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Curving the Doubled Space

Key Points — “Curving the Doubled Space”

» Alternative implementation of constraint

» para-Kdhler and para-Hermitian geometries

» Connections for these geometries
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Other and related Approaches

In the literature
» DFT on group manifolds

[Blumenhagen,HaRler, Liist]
» DFT and QP-manifolds

[Heller,Ikeda,Watamural]
» Extended Riemannian Geometry and NQ-manifolds

[Deser,Samann]
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Generalized Geometry Hitchin Gualte]

Extended vector bundle £ =TM & T*M

» Generalized vectors: X =(z,a) e T(E)
» O(D, D) metric: N(X,Y) =18+ 1y
» anchor map: 7 E—TMn(X)—x

Derivative and Bracket
» Dorfman: LxY = ([z,y], L2 — tyda) with J =0
» Courant: [X,Y] =LxY — 3dn(X,Y)
» compatible: Lxn=0and n(LxY) = Ly
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Double Field Theory
[Siegel; Hull, Zwiebach]
Double underlying space P =2 M x M
» Doubled coordinates: M = (
» Generalized vectors: X = X“(@% +dz,) + Xu(% + dz*)

zH, )

Generalized Lie derivative
» LyYM = XVNoNYM — Y NON XM 4 npMNppaoy XPY @
> Algebra does not close: J # 0
» Need constraint: 77’438,483 =0
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GG vs DFT

Generalized Geometry

» No need for section condition

» Basespace is fixed - only O(D, D) transformations on E

Double Field Theory

» T-duality changes basespace: map from M to M

» Section condition required
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GG vs DFT

Relation between GG and DFT

» After imposing section condition: only depend on half the
coordinates — DFT reduces to GG

» But different ways of picking spacetime M: which half of P is
base for GG?

Need extra geometric information to relate GG to DFT
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Different Approach
Consider the metric algebroid (E,n, 7, LY)

» Vector bundle £ = TP
» metric 77 and compatible connection V
» anchor m: E — TP

» generalized Lie derivative

LYY = Vax)Y = Vo)X +0v(Y, X)

“Twist” Vector Oy

» Given by T/(Zv HV(Y7 X)) = 77(Y’ V71'(Z)‘Xv)
» Like Y-tensor: 03(Y,X) =YABopnfpVpXxCyP
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L Restricted Fields vs. Restricted Derivatives
:

Different Approach

For V = 0 and 7 = Id this is the algebroid for DFT

» C-bracket: [X,Y]=L§Y — 1dn(X,Y)
» Jacobiator: J =n(6,0)

To get Jacobi identity = need section condition:

napd0f =0

Now try different approach:
instead of restricting the fields, restrict the derivatives!
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Projections & Derivatives

Projection operators on TP = L & L
» PP:TP—TP
» Maximally isotropic w.r.t. 7: L=ImP, L=ImP
» Important property: n(P(X),Y) =n(X,P(Y))
Projected derivative

» For any metric compatible connection V: Dx :=Vpx)

» Projected generalized Lie derivative

LYY =DyxY — Dy X +6p(Y, X)
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L Restricted Fields vs. Restricted Derivatives
:

Vaisman Formalism

[Vaisman "12]
For V =0 and m = P can show

» have n(fp,0p) =0

> since fp € L =Ker P, i.e. P(fp) =0
» and JP =0

Thus (E = TP,n,m = P,LP) is a Leibniz algebroid
» The Jacobi identity holds

» The fields remain unrestricted
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Restricted Fields vs. Restricted Derivatives

» Different but equivalent approach to close algebra

» Fields remain unrestricted, but LP only “sees” half the
coordinate dependence

» Different solutions to section condition < different splittings
of TP
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[

para-Hermitian Geometry

para-Hermitian Geometry

Doubled space = symplectic manifold

> extra ingredient: symplectic form w [Hull ‘04; Deser,Simann ‘16]

» almost para-Hermitian manifold P with (,w) and K := n~lw

» bi-Lagrangian structure K: TP =L ® L

K|, =+1, K|;=-1 with K>=+1
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[

para-Hermitian Geometry

Two aims:

» find general / canonical connections in para-Hermitian
geometry

» show how w provides the extra geometrical information to
relate GG and DFT
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[

para-Kahler and para-Hermitian Geometries

Almost Para-Hermitian Geometry

Manifold with three compatible structures

» Almost para-complex structure K: K?=+1
» Almost symplectic structure w: KTwK = —w

> pseudo-Riemannian structure : n(X,Y)=w(X,K(Y))
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para-Kahler and para-Hermitian Geometries

Almost Para-Kahler Geometry

Integrability conditions

» If wis closed: dw = 0 = Almost Para-Kahler

» If K is integrable: N = 0 = Para-Hermitian

» If K is integrable and w is closed: = Para-Kihler
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[

para-Kahler and para-Hermitian Geometries

Geometry for DFT

Bi-Lagrangian manifold P

» metric algebroid structure on TP =L & L
» C-bracket and generalized Lie derivative

» fluxes appear in dw = para-Kihler or para-Hermitian



e
Curving the Doubled Space
[

para-Kahler and para-Hermitian Geometries

LJacobi Identity

Jacobi identity

Define Jacobiator
JP(X,Y, Z,W) = (LR, LY]Z - LD, Z, W)
X
Define projected tensors
> curvature: RP(X, Y)Z = [Dx,Dy]Z - D[p(X)’p(y)]Z
> torsion: (X,Y) = P([DxY — Dy X]| — [P(X), P(Y)])

» Nijenhuis: Np(X,Y) = P([P(X), P(Y)])
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Related to

» Usual curvature:

Rp(X,Y)Z = R(P(X), P(Y))Z + Vi (xy)Z

» Usual torsion:

