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Curving the Doubled Space

Key Points � �Curving the Doubled Space�

I Alternative implementation of constraint

I para-Kähler and para-Hermitian geometries

I Connections for these geometries
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Other and related Approaches

In the literature

I DFT on group manifolds [Blumenhagen,Haÿler,Lüst]

I DFT and QP-manifolds [Heller,Ikeda,Watamura]

I Extended Riemannian Geometry and NQ-manifolds
[Deser,Sämann]
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Overview of GG and DFT

Generalized Geometry
[Hitchin,Gualtieri]

Extended vector bundle E = TM ⊕ T ∗M
I Generalized vectors: X = (x, α) ∈ Γ(E)

I O(D,D) metric: η(X,Y ) = ιxβ + ιyα

I anchor map: π : E −→ TM, π(X) 7→ x

Derivative and Bracket

I Dorfman: LXY = ([x, y],Lxβ − ιydα) with J = 0

I Courant: [[X,Y ]] = LXY − 1
2dη(X,Y )

I compatible: LXη = 0 and π(LXY ) = Lxy
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Overview of GG and DFT

Double Field Theory

[Siegel; Hull,Zwiebach]

Double underlying space P ∼= M × M̃
I Doubled coordinates: xM = (xµ, x̃µ)

I Generalized vectors: X = Xµ( ∂
∂xµ + dx̃µ) +Xµ( ∂

∂x̃µ
+ dxµ)

Generalized Lie derivative

I LXY
M = XN∂NY

M − Y N∂NX
M + ηMNηPQ∂NX

PY Q

I Algebra does not close: J 6= 0

I Need constraint: ηAB∂A∂B = 0
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Overview of GG and DFT

GG vs DFT

Generalized Geometry

I No need for section condition

I Basespace is �xed - only O(D,D) transformations on E

Double Field Theory

I T-duality changes basespace: map from M to M̃

I Section condition required
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Overview of GG and DFT

GG vs DFT

Relation between GG and DFT

I After imposing section condition: only depend on half the
coordinates → DFT reduces to GG

I But di�erent ways of picking spacetime M : which half of P is
base for GG?

Need extra geometric information to relate GG to DFT
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Restricted Fields vs. Restricted Derivatives

Di�erent Approach

Consider the metric algebroid (E, η, π,L∇)

I Vector bundle E = TP
I metric η and compatible connection ∇
I anchor π : E → TP
I generalized Lie derivative

L∇XY = ∇π(X)Y −∇π(Y )X + θ∇(Y,X)

�Twist� Vector θ∇

I Given by η(Z, θ∇(Y,X)) = η(Y,∇π(Z)X)

I Like Y-tensor: θA∇(Y,X) = Y AB
CD π

E
B∇EXCY D
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Restricted Fields vs. Restricted Derivatives

Di�erent Approach

For ∇ = ∂ and π = Id this is the algebroid for DFT

I C-bracket: [[X,Y ]] = L∂XY −
1
2dη(X,Y )

I Jacobiator: J = η(θ, θ)

To get Jacobi identity ⇒ need section condition:

ηABθ
AθB = 0

Now try di�erent approach:
instead of restricting the �elds, restrict the derivatives!
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Restricted Fields vs. Restricted Derivatives

Projections & Derivatives

Projection operators on TP = L⊕ L̃
I P, P̃ : TP → TP
I Maximally isotropic w.r.t. η: L = ImP, L̃ = Im P̃

I Important property: η(P (X), Y ) = η(X, P̃ (Y ))

Projected derivative

I For any metric compatible connection ∇: DX := ∇P (X)

I Projected generalized Lie derivative

LD
XY = DXY −DYX + θD(Y,X)
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Restricted Fields vs. Restricted Derivatives

Vaisman Formalism
[Vaisman '12]

For ∇ = ∂ and π = P can show

I since θD ∈ L̃ = KerP , i.e. P (θD) = 0

I have η(θD, θD) = 0

I and JD = 0

Thus (E = TP , η, π = P,LD) is a Leibniz algebroid

I The Jacobi identity holds

I The �elds remain unrestricted
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Restricted Fields vs. Restricted Derivatives

Restricted Fields vs. Restricted Derivatives

I Di�erent but equivalent approach to close algebra

I Fields remain unrestricted, but LD only �sees� half the
coordinate dependence

I Di�erent solutions to section condition ⇔ di�erent splittings
of TP
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Restricted Fields vs. Restricted Derivatives

para-Hermitian Geometry

para-Hermitian Geometry

Doubled space = symplectic manifold

I extra ingredient: symplectic form ω [Hull `04; Deser,Sämann `16]

