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Ever since Einstein formulated General Relativity (GR),
the Riemannian metric, gµν , has been privileged to be
the only geometric and hence gravitational field.

– All other fields are meant to be ‘extra’ matters.

– The coupling of GR to matters, e.g. to the Standard Model, are then ‘minimally’
determined through the explicitly appearing metric and covariant derivatives in
Lagrangians, which ensure both diffeomorphisms and local Lorentz symmetry.

• Symmetry dictates interaction. C. N. Yang

• On the other hand, string theory suggests us to put a two-form gauge potential, Bµν ,
and a scalar dilaton, φ, on an equal footing along with the metric.

Forming the massless sector of closed strings, they are ubiquitous in all string theories,∫
dDx

√
−ge−2φ

(
Rg + 4∂µφ∂µφ− 1

12 HλµνHλµν
)

where H = dB ,

and can be transformed to each other by T-duality. Buscher
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This talk summarizes my works in collaborations with Imtak Jeon, Kanghoon Lee,
Soo-Jong Rey, Yuho Sakatani, Charles Melby-Thompson, Rene Meyér, and Kang-Sin Choi:

1105.6294, 1206.3478,1210.5078, 1304.5946, 1307.8377, 1505.01301, 1506.05277,
1507.07545, 1508.01121, 1606.09307, 1609.04265. c.f. last page for detailed list.

JEONG-HYUCK PARK DOUBLED-YET-GAUGED SPACETIME



• Essentially I will argue that Double Field Theory, initiated by Siegel, Hull, Zwiebach,
has by now evolved to a ‘gravitational’ theory, i.e. Stringy Gravity , potentially
alternative to GR, which postulates the entire closed string massless sector to be
geometric and thus gravitational, dictated by Symmetry Principle:

– O(D,D) T-duality

– a pair of local Lorentz Symmetries, Spin(1,D−1)L × Spin(D−1, 1)R

– Diffeomorphisms (on doubled-yet-gauged spacetime)

– ‘Coordinate Gauge Symmetry’

– Talk Content –

Part I. Geometric Foundation

Stringy Gravity is formulated on ‘doubled-yet-gauged’ spacetime.

Part II. Gravitational Implication

Stringy Gravity modifies GR at “short” distance and may solve the Dark
Matter/Energy problems.
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Geometric Foundation

Doubled-yet-Gauged
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• Notation

Index Representation Metric (raising/lowering indices)

A,B, · · · O(D,D) & Diffeomorphism vector JAB =


0 1

1 0


p, q, · · · Spin(1,D−1)L vector ηpq = diag(−+ + · · ·+)

α, β, · · · Spin(1,D−1)L spinor Cαβ , (γp)T = CγpC−1

p̄, q̄, · · · Spin(D−1, 1)R vector η̄p̄q̄ = diag(+−− · · ·−)

ᾱ, β̄, · · · Spin(D−1, 1)R spinor C̄ᾱβ̄ , (γ̄p̄)T = C̄γ̄p̄C̄−1

– Here D denotes the dimenison of the physical spacetime. In this talk, D ≡ 4 or 10.

– Each symmetry rotates its own indices exclusively : spinors are O(D,D) singlet!

– The constant O(D,D) metric, JAB , naturally decomposes the doubled coordinates
into two parts,

xA = (x̃µ, xν) , ∂A = (∂̃µ, ∂ν) ,

where µ, ν are D-dimensional curved indices.
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• Doubled-yet-gauged spacetime JHP 2013

Stringy Gravity adopts a doubled-yet-gauged coordinate system:
the doubled coordinates are ‘gauged’ by an equivalence relation,

xA ∼ xA + ∆A(x) ,

such that each equivalence class, or gauge orbit in RD+D ,
represents a single physical point in RD .

In the above, ∆A is an arbitrary derivative-index-valued O(D,D) vector. This means
that its superscript index must be identifiable as that of derivative, ∂A = J AB∂B .

For example, with arbitrary functions, Φ1, Φ2 belonging to the theory, ∆A = Φ1∂
AΦ2.

The equivalence relation can be realized by requiring that all the fields/functions in
Stringy Gravity should be invariant under the coordinate gauge symmetry shift,

Φ(x + ∆) = Φ(x) ⇐⇒ ∆A∂A = 0 .

This invariance is equivalent to the ‘section condition’ in DFT, ∂A∂
A = 2 ∂µ∂̃µ = 0 ,

which can be generically solved, up to O(D,D) rotations, by letting ∂̃µ ≡ 0, and hence

(x̃µ , xν) ∼ (x̃µ + Φ1∂µΦ2 , xν) : x̃µ coordinates are gauged .

