## What is String Theory?

#### Soo-Jong Rey

#### Seoul National University, Seoul, Korea Fields, Gravity & Strings, Institute for Basic Science, Korea



June 8, 2017

We conventionally view that

- ► string is a massive, tensile, extended continuum object
- string excitation contains infinitely many normal modes
- relativistic string contains Regge spectrum  $M^2 = \alpha' J$
- relativistic string exhibits diffeo + weyl gauge invariances
- string exhibits T-duality and DFT gauge invariance

In this talk, I challenge all of these and argue for the case:

- string behaves a tensile but pointlike object
- excitation consists of finitely many states
- spectra comprise of  $\alpha'$ -corrected DFT contents
- exhibits T-duality and DFT gauge invariance

#### **Based on**

- Kanghoon Lee, SJR, Alejandro Rosabal, to appear
- cf. Rosabal's talk at Banff (January, 2017)



#### **Amazing connections**

This question brings together seemingly unrelated ideas

## DFT

- massive gravity
- CHY scattering equation
- ambitwistor string
- tensionless string; Gross-Mende limit
- Pauli-Villar & Lee-Wick quantization
- eternal black hole & thermofield double

#### A Ph.D. Student Project (I): Calculable & Predictable?

$$I = \int d^{4}x \left[ \frac{1}{2} (\partial \phi)^{2} + \frac{1}{2} (\partial \psi)^{2} + \frac{1}{2} g^{2} \phi^{4} (\partial \phi)^{2} + \frac{1}{2} \lambda^{2} \psi^{4} (\partial \psi)^{2} \right] \\ + \frac{1}{2} (\ln 2)^{2} \kappa^{2} \left( \frac{1}{7} \phi^{4} \psi^{7} (\partial \phi) + \frac{1}{5} \phi^{5} \psi^{6} (\partial \psi) \right)^{2} + \frac{1}{2} \zeta^{2} (7) h^{2} \psi^{16} (\partial \psi)^{2} \right] \\ + \frac{1}{2} (\ln 3)^{2} \eta^{2} \left( \frac{1}{9} \phi^{9} \psi^{4} (\partial \psi) + \frac{1}{5} \phi^{8} \psi^{5} (\partial \phi) \right)^{2} + \frac{1}{2} \zeta^{2} (4) \sigma^{2} \phi^{14} (\partial \phi)^{2} \right] \\ + \frac{1}{3} g (\partial \phi) (\partial \phi^{3}) + \frac{1}{2} \lambda (\partial \psi) (\partial \psi^{2}) + [\zeta(7) h \psi^{8} + \zeta(4) \sigma \phi^{7}] (\partial \phi \partial \psi) \\ + \frac{\ln 2}{35} \kappa (\partial \phi) \partial (\phi^{5} \psi^{7}) + \frac{\zeta(7)}{27} g h \partial (\phi^{3}) \partial (\psi^{9}) + \frac{\ln 2}{105} g \kappa \partial (\phi^{3}) \partial (\phi^{5} \psi^{7}) \\ + \frac{\ln 3}{45} \eta (\partial \psi) \partial (\phi^{9} \psi^{5}) + \frac{\zeta(4)}{16} \lambda \sigma \partial (\psi^{2}) \partial (\phi^{8}) + \frac{\ln 3}{90} \lambda \eta \partial (\psi^{2}) \partial (\psi^{5} \phi^{9}) \\ + \frac{\ln 2 \zeta(7)}{315} h \kappa \partial (\phi^{9}) \partial (\phi^{5} \psi^{7}) + \frac{\ln 3 \zeta(4)}{360} \sigma \eta \partial (\phi^{8}) \partial (\phi^{9} \psi^{5}) \\ + (\text{add extra if needed})$$

#### Secret code to Einstein gravity

$$I_{\text{gravity}} = \frac{1}{16\pi G_N} \int d^4 x \sqrt{-g} R(g) + (\text{Gibbons-Hawking})$$
$$= \int d^4 x \left[ (\partial h)^2 + h(\partial h)^2 + h^2(\partial h)^2 + \cdots \right]$$

In particular,

Divergence at  $\ell$ -loop =  $\ell(d-2) + 2$ ,

independent of the number of external lines.

