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Introduction: Quantized Geometry

Quantum spacetime

quantum + gravity =

Quantized geometry: apply the principles of QM to spacetime itself

» microscopic non-commutative/non-associative spacetime structures

> expect spacetime coarse-graining, natural regularization



Quantum fields on noncommutative spaces
[x',x/] = i6% # 0
forbidden interactions, controlled Lorentz violation, UV/IR mixing

NC Standard Model, NC GUTs, etc.

Gravity on noncommutative spaces  [©.®] #0
twisted tensor calculus, deformed Einstein equations

vV v v v

All very interesting. . . but:

> no space-time coarse graining!
» 0 ~ B~ how to deal with dB = H # 07?
= higher structures, deformations



Strings and generalized geometry: non-geometric fluxes

Non-geometric flux backgrounds
T-dualizing a 6-torus with 3-form H-flux gives rise to geometric and

. T, T o T oo
non-geometric fluxes  Hy — f;* — Q/%F —4 R

Hellermann, McGreevy, Williams (2004)
Hull (2005), Shelton, Taylor, Wecht (2005)
Liist (2010), Blumenhagen, Plauschinn (2010)

Generalized (doubled) geometry (O(d, d) isometry, g, B,...)

Non-geometry geometrized in membrane model
quantization = non-associative *-product
Mylonas, PS, Szabo (2012-2013)



Strings and generalized geometry: non-geometric fluxes

H;; 3-form background flux

f,-jk geometric flux, [e;, ] = f,-jkek
-k globally non-geometric, T-fold
Rk locally non-geometric, non-associative

structure constant of a generalized bracket:

[er, ]c = fi*ex + Hye®

[er, €]c = QF%ex — f/ie”

¢, &/]c = R e+ Qe"
Courant/Dorfman/Roytenberg bracket on I'(TM & T*M)

governs worldsheet current and charge algebras
Alekseev, Strobl; Halmagyi; Bouwknegt; . ..



Generalized /higher geometry

Dorfman bracket

Generalizes the Lie bracket of vector fields X € ['(TM) to
V=X+{(el(TMa T*M):

X+&Y+np=[X,Y]+Lxn—tyd (+twisting terms)
E=TM@@ T*M is called “generalized tangent bundle”

E with the Dorfman bracket, the natural pairing (—, —) of TM and T*M
and the projection h: E — TM (anchor) forms a Courant algebroid.



Generalized /higher geometry

Courant algebroid

vector bundle E —=s M, anchor h € Hom(E, TM),
R-bilinear bracket [—, —] , and fiber-wise metric {(—, —),
s.t. for e, €', e’ € E:

le.[¢, "]l = [[e, €], €"] + [¢/, [e, €”]] (1)

h(e)(e',e') =2([e, €] ¢') = 2([¢', €] €) (2)
Consequences:

e, fe'] = h(e).f & + fle, €] (3)

h([e, €]) = [h(e), h(e')]. (4)

(2) can be polarized
(1) and (3) are the axioms of a Leibniz algebroid



Generalized /higher geometry and gravity

Graded “super” Poisson manifold T*[2] T[1]M
» degree 0: x' “coordinates”
> degree 1: €% = (0", x;)
> degree 2: p; “momenta”
symplectic 2-form
1 ) ) .
w=dp; Adx' + EGagdfa A d€P =dpj A dx"+ dxi A0+ db; A Y
even (degree -2) Poisson bracket
(X, ¥}y =0, {p,¥} =0, {¢,¢}=¢6""
metric G*%: natural pairing of TM, T*M

{Xlaej}:(% 3 {Xi)Xj}:07 {6i79j}:05



Generalized /higher geometry and gravity

Generalized geometry as a derived structure
Hamiltonian

O = ¢“hi (x)p;  (+twisting terms)
For e = e,(x)€* (degree 1, odd):

» pairing: (e,e’) = {e, €'}
» anchor: h(e)f = {{e,©},f}
> bracket: [e, €']p = {{e,©}, €'}
{6,6} =0 = Courant algebroid axioms