I almost para-Hermitian manifold P with (η, ω) and K := η−1ω

I bi-Lagrangian structure K: TP = L⊕ L̃

K
∣∣
L

= +1, K
∣∣
L̃

= −1 with K2 = +1
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Restricted Fields vs. Restricted Derivatives

para-Hermitian Geometry

Two aims:

I �nd general / canonical connections in para-Hermitian
geometry

I show how ω provides the extra geometrical information to
relate GG and DFT
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para-Kähler and para-Hermitian Geometries

Almost Para-Hermitian Geometry

Manifold with three compatible structures

I Almost para-complex structure K: K2 = +1

I Almost symplectic structure ω: KTωK = −ω

I pseudo-Riemannian structure η: η(X,Y ) = ω(X,K(Y ))
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para-Kähler and para-Hermitian Geometries

Almost Para-Kähler Geometry

Integrability conditions

I If ω is closed: dω = 0⇒ Almost Para-Kähler

I If K is integrable: NK = 0⇒ Para-Hermitian

I If K is integrable and ω is closed: ⇒ Para-Kähler
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para-Kähler and para-Hermitian Geometries

Geometry for DFT

Bi-Lagrangian manifold P
I metric algebroid structure on TP = L⊕ L̃

I C-bracket and generalized Lie derivative

I �uxes appear in dω ⇒ para-Kähler or para-Hermitian
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para-Kähler and para-Hermitian Geometries

Jacobi Identity

Jacobi identity

De�ne Jacobiator

JD(X,Y, Z,W ) := η([LD
X ,L

D
Y ]Z − LD

LD
XY

Z,W )

De�ne projected tensors

I curvature: RP(X,Y )Z := [DX ,DY ]Z −D[P (X),P (Y )]Z

I torsion: τP(X,Y ) := P ([DXY −DYX]− [P (X), P (Y )])

I Nijenhuis: NP(X,Y ) := P̃ ([P (X), P (Y )])
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para-Kähler and para-Hermitian Geometries

Jacobi Identity

Related to

I Usual curvature:

RP(X,Y )Z = R(P (X), P (Y ))Z +∇NP(X,Y )Z

I Usual torsion:

τP(X,Y ) = T (P (X), P (Y )) +NP(X,Y )

− 1

2

[
(DXK)Y − (DYK)X

]
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para-Kähler and para-Hermitian Geometries

Jacobi Identity

Jacobi identity

JD(X,Y, Z,W ) =

RP(X,Y, Z,W ) +RP(Y, Z,X,W ) +RP(Z,X, Y,W )

−RP(W,Z,X, Y )−RP(W,X, Y, Z)−RP(W,Y,Z,X)

− η(W,∇τP(X,Y )Z)− η(W,∇τP(Y,Z)X)− η(W,∇τP(Z,X)Y )

− η(Z,∇τP(X,W )Y )− η(X,∇τP(Y,W )Z) + η(Y,∇τP(W,Z)X)

+ η(θD(Z,X), θD(W,Y ))− η(θD(Z, Y ), θD(W,X))

− η(θD(Y,X), θD(W,Z))
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para-Kähler and para-Hermitian Geometries

Jacobi Identity

Jacobi identity

Three contributions: curvature, torsion, twist θD

I L, L̃ Lagrangian ⇒ P (θD) = 0 ⇒ η(θD, θD) = 0

I Integrability of L = anchoring of P ⇒ τP = 0

I Check RP individually
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Canonical Connections

Para-Kähler

Levi-Civita connection ∇̊ of η

I symplectic form is closed: dω = 0

I bi-Lagrangian structure is integrable: NK = 0

I then ∇̊η = 0 and ∇̊ω = 0

Generalized Lie derivative

I projected derivative D̊X = ∇̊P (X)

I generalized Lie derivative LD̊
X with J D̊ = 0

I since R̊P = 0 and τ̊P = 0
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Canonical Connections

Para-Kähler

For DFT on para-Kähler manifold (P , η, ω):

LD̊
X is a generalized Lie derivative that satis�es the Jacobi

identity for arbitrary metric η

But does not work if dω 6= 0 � can we do better?
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Canonical Connections

Para-Hermitian

Canonical para-Hermitian connection ∇c

I relax closure condition: dω 6= 0

I but still integrable: NK = 0

I introduce
∇cX = P ∇̊XP + P̃ ∇̊X P̃

I given by contorsion

η(∇cXY, Z) = η(∇̊XY,Z)− 1

2
∇̊Xω(Y,K(Z))
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Canonical Connections

Para-Hermitian

Properties

I compatible with η and ω: ∇cη = 0 and ∇cω = 0

I compatible with K: ∇cK = K∇c

I generalized torsion

T c(X,Y, Z) =
1

2
dω(K(X),K(Y ),K(Z))−1

4

∑
cycl.