After canonical transformation

$$\Phi = \phi + \frac{g}{3}\phi^3 + \frac{\zeta(7)}{9}h\psi^9 + \frac{\ln 2}{35}\kappa\phi^5\psi^7$$
  
$$\Psi = \psi + \frac{\lambda}{2}\psi^2 + \frac{\zeta(4)}{8}\sigma\phi^8 + \frac{\ln 3}{45}\eta\phi^9\psi^5,$$

the theory is **FREE**:

$$V_{\text{student}} = \frac{1}{2} (\partial \Phi)^2 + \frac{1}{2} (\partial \Psi)^2$$

Ward identities:

$$\frac{Z_{\phi^3}}{Z_{\phi}} = \frac{Z_{\psi^9}}{Z_{\phi^3}} = \frac{Z_{\phi^5\psi^7}}{Z_{\psi^9}} = 1, \qquad \frac{Z_{\psi^2}}{Z_{\psi}} = \frac{Z_{\phi^8}}{Z_{\psi^2}} = \frac{Z_{\phi^9\psi^5}}{Z_{\phi^8}} = 1$$

[5]

#### Student Project (II): Calculable and Predictable?

O(N) nonlinear sigma model:

$$I = \int \mathrm{d}^4 x \sum_{a,b=1}^{N-1} G_{ab}(\phi) \partial \phi^a \partial \phi^b, \qquad G_{ab} = \delta_{ab} + \frac{\phi_a \phi_b}{F^2 - \phi^2}$$

The model has two-derivative, non-polynomial interactions. At tree level, it behaves badly at real energy scales above  $\sim 4\pi F$ . At loop level, it behaves badly at virtuality above  $\sim 4\pi F$ .

To get better UV behavior, one must append the model with additional degrees of freedom at the threshold scale  $\sim 4\pi F$ . This UV completion is done by adding a Higgs field  $\sigma$  as the *N*-th component, replacing the scale  $4\pi F$ :

$$I = \int \mathrm{d}^4 x \sum_{A=1}^N \partial \Phi_A \partial \Phi_A + \frac{\lambda}{4} (\sum_{A=1}^N \Phi_A \Phi_A - F^2 / \lambda)^2$$

#### **Maxim from Student Project**

To attain better high-energy behavior and renormalizability, calculability and hence predictability of a theory framework:

Enlarge field degrees of freedom

**Choose Variables Smartly** 

Enlarge gauge symmetries

#### **Quantum Theory of Gravity**

- string theory constructed as a theory of quantum gravity
- Prohibitively complicated, so "divide & conquer"
- couplings, kinematical asymptotics, gauge symmetries

Starting from Einstein gravity, take pathway to string theory via

(1)  $(g, b, \phi)$  supergravity = infinite tension, low-energy limit

(2)  $(g_2, g_3, \dots)$  higher-spin = zero tension, high-energy limit

(3) double field theory = unified gauge symmetry limit



[10]

#### Pathway through Double Field Theory (DFT)

| Einstein gravity | $\subset$ Double Field Theory |             |             | $\subset$ String Theory |                            |  |
|------------------|-------------------------------|-------------|-------------|-------------------------|----------------------------|--|
| $Diff(M_D)$      | $\subset$                     | Generalized | $Diff(M_D)$ | C                       | <b>G</b> <sub>string</sub> |  |