Generalized /higher geometry and gravity

Deformation and interaction |: gravity
deformation by a non-symmetric metric G = g + B

it =0 = {xix} =2gx)
= for X = X'(x)x; . v=Vvi(x)p;:
(v, X} =Vex, {v.vV =[v,V]ue+R(v.V)
choose Weitzenbdck connection = R(v,v’) =0 and
VEx; = —(9iGy) 6’
the derived bracket involves the Levi-Civita connection V¢
X, Y] =X, Y]p +2g(V-“X,Y) + H(—, X, Y)

plus skew symmetric torsion H = dB.



Generalized /higher geometry and gravity

generalized Koszul formula for G =g+ B

2g(VZX7 Y) = <Z7 [Xv Y]ly
—g(Y [X Z]Lle) - ([X Y]Llea Z) + g(X7 [Y7 Z]Lie)
= 2g(V Y,Z)+ H(X,Y,Z)
= non-symmetric Ricci tensor
1 i 1 i m
Ry = Rji€ — §V:'LCHJ-/ = 2 Him' H;

if

= gravity action (= closed string effective action)

1 1
/ dix\/—g (RLC o M H'Jk>

Sg - 167TGN

Jurco, Khoo, PS, Vysoky



QM with 3-cocycle

Deformation and interaction Il: gauge theory

Note: B=V x A implies V - B = 0, hence we cannot work with canonical
momenta and covariant derivatives in the presence of magnetic sources.
alternatively: deformed canonical commutation relations

x',x]' =0, [x',p]] =ik, [pi,pj] = iheF; (where Fj = ejxBx)

2
Let p = pjo’ and H = 2p_m = Pauli Hamiltonian:

1

= om ( {o'. 0/ Hpi,pi} + —[O' JJ][p,,pJ]> ;—m — %O-B

Lorentz-Heisenberg equations of motion:

3w

dp i e - dr i
P liHE = = (FxB_-B — L HF =
™ h[ ,P] (p>< Xp) S h[ , 7]

in this formalism V - B # 0 is allowed (magnetic sources)



QM with 3-cocycle

Jacobi identity:
[p1, (P2, p3]'] + [P, [p3. p1]'T + [ps, [p1. p2] ] = 12V - B = Kepiopm

For p, # 0: non-associativity, 7 linear operator g = —ihV — eA

Translations are generated by T(3) = exp(%é’- p):
T(3)T(3) = er®2T(a, + &)

[T(3)T(3)] T(3) = ef = T(a,)[T(3) T(33)]

®1, = flux through triangle (31, 3>)
®123 = flux out of tetrahedron (31, 3, 33) = pogm

Associativity of translations is restored for:

Ho€dm
h

€ 217 (Dirac charge-quantization)

Jackiw '85,'02

point-like magnetic monopoles ... else: need NAQM



Aspects of quantization  6(x) ~ %

The operator-state formulation of QM cannot handle non-associative
structures. . .

Phase-space formulation of QM

» Observables and states are (real) functions on phase space.

» Algebraic structure introduced by a star product,
traces by integration.
» State function (think: “density matrix”): S, >0, ['S, = 1.
» Expectation values (O) = [O % S,,.
S,

» Schrodinger equation Hx S, — S, « H = ihﬁ

» “Stargenvalue” equation: HxS, =S, H =ES,.



Aspects of quantization  6(x) ~ %

Popular choices of star products
» Moyal-Weyl (symmetric ordering, Wigner quasi-probability function)
Weyl quantization associates operators to polynomial functions via
symmetric ordering: x* ~ RH, x1x¥ ~ $(K1RY 4+ xV&M), etc.
extend to functions, define star product f; x f, := ?1;‘; .
» Wick-Voros (normal ordering, coherent state quantization)
QHO states in Wick-Voros formulation:

» xp-ordered star product: x-exponential = ordinary path integral



Aspects of quantization  6(x) ~ %

Deformation quantization of the point-wise product in the direction of a
Poisson bracket {f, g} = 099;f - 0;g:

ih
frg=1fg+5{f g} +NBulf,g)+ W Bo(f.g) +... .

with suitable bi-differential operators B,,.