™»(X,Y)=T(P

—~

X),P(Y)) + Np(X,Y)

(DxK)Y — (DyK)X|

N | =
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para-Kahler and para-Hermitian Geometries

LJat:ol:i Identity

Jacobi identity

JP(X,Y,Z,W) =
RP(X,Y, Zv W) +RP(Y7 Z7X7 W) + RP(Z7X7KW)
- RP(VVa ZaXaY) - RP(WXvKZ) —RP(WY,Z,X)

=W, Vxy)Z) =W, Vi v,yX) =W, Voo z.x)Y)
—1(Z,Vopx)Y) =X, Vv Z) + Y, Vipow,z) X)

+n(0p(Z, X),0p(W,Y)) —n(0p(Z,Y), (W, X))
= (b (Y, X),0p(W, 2))
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Jacobi identity

Three contributions: curvature, torsion, twist 0p

» L, L Lagrangian = P(6p) =0 = 7(6p,fp) = 0

» Integrability of L = anchoring of P = 7p =0
» Check Rp individually
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Canonical Connections
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LCanonical Connections

Para-Kahler

Levi-Civita connection V of n

» symplectic form is closed: dw =0
» bi-Lagrangian structure is integrable: Nx =0
> then @nannd Vw =0

Generalized Lie derivative
» projected derivative Dy = @p(x)
> generalized Lie derivative L)ﬁ( with JP =0

» since Rp =0and 7p =0
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|—Canonical Connections

Para-Kahler

For DFT on para-K&hler manifold (P, n,w):

L)f} is a generalized Lie derivative that satisfies the Jacobi

identity for arbitrary metric n

But does not work if dw # 0 — can we do better?
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LCanonical Connections

Para-Hermitian

Canonical para-Hermitian connection V¢
» relax closure condition: dw # 0

» but still integrable: N =0
» introduce

» given by contorsion

ng :P%Xp—l-Péxp

° 1o
NV5Y, 2) = n(VxY, Z) - 5 Vxw(Y, K(2))
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LCanonical Connections

Para-Hermitian

Properties

» compatible with n and w: V°n =0 and Véw =0
» compatible with K: V¢K = KV¢

> generalized torsion

TX,Y,Z) = %dw(K(X), K(Y), K(Z))—i > Nk(X,Y, 2)
cycl.

defined as

T(X,Y,2) = n(LYY = LYY, 2) = ¥, AX,Y, 2)

cycl.
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LCanonical Connections

Para-Hermitian

Generalized Lie derivative
> projected derivative DS, = V%(X)
» generalized Lie derivative LY with JP° =0
> since R{ terms in J¢ vanish by Bianchi identity for R

> projected torsion: 75 = 7p = 0
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|—Canonical Connections

Para-Hermitian

For DFT on para-Hermitian manifold (P, n,w):

LY is a generalized Lie derivative that satisfies the Jacobi

identity for arbitrary metric n
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Relation to Generalized Geometry

Invertible map p: TM & T*M — TP|y

pi(r,a)sa+n ) =r+3=X
o715 X o (P(X),n(P(X)))

where M is a leaf of the foliation F of P — p can be extended to
all of TP
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|—Relation to Generalized Geometry
:

Relation to Generalized Geometry

Translate L, o) = ([, y], L8 — tyda) to some LY
]Lp(m,a)p(ya ﬂ) = [.’L‘, y] + ﬂ_l(ﬁxﬁ - ['yda) =LxY

Can rewrite this as (using = = P(X), # = P(X), etc.)

n(LxY, Z) =n(Vpx)Y = Ve X, Z2) + n(Vp X, Y)

L?(EY = ]Lp(z,a)p(y7 B)
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Relation to Generalized Geometry

Presence of symplectic structure w gives map p

> p maps L, ) of GG to generalized Lie derivative LY of
Leibniz algebroid (TP, n, P,LP")

» Yields canonical connection V¢
» Alternative proof of Jacobi identity for LY’

» Specifies relation between GG and DFT:
spacetime M is leaf of foliation F with tangent L = Im P
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Outlook

» Include generalized metric H

> Relate to “Born connection” (compatible with (7, w, H))
» Relax integrability constraints
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Summary

» Close algebra by using projected derivatives instead of section
condition

» DFT lives on a para-Hermitian manifold — includes a
symplectic structure w

» Canonical connection and its generalized Lie derivative satisfy
Jacobi identity
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String Theory

Tseytlin Action on phase space with X = (xz/\,y/€)
5= / drdo [(nap + wip)dr X0, X5 — Hapde X0, X 7]

» including topological term [Giveon, Rocek; Hull]

String Theory

» chiral structure: J =1 'H
» T-duality on target space: X — J(X)

» w and K not required, but present
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Para-quaternionic Manifold

Born Geometry (P;n,w,H) — para-quaternions (I, J, K)
» complex structure I = Hlw

» chiral structure J =~ 'H

(12 = )
(2 =+1)
» real structure K = n~'w (K? = +1)
All mutually anti-commute
I=JK =-K/J,
J=IK=—-KI,
K=Jl=—1J

I1JK = -1
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The Nijenhuis Tensor

The Nijenhuis Tensor of a tangent bundle structure A

N4 € T(AX(P) @ X(P))
NA(X,Y) = A(JA(X), Y]+[X, A(Y)]) - [A(X), A(Y)] - A%[X, Y]

If A is integrable, N4 = 0.
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The Nijenhuis Tensor

For bi-Lagrangian structure K = n~'w

Nk (X,Y, Z2) = Vyw(X, K(Z)) = Vxw(Y, K(Z))

+ Virmw(X, 2) = Vigxow(Y, 2)

=dw(K(X),K(Y),K(2)) +dw(X,Y,K(Z))
+26K(Z)W(X,Y)
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