## [Question]

## How (much) is high-energy behavior improved?

#### [Note] DFT as a proxy for the MAXIM

#### **DFT - Spacetime Description**

- start with T-duality symmetry of strings
- ► treat momentum, winding on equal footing: (x<sup>m</sup>, x̃<sub>m</sub>) := X<sup>M</sup>

$$\mathcal{M}_D\otimes \tilde{\mathcal{M}}_D \longrightarrow \hat{\mathcal{M}}_{(D,D)} \longrightarrow \overline{\mathcal{M}}_D/O(D,D,\mathbb{Z})$$

$$\partial_A \partial^A \Phi(X) \simeq 0, \qquad \partial_A \Phi(X) \partial^A \Psi(X) \simeq 0.$$

- $(g, b, \phi)_D \rightarrow (g, b, \phi)_{(D,D)}$ , then project down to  $\overline{\mathcal{M}}_D$
- combine Diff(g) and G(b) with O(D,D) covariance

 $G_{\text{DFT}} = GenDiff(\hat{\mathcal{M}}_D); \quad GenDiff(\hat{\mathcal{M}}_D) \gg Diff(\mathcal{M}_D)$ 

DFT endows unified gauge invariance of massless string modes (g, b, \u03c6) at the apparent expense of manifest locality

#### **DFT – Worldsheet Description**

$$x_L \rightarrow x_L, \qquad x_R \rightarrow -x_R$$

is the origin of O(D, D) signature of  $X^M = (x, \tilde{x})$ 

Level-matching condition leads to the section constraints

$$(L_0 - \bar{L}_0) |\Phi\rangle = 0 \quad \rightarrow \quad \partial^2 \Phi = 0, \quad \partial_A \Phi \partial^A \Psi = 0$$

G<sub>DFT</sub> = GenDiff(Â<sub>D</sub>) arises from closed SFT gauge algebra, which receives α'-corrections after O(D, D) non-covariant field and parameter redefinitions

#### DFT at Leading Order in $\alpha'$

- ► Fields  $(g, b, \phi) \rightarrow (\mathcal{M}_{MN} = \mathcal{E}_M \cdot \mathcal{E}_N, d)$  smart choice of variables
- O(D,D) invariant metric and O(D,D) covariant background

$$\mathcal{J} = egin{pmatrix} \mathbf{0} & \mathbb{I} \ \mathbb{I} & \mathbf{0} \end{pmatrix}; \qquad \mathcal{H} = <\mathcal{M}>$$

- At leading-order in  $\alpha'$ ,  $\mathcal{M}$  is constrained cf. O(N) nonlinear sigma model

$$\mathcal{M}^2 = \mathcal{J}; \qquad \mathcal{H} = \begin{pmatrix} g^{-1} & -g^{-1}b\\ bg^{-1} & g - bg^{-1}b \end{pmatrix}$$

$$\begin{split} S_0 &= \int e^{-2d} \mathcal{R}(\mathcal{E}) + \oint e^{-2d} \mathcal{L}_{GH}(\mathcal{E}) \quad \text{subject to} \quad \mathcal{M}^2 = \mathcal{J} \\ \mathcal{R} &:= \mathcal{M} \partial \mathcal{M} \partial \mathcal{M} + \partial \partial \mathcal{M} + \mathcal{M} \partial d \partial d + \partial \mathcal{M} \partial d + \partial \mathcal{E} \partial \mathcal{E} \mathcal{M} \end{split}$$

- ► The action is uniquely fixed by *G*<sub>DFT</sub>! enlarged gauge symmetry
- ► Unfortunately, the constraint  $M^2 = J$ , puts the weak field expansion of M as  $g = \eta + h$  and  $g^{-1} = \eta + h + h^2 + \cdots$  non-polynomial.