There is a natural gauge symmetry: “equivalent star products”
x> Df«Dg=D(f+g),

with Df = f + EDyf + B2Dof + ...



Aspects of quantization  6(x) ~ %

Kontsevich formality and star product
U, maps n k;-multivector fields to a (2 — 2n+ Y k;)-differential operator

Un(Xa, ..., X)) = Z wr Dr(Xy, ..., &,) .

reG, 0
P SR
The star product for a given bivector 8 is:

f*gzzo (i:!)" Un(©,...,0)(f,g)

H 2
=gt 2 Y000 o~ S 00 gkt - 0ig
h2 ,
- (Z 019,04 (9;04f - Oig — Oncf - a,-a,g)) ¥

Kontsevich (1997)



Aspects of quantization  6(x) ~ %

Formality condition
The U, define a quasi-isomorphisms of L.,-DGL algebras and satisfy

QU )4y Y elTT) [U(n), U ()]

TUJ=(1,...,n)
Z,T#0

= Z (_1)0617 Un—l([Xi)')(j]Sa‘Xla'")‘5&7"'7')(1')"')Xn) )

i<j
relating Schouten brackets to Gerstenhaber brackets.
This implies in particular ®(de®) = L-d, ®(0), i.e.

6 (non-)Poisson < % (non-)associative



Aspects of quantization  0(x) ~> %

Poisson sigma model
2-dimensional topological field theory, E = T*M

. 1 .
St = [ (6rax+ 500006 18)
Pt
with © = 2 0¥(x)9; A §; , £ = (&) € QY(ZTo, X* T*M)

perturbative expansion = Kontsevich formality maps

valid on-shell ([©,©]s = 0) as well as off-shell, e.g. twisted Poisson

Kontsevich (1997)
Cattaneo, Felder (2000)



Higher geometry

geometric ladder / extended objects in background fields

AKSZ-model: Poisson-sigma Courant-sigma
(open string) (open membrane)
T*[1|M T*[2] T[1|M
derived bracket: Poisson Dorfman
object: point particle closed string

algebraic structure:  non-commutative  non-associative



Geometrized non-geometry: membrane sigma model

Courant sigma model
TFT with 3-dimensional membrane world volume X3

51(\21)<sz:/): (¢i/\dXi+%GIJOéI/\dOéJ—h/i(X)(bi/\al
3
+1T X I J K
6 uk(X)a' Ao Aa

embedding maps X : ¥3 — M, 1-form «, aux. 2-form ¢, fiber metric G,
anchor h, 3-form T (e.g. H-flux, f-flux, Q-flux, R-flux).

AKSZ construction: action functionals in BV formalism of sigma model
QFT's for symplectic Lie n-algebroids E
Alexandrov, Kontsevich, Schwarz, Zaboronsky (1995/97)



Geometrized non-geometry: membrane sigma model

Membrane action with R-flux
(@) _ ndx 4 LRI (X e A
Sp = dgi N X" + 2 RF(X) & A & A &
X3
for constant backgrounds, using Stokes leads to boundary action
1
SI(?Z) = / (17/ AdX! + 5 oM (Xx)n /\m) :
X
Poisson sigma-model with auxiliary fields 7, and

ijk i
0= (0" = (R—(S,ljk 501) — % (non-associative!)

fxg="-exp <%_L {R"f"pk8;®8j+8;®5"—5’@8,-])

Mylonas, PS, Szabo (2012)



Jordan Algebra

Noncommutative Jordan Algebras
(1) x(yx)=(xy)x  ‘“flexible”
2)  X*() = (Py)x
properties (1) and (2) imply
(3)  x™(yx") = (x™y)x"  “power associative”

and are necessary and sufficient conditions for

1
xoy:= 2 (xy +yx)

to be Jordan, i.e. xoy = yoxand (xoy)ox°®=xo(yox°?).