O(D,D) transformations then rotate the gauged directions (and the section).
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• Diffeomorphisms

Diffeomorphism covariance in doubled-yet-gauged spacetime are given by

δxA = ξA , δ∂A = −∂Aξ
B∂B = (∂BξA − ∂Aξ

B)∂B ,

and for a covariant tensor (or tensor density with weight ω),

δTA1···An = −ω∂Bξ
BTA1···An +

∑n
i=1 (∂BξAi − ∂Ai ξB)TA1···Ai−1

B
Ai+1···An .

This is the passive counterpart of the ‘generalized Lie derivative’, L̂ξ Siegel 1993.

– Unlike O(D,D) rotations, diffeomorphisms leave the gauged directions of the
doubled coordinates, e.g. {x̃µ}, invariant, and preserve the section, {xν}.

# The usual infinitesimal one-form, dxA, is not diffeomorphic covariant,

δ(dxA) = dxB∂Bξ
A 6= (∂Bξ

A − ∂AξB)dxB ,

which I will recall later to define the ‘proper length’.
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• Fundamental fields : building blocks of Stringy Gravity

The geometric and hence gravitational fields in Stringy Gravity consist of a pair of
vielbeins and a dilaton which are O(D,D) covariant:

VAp , V̄Ap̄ , d ,

They represent the massless sector of closed strings (i.e. NS-NS sector, c.f. R-R sector, Cαᾱ).

– The pair of vielbeins satisfy four defining properties,

VApV A
q = ηpq , V̄Ap̄V̄ A

q̄ = η̄p̄q̄ VApV̄ A
q̄ = 0 , VApVB

p + V̄Ap̄V̄B
p̄ = JAB ,

such that they are the “square-roots" of projectors,

PA
B = VApV Bp , P̄A

B = V̄Ap̄V̄ Bp̄

satisfying

P2 = P , P̄2 = P̄ , PP̄ = 0 , P + P̄ = 1 .

⇒ The difference of the two projectors sets the DFT-metric, HAB = PAB − P̄AB .

– The dilaton gives rise to the O(D,D) invariant integral measure with weight one,

e−2d .

Naturally the cosmological constant term in Stringy Gravity should be e−2d ΛSG.
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Now, let me talk about the diffeomorphism covariant derivatives
that turn out to involve two stages.

Semi-covariant derivatives which are
not by themselves automatically covariant.

They are naked and vulnerable, being
potentially anomalous under

diffeomorphisms.

Only after being properly dressed up,
through appropriate contractions with
the projectors (vielbeins), they become

completely covariant.
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• Semi-covariant derivative : Jeon-Lee-JHP 2010, 2011

∇CTA1A2···An := ∂CTA1A2···An − ωT ΓB
BCTA1A2···An +

n∑
i=1

ΓCAi
BTA1···Ai−1BAi+1···An .

The stringy version of the Christoffel connection has been uniquely determined,

ΓCAB=2(P∂C PP̄)[AB]
+2
(

P̄[A
D P̄B]

E−P[A
DPB]

E
)
∂DPEC− 4

D−1

(
P̄C[AP̄B]

D+PC[APB]
D
)(
∂Dd+(P∂E PP̄)[ED]

)
by demanding the compatibility, ∇APBC = ∇AP̄BC = ∇Ad = 0, and some extra
“torsionless” conditions.

• Semi-covariant Riemann-like curvature :

SABCD = S[AB][CD] = SCDAB := 1
2

(
RABCD + RCDAB − ΓE

ABΓECD
)
, S[ABC]D = 0 ,

where RABCD denotes the ordinary “field strength” of the stringy Christoffel connection,

RCDAB=∂AΓBCD−∂BΓACD+ΓAC
E ΓBED−ΓBC

E ΓAED ⇐ dΓ + Γ ∧ Γ .

By construction, it transforms infinitesimally as ‘total derivative’,

δSABCD = ∇[AδΓB]CD +∇[CδΓD]AB .

• Semi-covariant ‘Master’ derivative :

DA := ∂A + ΓA + ΦA + Φ̄A = ∇A + ΦA + Φ̄A .

The twofold spin connections are determined in terms of the above stringy Christoffel
connection by requiring the compatibility with the vielbeins,

DAVBp = ∇AVBp + ΦAp
qVBq = 0 , DAV̄Bp̄ = ∇AV̄Bp̄ + Φ̄Ap̄

q̄V̄Bq̄ = 0 .

JEONG-HYUCK PARK DOUBLED-YET-GAUGED SPACETIME



• Semi-covariant derivative : Jeon-Lee-JHP 2010, 2011

∇CTA1A2···An := ∂CTA1A2···An − ωT ΓB
BCTA1A2···An +

n∑
i=1

ΓCAi
BTA1···Ai−1BAi+1···An .