At leading-order in  $\alpha'$ , the DFT achieves enormously enlarged gauge symmetry  $G_{\rm DFT}$ , but the field variables are still not smart

### DFT at leading order in $\alpha' \simeq$ Einstein gravity

#### DFT at Next Order in $\alpha'$

- Metaphor: Nonlinear to Linear O(N) model with Higgs
- At next order, DFT miraculously manages to achieve this:

$$\begin{array}{lll} S_{1} & = & \int e^{-2D} \big[ (\mathcal{M} - \frac{1}{3}\mathcal{M}^{3}) \\ & + & \alpha'((\mathcal{M}^{2} - 1)\mathcal{M}\partial\partial D + \mathcal{M}\partial\mathcal{M}\partial\mathcal{M} + \mathcal{M}\partial\partial D) \\ & + & O(\alpha'^{2}\partial^{4}) + O(\alpha'^{3}\partial^{6}) \big] \end{array}$$

- Enlarged gauge symmetry remains the same, G<sub>DFT</sub>
- *M* is no longer constrained; *S*<sub>1</sub> is polynomial in fields
- The action is uniquely determined by G<sub>DFT</sub>
- No other possible counter-terms up to this order

- What are the "Higgs" modes?
- Is high-energy behavior improved?

#### Higgs modes?

- $\mathcal{M}$  is no longer constrained
- $S_0$  contains  $\partial^2$  terms,  $S_1$  contains up to  $\partial^6$  terms.
- $\mathcal{M} \simeq (g, b, \phi) \oplus (m, \overline{m})_{(mn)}$  from weak field expansion
- ▶ By O(D,D) field redefinition, only  $\partial^2$  terms are relevant

$$\frac{\alpha' \Box m - 4m}{\alpha' \Box \bar{m} + 4\bar{m}} = \mathcal{L}(\mathcal{M}, m, \bar{m}) = h^T h + \cdots$$

It can be viewed as quiver matrix theory associated with double spin-Lorentz symmetry O(D)⊗O(D). The m, m̄ fields are symmetric, the (h, b) is bi-fundamental. It admits large-D expansion.



#### Higgs Modes?

Extra fields  $(m, \overline{m})$  are the "Higgs" fields with features:

- M is no longer constrained; extra DOFs =  $m, \bar{m}$
- $m_{0i}, \bar{m}_{0i}$  are non-dynamical fields cf. not Lagrage multiplier
- negative norm, akin to Pauli-Villar and Lee-Wick

Boulware+Gross

*m*<sup>2</sup> = ±4/α′; this precise massive pair is needed upon integrating out *m*, *m* to cancel ∂<sup>0</sup> terms for *M* absent in S<sub>0</sub>

cf. Hohm, Nasser, Zwiebach

Can we get the DFT at finite  $\alpha'$  as some new kind of string theory itself, not just as a low-energy truncation of it?

#### **New Quantization**

On the worldsheet, the classical string is parity symmetric and Lorentz invariant. Upon quantization, it is therefore natural to choose the vacuum parity symmetric and Lorentz invariant.

$$X(z,\bar{z}) = X_R(z) + X_L(\bar{z})$$

$$X_R(z) = \frac{1}{2}X - \frac{i}{4}\alpha' P \log(z) + \sum_{n \neq 0} \frac{1}{n}\alpha_n z^n$$
$$X_L(\bar{z}) = \frac{1}{2}X - \frac{i}{4}\alpha' P \log(\bar{z}) + \sum_{n \neq 0} \frac{1}{n}\bar{\alpha}_n \bar{z}^n$$

We shall quantize the string in canonical quantization method.

Conventional quantization proceeds with the commutation relations where the quantized oscillators obey

$$\begin{split} [\boldsymbol{X}^{\mu}, \boldsymbol{P}^{\nu}] &= i\eta^{\mu\nu} \\ [\boldsymbol{a}^{\mu}_{m}, \boldsymbol{a}^{\nu}_{n}] &= m\delta_{m+n,0}\eta^{\mu\nu} \\ [\bar{\boldsymbol{a}}^{\mu}_{m}, \bar{\boldsymbol{a}}^{\nu}_{n}] &= m\delta_{m+n,0}\eta^{\mu\nu}. \end{split}$$

and the choice of vacuum  $|0\rangle = |0_0\rangle \otimes |0_R\rangle \otimes |0_L\rangle$ :

$$P|0_0\rangle = 0, \quad a_n|0_R\rangle = 0, \quad \bar{a}_n|0_L\rangle = 0 \quad (n = 1, 2, 3, \cdots)$$
 viz.