P. Jordan (1933), A.A. Albert (1946), R.D. Schafer (1955)



Jordan Algebra

non-associative star product

frxg=-exp <%L [RUkPk5i®6j+ai®5i—5i®8iD

Question: Are we dealing with a Jordan algebra?
X! (XK x x!) = (x5 xK) % x! v
(x5 (xK % xT) = ((x")*2 % xK) % ! v

but:

x (P xXP) = (P xX2) % X2 = 2iR?p-X # 0

for Rik = Relik. = Answer: no
Alexander Held, PS (2014), Bojowald, Brahma, Biiyiikcam, Strobl (2016)



Gulinaydin-Zumino Model

Exchange x and p, replace R by Hij ...
X,ple=i0, X, X].=0  [pjpjl. = iHjx"

algebra of coordinates and physical (gauge invariant) momenta in a
constant homogeneous magnetic charge density background

» coarse graining in momentum space

» three copies of p> do not associate:
R D o\ D 2 o =
px(p"xp ) — (P *P)*xP = 2iepragneicX - P 7 0

= cannot diagonalize? = no free stationary states??

» eigenfunctions: just need to make sure that (X- p) =0, in fact:

p,2 *p =Ny =  P(x,p)x exp(2ixi(p; -\)), AN ER



Nonassociative quantum mechanics

Phase-space formulation of NAQM

» Operators: complex-valued functions on phase space — the star
product serves as operator product
» Observables: real-valued functions on phase-space

» Dynamics: Heisenberg-type time evolution equations

0A
ot

these are in general not derivations of the star product!

= 1M, AL

non-associative star product
T ik 5 B
frg=-ep (5 [RJ P ® 0+ 0, @8 —d @3,-]

Mylonas, PS, Szabo (2012-2013)



Nonassociative quantum mechanics

Trace properties

» 2-cyclicity (trace-less commutator) , positivity
/dde [frxg—gxfl=0 |, /d2dxf**f20
» 3-cyclicity (trace-less associator)

/dde [(Fxg)xh—fx(gxh)]=0

inequivalent quartic expressions

/ﬂ*(fz*(fs*ﬂ)) =/(f1*fz)*(f3*ﬁ;)2/((1‘1*6)*1‘3)*&

[fix(Beyeh) = [ (Rix(Brn) «h



Nonassociative quantum mechanics

Two conjugate associative algebras
» left and right compositions
(AoB)xC:=Ax(B*C), Cx(AsB):=(CxA)xB
(AfoAro...0A)*C=Ax(Ax*...(A, % C)...))
» Acl=A=10A

» Ao B is typically not a function; some notable exceptions:
X"OX"ZX'.*X"Z(X")2 PioPi:Pi*Pi:(Pi)2

» convention: o is evaluated before o



Nonassociative quantum mechanics

A state p is an expression of the form
=Y Navnsy  with [P =1
a=1

Ao are probabilities and v, are phase space wave functions:

Expectation value:

W= [Arp=Y 0 [vixAsun) = [A-s,.

with state function

5p=ZAa¢a*¢;, /spzl.



Nonassociative quantum mechanics

Expectation values of observables (= real functions) are real

A" :Z)\a/(A*wa)**wa:ZA0/¢Z*(A**¢a): (A")

Expectation value of compositions

(AoBo...oC):/(AoBo...oC)*(Z)\awa&/;Z)

_ZA /[A* wo ()] %o



Nonassociative quantum mechanics

Positivity
o) =3 N [ A« (Ax )] =3 e [ (5 A% (A 1)
=3 e [(Ar ) (Axa) =30 [ 1A%l 20
~ semi-definite, sesquilinear form
(A, B) = ZA /(A*qpa (B *1q)

= Cauchy-Schwarz inequality
(A, B)” < (A, A)(B, B) .