The stringy version of the Christoffel connection has been uniquely determined,

ΓCAB=2(P∂C PP̄)[AB]
+2
(

P̄[A
D P̄B]

E−P[A
DPB]

E
)
∂DPEC− 4

D−1

(
P̄C[AP̄B]

D+PC[APB]
D
)(
∂Dd+(P∂E PP̄)[ED]

)
by demanding the compatibility, ∇APBC = ∇AP̄BC = ∇Ad = 0, and some extra
“torsionless” conditions.

• Semi-covariant Riemann-like curvature :

SABCD = S[AB][CD] = SCDAB := 1
2

(
RABCD + RCDAB − ΓE

ABΓECD
)
, S[ABC]D = 0 ,

where RABCD denotes the ordinary “field strength” of the stringy Christoffel connection,

RCDAB=∂AΓBCD−∂BΓACD+ΓAC
E ΓBED−ΓBC

E ΓAED ⇐ dΓ + Γ ∧ Γ .

By construction, it transforms infinitesimally as ‘total derivative’,

δSABCD = ∇[AδΓB]CD +∇[CδΓD]AB .

• Semi-covariant ‘Master’ derivative :

DA := ∂A + ΓA + ΦA + Φ̄A = ∇A + ΦA + Φ̄A .

The twofold spin connections are determined in terms of the above stringy Christoffel
connection by requiring the compatibility with the vielbeins,

DAVBp = ∇AVBp + ΦAp
qVBq = 0 , DAV̄Bp̄ = ∇AV̄Bp̄ + Φ̄Ap̄

q̄V̄Bq̄ = 0 .

JEONG-HYUCK PARK DOUBLED-YET-GAUGED SPACETIME



• Completely covariant derivatives & curvatures

– Tensors,

PC
DP̄A1

B1 · · · P̄An
Bn∇DTB1···Bn =⇒ DpTq̄1q̄2···q̄n ,

P̄C
DPA1

B1 · · ·PAn
Bn∇DTB1···Bn =⇒ Dp̄Tq1q2···qn ,

DpTpq̄1q̄2···q̄n , Dp̄Tp̄q1q2···qn ; DpDpTq̄1q̄2···q̄n , Dp̄Dp̄Tq1q2···qn .

– Fermions, ρα, ρ′ᾱ, ψαp̄ , ψ
′ᾱ
p ,

γpDpρ , γ̄p̄Dp̄ρ
′ , Dp̄ρ , Dpρ

′ , γpDpψq̄ , γ̄p̄Dp̄ψ
′
q , Dp̄ψ

p̄ , Dpψ
′p .

– RR sector, Cαᾱ O(D,D) covariant extension of H-twisted cohomology

D±C := γpDpC ± γ(D+1)Dp̄Cγ̄p̄ , (D±)2 = 0 =⇒ F := D+C (RR flux ) .

– Curvatures,

PA
C P̄B

DSCD (Ricci-like ) , (PACPBD − P̄AC P̄BD)SABCD ( scalar ) ,

from which conserved Einstein-like curvature can be also constructed,

GAB := 2(PAC P̄BD − P̄ACPBD)SCD − 1
2JAB(Spq

pq − Sp̄q̄
p̄q̄) , ∇AGAB = 0 .
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• Type II D = 10 Maximally Supersymmetric Double Field Theory Jeon-Lee-JHP-Suh 2012

LMax = e−2d
[

1
8 (PABPCD − P̄ABP̄CD)SACBD + 1

2Tr(FF̄) + i ρ̄Fρ′ + iψ̄p̄γqF γ̄p̄ψ′q

+i 1
2 ρ̄γ

pDpρ− iψ̄p̄Dp̄ρ− i 1
2 ψ̄

p̄γqDqψp̄ − i 1
2 ρ̄
′γ̄p̄Dp̄ρ

′ + iψ̄′pDpρ′ + i 1
2 ψ̄
′p γ̄q̄Dq̄ψ

′
p

]

– Due to the twofold spin groups, Spin(1, 9)L × Spin(9, 1)R , the theory unifies the
conventional IIA and IIB SUGRAs. Namely the theory is chiral w.r.t. both spin
groups and hence unique. IIA and IIB appear as two distinct types of solutions.

Further, it admits non-Riemannian solutions (type IIC) where the Riemannian
metric, gµν , is not defined.

– Maximal 16+16 SUSY [full order, i.e. quartic, construction realizing ‘1.5 formalism’],

δρ = −γpDpε , δρ′ = −γ̄p̄Dp̄ε
′ , δψp̄ = Dp̄ε+ F γ̄p̄ε

′ , δψ′p = D′pε′ + F̄γpε .