$$|0_0\rangle\in {
m Kre}({\it P}), \quad |0_L\rangle\in {
m Ker}(a_n), \quad |0_R\rangle\in {
m Ker}({ar a}_n).$$

The dual vacuum  $\langle 0| = (0\rangle)^{\dagger}$  is 1-to-1 with the vacuum  $|0\rangle$  if and only if the vacuum state is normalizable.

New quantization proceeds with the commutation relations where the quantized oscillators obey the same commutation relations

$$\begin{split} [\boldsymbol{X}^{\mu}, \boldsymbol{P}^{\nu}] &= i\eta^{\mu\nu} \\ [\boldsymbol{a}^{\mu}_{m}, \boldsymbol{a}^{\nu}_{n}] &= m\delta_{m+n,0}\eta^{\mu\nu} \\ [\bar{\boldsymbol{a}}^{\mu}_{m}, \bar{\boldsymbol{a}}^{\nu}_{n}] &= m\delta_{m+n,0}\eta^{\mu\nu}. \end{split}$$

but the choice of vacuum is specified by

$$P|0_0\rangle = 0, \quad a_n|0_R\rangle = 0, \quad \langle 0_L|\bar{a}_n = 0 \quad (n = 1, 2, 3, \cdots)$$

viz.

$$|0_0\rangle \in \operatorname{Kre}(P), \quad |0_L\rangle \in \operatorname{Ker}(a_n), \quad \langle 0_R| \in \operatorname{coKer}(\bar{a}_n).$$

This choice of vacuum is meaningful only if the vacuum state is not normalizable.

#### Consequences

With the new choice of vacuum in L-sector,

creation and annihilation operators are interchanged

$$[a, a^{\dagger}] = +1, \qquad [\bar{a}, \bar{a}^{\dagger}] = -1$$

The L-vacuum obeying  $\langle 0|a = 0$  is non-normalizable as its wave function is exponentially growing. This is reminiscent of Lee-Wick prescription to quantize ghost system.

- ► time-ordering is opposite between L and R sectors. This is reminiscent of time evolution in thermofield double. One can view L sector as therm-double of R sector at T = -∞.
- the string correlator becomes

$$\langle X^{\mu}(z_i, ar{z}_i) X^{
u}(z_j, ar{z}_j) 
angle = -rac{lpha'}{4} \eta^{\mu
u} \log rac{(z_i - z_j)}{(ar{z}_i - ar{z}_j)}$$

#### Virasoro constraints

The Virasoro operators of the system are

$$L_0 = \frac{1}{2}P^2 + \mathbf{N} - a, \qquad \bar{L}_0 = \frac{1}{2}P^2 - \bar{\mathbf{N}} - \bar{a}$$

where

$$\mathbf{N} = \sum_{n=1}^{\infty} \alpha_{-n} \alpha_n, \qquad \bar{\mathbf{N}} = -\sum_{n=1}^{\infty} \bar{\alpha}_n \bar{\alpha}_{-n}.$$

The level-matching condition and mass-shell condition are

$$\mathbf{N} + \bar{\mathbf{N}} = \mathbf{a} - \bar{\mathbf{a}}, \quad M^2 = \frac{4}{\alpha'}(\mathbf{N} - \mathbf{a}) = \frac{4}{\alpha'}(-\bar{\mathbf{N}} - \bar{\mathbf{a}}).$$

where  $a = 1, \bar{a} = -1$ . We also have gauge conditions

$$L_m | { t phys} 
angle = 0, \quad \langle { t phys} | ar{L}_m = 0, \qquad (m>0)$$