~~ uncertainty relations



Nonassociative quantum mechanics

Uncertainty relations
uncertainty in terms of shifted coordinates X! = X! — (X/)

(AXT)? = (X)2) = (X)? = (X' % X") = (X' o X!) = (X!, X')
Cauchy-Schwarz

o~ 1 1~ ~
(AX"P(ax?)? > (X, X)) = ZI([X',XJ]O>I2 + Z|<{X',Xj}o>|2
= Born-Jordan-Heisenberg-type uncertainty relation

AX - ax? > Z|[(X X )|

N



Nonassociative quantum mechanics

Position-momentum uncertainty
[P, pjlo = [pi> pjlx = 0 and [p;, x]o = [pi, /], = iid} and therefore
Ap;-Ap; >0 and Ax' . Ap; > géj’
Position-position uncertainty
X', X0 % 1h = x5 (X x9) — xf % (X" %) =[x, x], % b — B2R* 1)
= IR (s — 00+ D) = IR« py
and therefore

Ax' - AX > §|Rijk<Pk>,

b

featuring the opposite (1) state p' =Y 1 _; Ao ¥} 51,



Nonassociative quantum mechanics

Eigenfunctions and eigenstates

“star-genvalue equation”
Axf =M\ with A € C
complex conjugation implies f* x A* = \*f*
» real functions have real eigenvalues

F*x(Axf) = (F"xA)x f = (A= X")(f*«xf)

()\—)\*)/f**f:()\—)\*)/|f|2:0.

» eigenfunctions with different eigenvalues are orthogonal



Nonassociative quantum mechanics

Associator and common eigen states
if X'«S=XSand X «S =)S and XK xS =)KS then

/[(X’*XJ)*XK]*S = /(X’*XJ)*(XK*S)
= )\K/(X’*XJ)*S = )\K/X’*(XJ*S) = NN
likewise [[X!x (X7 % XK)] %S = AAKN.
taking the difference implies
[X', X7, XKL = MAIA = AAKN =0

= Nonassociating observables do not have common eigen states
~~ spacetime coarse graining



Nonassociative quantum mechanics

Area and volume operators
A = (X! X7], and VMK = [[)?',)?J,XK]]*

expectation values of these (oriented) area and volume operators:
(AMy = heM((p)) and (VMK) = thIJK

with three interesting special cases
(A2) = hs] , (AT) = AR (py) (V%) = SR

= coarse-grained spacetime with quantum of volume 31?R



Nonassociative quantum mechanics

PZZ)\M/JQ&PZ, Sp:Z)\aq/}a*QpZa HeR

a=1
Evolution (Schrddinger-style):

SO0 B
Iha—%*@b, H*'(/)—E"ﬁ

0A

i L
i [H, Al (o-derivation)

Evolution (Heisenberg-style):

0A
ot

as, 1 B
W—ﬁi[%,sp]*, H*SP—ESP

= 7% [H, Al (not a x-derivation!)



Remark on Nambu-Poisson 3-brackets

Nambu-Poisson structures

» Appear in effective membrane actions

» Nambu mechanics: multi-Hamiltonian dynamics with generalized
Poisson brackets; e.g. Euler’'s equations for the spinning top :

d [2

L= {L;, = T} with {f,g, h} < €% 0,f 9;g Okh

» more generally
({fo,-- 6l b, by = {{fo b, B} fie e b 4.
coo{fo, oo o1, {fp, b1, - L hp))
» The nonassociative x-product quantizes these brackets:

[[x, %/, xH]], = ihz (RU/[P/,Xk]* + cycl.) = 312 Rk
b !

Jacobiator



Summary

interaction via deformation ~~ generalizes gauge principle

>
» (non-geometric) fluxes ~~ nonassociative structures

» nonassociative quantum mechanics ~~ can be formulated
>

spacetime (energy-momentum) coarse graining



Magnetic monopoles in the lab

spin ice pyrochlore and Dirac monopoles

- |

Castelnovo, Moessner, Sondhi (2008)
Fennell; Morris; Hall, ...(2009)

>

frustrated spin system <> huge degeneracy of classical ground state

frustration is lifted but pyrochlore spin ice property survives quantization
Lieb, PS (1999)
Thanks for listening!



