{I} \lambda^{K} \lambda^{J} = 0$$

 \Rightarrow Nonassociating observables do not have common eigen states \rightsquigarrow spacetime coarse graining

Area and volume operators

$$iA^{IJ} = [\widetilde{X}^{I}, \widetilde{X}^{J}]_{\star}$$
 and $V^{IJK} = \frac{1}{2}[[\widetilde{X}^{I}, \widetilde{X}^{J}, \widetilde{X}^{K}]]_{\star}$

expectation values of these (oriented) area and volume operators:

$$\langle A^{IJ} \rangle = \hbar \Theta^{IJ} (\langle p \rangle)$$
 and $\langle V^{IJK} \rangle = \frac{3}{2} \hbar^2 R^{IJK}$

with three interesting special cases

$$\langle A^{(x^i,p_j)}
angle = \hbar \delta^i_j , \quad \langle A^{ij}
angle = \hbar R^{ijk} \langle p_k
angle , \quad \langle V^{ijk}
angle = \frac{3}{2} \hbar^2 R^{ijk}$$

 \Rightarrow coarse-grained spacetime with quantum of volume $\frac{3}{2}\hbar^2 R^{ijk}$

Nonassociative quantum mechanics

$$\rho = \sum_{\alpha=1}^{"} \lambda_{\alpha} \psi_{\alpha} \,\bar{\circ} \,\psi_{\alpha}^{*} \,, \qquad \mathcal{S}_{\rho} = \sum_{\alpha} \lambda_{\alpha} \psi_{\alpha} \star \psi_{\alpha}^{*} \,, \qquad \mathcal{H} \in \mathbb{R}$$

Evolution (Schrödinger-style):

-

$$i\hbar \frac{\partial \psi}{\partial t} = \mathcal{H} \star \psi , \qquad \mathcal{H} \star \psi = E \psi$$
$$\frac{\partial A}{\partial t} = \frac{i}{\hbar} [\mathcal{H}, A]_{\circ} \qquad (\circ\text{-derivation})$$

Evolution (Heisenberg-style):

$$\begin{split} \frac{\partial A}{\partial t} &= \frac{i}{\hbar} \left[\mathcal{H}, A \right]_{\star} \qquad (\text{not a } \star \text{-derivation!}) \\ \frac{\partial S_{\rho}}{\partial t} &= \frac{1}{i\hbar} \left[\mathcal{H}, S_{\rho} \right]_{\star} \quad , \qquad \mathcal{H} \star S_{\rho} = E \; S_{\rho} \end{split}$$

Nambu-Poisson structures

- Appear in effective membrane actions
- ► Nambu mechanics: multi-Hamiltonian dynamics with generalized Poisson brackets; e.g. Euler's equations for the spinning top :

$$\frac{d}{dt}L_i = \{L_i, \frac{\vec{L}^2}{2}, T\} \quad \text{with} \quad \{f, g, h\} \propto \epsilon^{ijk} \,\partial_i f \,\partial_j g \,\partial_k h$$

• more generally $\{\{f_0, \dots, f_p\}, h_1, \dots, h_p\} = \{\{f_0, h_1, \dots, h_p\}, f_1, \dots, f_p\} + \dots \\ \dots + \{f_0, \dots, f_{p-1}, \{f_p, h_1, \dots, h_p\}\}$

► The nonassociative ***-product quantizes these brackets:

$$\underbrace{[[x^i, x^j, x^k]]_{\star}}_{\text{Jacobiator}} = i\hbar \sum_{l} \left(R^{ijl} [p_l, x^k]_{\star} + \text{ cycl.} \right) = 3\hbar^2 R^{ijk}$$

- \blacktriangleright interaction via deformation \rightsquigarrow generalizes gauge principle
- (non-geometric) fluxes \rightsquigarrow nonassociative structures
- ▶ nonassociative quantum mechanics ~→ can be formulated
- spacetime (energy-momentum) coarse graining

Magnetic monopoles in the lab

spin ice pyrochlore and Dirac monopoles

Castelnovo, Moessner, Sondhi (2008) Fennell; Morris; Hall, ... (2009)

frustrated spin system \leftrightarrow huge degeneracy of classical ground state

frustration is lifted but pyrochlore spin ice property survives quantization Lieb, PS (1999)

Thanks for listening!