#### Spectrum

#### The states that obey Virasoro constraints are

| Ñ | Ñ | <i>М</i> <sup>2</sup> | state                                                                            | gauge condition                                                      | norm |
|---|---|-----------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|------|
| 1 | 1 | 0                     | $\epsilon_{\mu u} \alpha^{\mu}_{-1} \bar{\alpha}^{ u}_{1}  0, \mathbf{k}\rangle$ | $\mathbf{k}^{\mu}\epsilon_{\mu u}=\mathbf{k}^{ u}\epsilon_{\mu u}=0$ | 1    |
| 2 | 0 | $\frac{4}{\alpha'}$   | $m_{\mu\nu}\alpha^{\mu}_{-1}\alpha^{\nu}_{-1} 0,k\rangle$                        | $k^\mu m_{\mu u}=m_^\mu=0$                                           | -1   |
| 0 | 2 | $-\frac{4}{\alpha'}$  | $ar{m}_{\mu u}ar{lpha}_1^\muar{lpha}_1^ u 0,k angle$                             | $k^\mu ar{m}_{\mu u} = ar{m}_^\mu = 0$                               | -1   |

The massive states are Pauli-Fierz spin-2 fields but they obey the Virasoro gauge conditions

$$k^{\mu}m_{\mu
u}=m_{\mu}^{\mu}=0, \quad k^{\mu}ar{m}_{\mu
u}=ar{m}_{\mu}^{\mu}=0.$$

This is precisely the spectrum of '-corrected DFT! (cf. HSZ and HNZ: overlooked the Virasoro gauge conditions) If repeat our quantization for superstring theory, we find

- ► heterotic string: N=1 string supergravity + ONE massive spin-2 ghost of mass-squared ±4/α'
- type II string: N=2 string supergravity, no ghosts

#### Further Analysis (1)

We computed 4-point scattering amplitudes of massless string gravity states, and found the following remarkable properties

- a rational function of s, t, u field theory
- manifestly s, t, u invariant
- factorization to a sum of three-point scattering amplitudes of the spectrum
- $\alpha' \rightarrow 0$  limit: reduces to string gravity system (leading order DFT)
- *α'* → ∞ limit: interacting three spin-2 system (some are ghosts, so evades no-go theorem)

We computed the one-loop partition function (cosmological constant) and found the following properties

- NOT modular invariant
- divergent at UV
- for supersymmetric system (type II), partially finite at UV (in fact, 0)

#### **High-Energy Behavior (I)**

4-point (h, b) amplitudes

cf. Huag, Siegel, Yuan; Huang's talk

$$A_4^{\mathrm{DFT}}(s,t,u) \sim \left(1 + \frac{su}{s^2 - 4/\alpha'^2} + \cdots\right) A_4^{\mathrm{grav}}(s,t,u)$$

KLT kernel

$$\mathcal{A}_{4}^{ ext{DFT}} = \mathcal{A}_{4}^{ ext{chiral}}(+\eta) \mathcal{K}_{ ext{DFT}} ar{\mathcal{A}}_{4}^{ ext{chiral}}(-\eta)$$

where

$$\mathcal{K}_{ ext{DFT}} = \left(1 + rac{su}{s^2 - 4/lpha'^2} + \cdots
ight) \mathcal{K}_{ ext{grav}}$$

 For such soft UV behavior, both "negative-norms" and "precise mass-squared spectrum α'm<sup>2</sup> = ±4 are crucial

#### High Energy Behavior (II)

- ► BCFW factorization viewed as soft-collinear scattering Arkani-Hamed+Kaplan
- At large z, enhanced spin symmetry governs the leading behavior
- For leading DFT, the same as Einstein gravity cf. Boels+Hurst
- For  $O(\alpha')$  DFT, BCFT asymptotics gets more convergent

$$A_4^{\mathrm{DFT}}(-,-;\pm,\pm) \rightarrow \underbrace{\left(\frac{1}{z}+\cdots\right)}_{\mathrm{DFT}} \cdot \frac{1}{z^s}\Big|_{s=2}$$