NK(X,Y, Z)

de�ned as
T (X,Y, Z) := η(L∇XY − L∇̊XY,Z) =

∑
cycl. Ω(X,Y, Z)
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Canonical Connections

Para-Hermitian

Generalized Lie derivative

I projected derivative Dc
X = ∇cP (X)

I generalized Lie derivative LDc

X with JDc = 0

I since RcP terms in Jc vanish by Bianchi identity for R̊

I projected torsion: τ cP = τ̊P = 0
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Canonical Connections

Para-Hermitian

For DFT on para-Hermitian manifold (P , η, ω):
LDc

X is a generalized Lie derivative that satis�es the Jacobi
identity for arbitrary metric η
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Relation to Generalized Geometry

Relation to Generalized Geometry

Invertible map ρ : TM ⊕ T ∗M → TP|M

ρ : (x, α) 7→ x+ η−1(α) := x+ x̃ = X

ρ−1 : X 7→
(
P (X), η(P̃ (X))

)
where M is a leaf of the foliation F of P → ρ can be extended to
all of TP
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Relation to Generalized Geometry

Relation to Generalized Geometry

Translate L(x,α) = ([x, y],Lxβ − ιydα) to some LXY

Lρ(x,α)ρ(y, β) = [x, y] + η−1(Lxβ − ιydα) = LXY

Can rewrite this as (using x = P (X), x̃ = P̃ (X), etc.)

η(LXY, Z) = η(∇cP (X)Y −∇
c
P (Y )X,Z) + η(∇cP (Z)X,Y )

LDc

X Y = Lρ(x,α)ρ(y, β)



Curving the Doubled Space

Relation to Generalized Geometry

Relation to Generalized Geometry

Presence of symplectic structure ω gives map ρ

I ρ maps L(x,α) of GG to generalized Lie derivative LDc

X of

Leibniz algebroid (TP, η, P,LDc)

I Yields canonical connection ∇c

I Alternative proof of Jacobi identity for LDc

X

I Speci�es relation between GG and DFT:
spacetime M is leaf of foliation F with tangent L = ImP
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Outlook & Summary

Outlook

I Include generalized metric H

I Relate to �Born connection� (compatible with (η, ω,H))

I Relax integrability constraints
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Outlook & Summary

Summary

I Close algebra by using projected derivatives instead of section
condition

I DFT lives on a para-Hermitian manifold � includes a
symplectic structure ω

I Canonical connection and its generalized Lie derivative satisfy
Jacobi identity
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Extenstions

String Theory

Tseytlin Action on phase space with X = (x/λ, y/ε)

S =
1

2

∫
dτdσ

[
(ηAB + ωAB)∂τX

A∂σX
B −HAB∂σXA∂σX

B
]

I including topological term [Giveon, Rocek; Hull]

String Theory

I chiral structure: J = η−1H
I T-duality on target space: X → J(X)

I ω and K not required, but present
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Extenstions

Para-quaternionic Manifold

Born Geometry (P ; η, ω,H) −→ para-quaternions (I, J,K)

I complex structure I = H−1ω (I2 = −1)

I chiral structure J = η−1H (J2 = +1)

I real structure K = η−1ω (K2 = +1)

All mutually anti-commute

I = JK = −KJ,
J = IK = −KI, IJK = −1

K = JI = −IJ,
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Extenstions

The Nijenhuis Tensor

The Nijenhuis Tensor of a tangent bundle structure A

NA ∈ Γ(Λ2(P)⊗ X(P))

NA(X,Y ) = A
(
[A(X), Y ]+[X,A(Y )]

)
−[A(X), A(Y )]−A2[X,Y ]

If A is integrable, NA = 0.
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Extenstions

The Nijenhuis Tensor

For bi-Lagrangian structure K = η−1ω

NK(X,Y, Z) = ∇̊Y ω(X,K(Z))− ∇̊Xω(Y,K(Z))

+ ∇̊K(Y )ω(X,Z)− ∇̊K(X)ω(Y,Z)

= dω(K(X),K(Y ),K(Z)) + dω(X,Y,K(Z))

+ 2∇̊K(Z)ω(X,Y )
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