Similar softer behavior for other polarizations

#### High Energy Behavior (III)

vacuum amplitudes

cf. bosonic YM theory at d=26; Tseytlin, SJR

$$\begin{array}{lll} A_{0} & = & \int \mathrm{d}^{4}p \left[ \sum_{(h,b,d)} \log p^{2} - \sum_{m,\bar{m}} \log (p^{2} \pm 4) \right] \\ & \simeq & \left[ (d-2)^{2} - 2 \cdot \frac{1}{2} (d-1)^{2} + 2(d-1) + 1 \right] \Lambda^{4} + \cdots \end{array}$$

- Subleading divergence uncancelled
- Radiative correction to Newton's constant non-vanishing from leading order

At higher-order in  $\alpha'$ , the DFT retained enormously enlarged gauge symmetry  $G_{\rm DFT}$ , and also the "Higgs" modes that soften the high-energy behavior

## DFT at higher order in $\alpha' \simeq$ UV improved gravity

## cf. Higher-spin theory at higher loop order

Giombi, Klebanov, Tseytlin, Beccaria, ....

#### **Remark on Indefinite Hilbert Space**

- ▶ m, m̄ are ghosts
- dynamical Pauli-Villar fields and Lee-Wick mechanism?

Boulware, Gross; Grinstein, Wise

- If arising from a certain limit of string theory, then "how"?
- Could they be viewed as "effective" description of contribution of infinitely many positive-norm states?

$$2\sum_{s=1}^{\infty} \frac{+1}{p^2 \pm m^2} = \frac{2\zeta(0)}{p^2 \pm m^2} = \frac{-1}{p^2 \pm m^2}$$

#### **Remarks for Ambitwistor Strings**

- ► O(\alpha') DFT was derived from chiral CFT and hence "chiral string" dynamics Hohm, Siegel, Zwiebach
- ► We derived this chiral string from conventional string after integrating out anti-chiral part and taking infinite tension limit; This fits nicely on "how" the spacetime signature changes between original and T-dual coordinates in DFT coordinates  $X^M = (x, \tilde{x})$  see also Hai-Tang Yang

$$\langle x^m(z,\bar{z})\tilde{x}^n(z,\bar{z})\rangle = \eta^{mn}\log\frac{z}{\bar{z}} = +\eta^{mn}\log z - \eta^{mn}\log \bar{z}$$

- The signature change converts the standard KLT to closed string amplitude to DFT amplitude
  Huang, Siegel, Yuan
- Ambitwistor string approach to YM and gravity scattering amplitudes and explanation of CHY scattering equation

cf. Cachazo, He, Yuan; Casali, Tourkine

#### **Remark on Little DFT**

- ► LST enjoys T-duality symmetry Vafa et.al.; Hohenegger, Iqbal, SJR; Kim, Kim, Lee
- no ten-dimensional  $(g, b, \phi)$
- ► 5-brane worldvolume fields (*a*, *b*<sup>+</sup>) + massive excitations
- manifest O(D,D) covariant description of (a, b<sup>+</sup>) leads to doubled gauge theory with enlarged gauge symmetries

little DFT = double gauge theory

$$S_{ ext{littleDFT}} = \int e^{-2d} rac{1}{2} \operatorname{Tr} \mathcal{F}^2(\mathcal{A}), \qquad \mathcal{A}_M \simeq (a, b^+)$$

- As a pathway for UV completing gauge theories to LST, explore high-energy behavior of the little DFT
- Expect to shed light to noncritical / QCD strings cf. Komargodski
- Tension between massive higher-spins from QCD (a) versus from abelian Higgs model (b<sup>+</sup>)?

# Thank You

For out of olde feldes, aas men seith, Cometh al this newe corn fro yeer to yere; And out of olde bokes, in good feith, Cometh al this newe science that men lere.

**Geoffrey Chaucer**