– Euler-Lagrange equations include the ‘stringy’ Einstein equation:

Spq̄︸︷︷︸
curvature

= Tr(γpF γ̄q̄F̄) + fermions︸ ︷︷ ︸
matters

,

c.f. Coimbra-Strickland-Constable-Waldram, Hohm-Kwak-Zwiebach
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• Stringy geometry: Riemannian IIA/IIB vs. non-Riemannian IIC

With ∂̃µ ≡ 0, the O(D,D) covariant vielbeins and dilaton can be generically
parametrized by a pair of ordinary vierbeins, eµp, ēµp̄, B-field and string dilaton, φ :

VMp ≡ 1√
2

 (e−1)p
µ

(B + e)νp

 , V̄Mp̄ ≡ 1√
2

 (ē−1)p̄
µ

(B + ē)νp̄

 , e−2d ≡
√
|g|e−2φ ,

where the two ordinary vierbeins must correspond to the same Riemannian metric,

eµpeνqηpq = −ēµ p̄ ēν q̄ η̄p̄q̄ ≡ gµν ,

such that the DFT-metric assumes the well-known form,

HMN := PAB − P̄AB = VApVB
p − V̄Ap̄V̄B

p̄ ≡
(

g−1 −g−1B

Bg−1 g − Bg−1B

)
.

It follows that (e−1ē)p
p̄ is a Lorentz rotation, and hence, Jeon-Lee-JHP-Suh 2012

det(e−1ē) = +1 : type IIA vs. det(e−1ē) = −1 : type IIB

Diagonal gauge fixing, eµp ≡ ēµ p̄, leads to the conventional SUGRA.

However, the above is not the most general parametrization.
– Stringy Gravity encompasses novel geometries, namely type IIC, which do not

allow any Riemannian interpretation, e.g. HMN = JMN . Lee-JHP 2013, JHP 2016
– A less simple example of non-Riemannian geometry realizes the Gomis-Ooguri

‘non-relativistic’ string theory. Ko-Melby-Thompson-Meyer-JHP 2015
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det(e−1ē) = +1 : type IIA vs. det(e−1ē) = −1 : type IIB
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• Yang-Mills Jeon-Lee-JHP 2011

– Completely covariant Yang-Mills field strength is given by

PA
M P̄B

NFMN

where FMN is the semi-covariant field strength of a YM potential, VM ,

FMN := ∇MVN −∇NVM − i [VM ,VN ] .

– It is fully covariant w.r.t. all the symmetries of Stringy Gravity and the YM
gauge symmetry,

VM −→ gVM g−1 − i(∂M g)g−1 .

– We can freely impose O(D,D) & YM gauge covariant conditions on the potential:

VMVM = 0 , VM∂M = 0 ,

in order not to double the physical degrees.
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• Coupling to the Standard Model Choi-JHP 2015 [PRL]

D = 4 Stringy Gravity naturally, or minimally, couples to the Standard Model, dictated
by the symmetry principle:

– O(4, 4) T-duality
– Twofold local Lorentz symmetry, Spin(1, 3)L × Spin(3, 1)R
– Doubled-yet-gauged diffeomorphisms
– SU(3)× SU(2)×U(1) gauge symmetry

LSM−DFT = e−2d


1

16πGN
(PABPCD − P̄ABP̄CD)SACBD

+
∑
V PABP̄CDTr(FACFBD) +

∑
ψ ψ̄γ

aDaψ +
∑
ψ′ ψ̄

′γ̄āDāψ
′

−HAB(DAφ)†DBφ − V (φ) + yd q̄·φ d + yu q̄·φ̃ u + ye l̄ ′·φ e′



While coupling to SM, one has to decide the spin group for each fermion, as it a
prediction of Stringy Gravity that the spin group is intrinsically twofold:

Spin(1, 3)L vs. Spin(3, 1)R .

Conjecture: the quarks and the leptons may belong to the distinct spin groups.
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• Problems with dxM

In doubled-yet-gauged spacetime, the usual infinitesimal one-form, dxM , is neither
covariant under diffeomorphisms,

δxM = ξM , δ(dxM ) = dxN∂Nξ
M 6= (∂Nξ

M − ∂MξN )dxN ,

nor invariant under coordinate gauge symmetry,

dxM −→ d
(
xM + Φ1∂

M Φ2
)
6= dxM .

⇒ The naive contraction with the DFT-metric, dxMdxNHMN , is not a scalar, and thus
cannot give any sensible definition of ‘proper length’ in doubled-yet-gauged spacetime.
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• Gauged infinitesimal one-form, DxM

The problems can be all cured by gauging the infinitesimal one-form,

DxM := dxM −AM .

The gauge potential should satisfy the same property as the coordinate gauge
symmetry generator, i.e. derivative-index-valued vector, ∆M = Φ1∂

M Φ2, such that

AM∂M = 0 , AMAM = 0 .

Essentially, half of the components are trivial, e.g. with ∂̃µ ≡ 0,

AM = Aλ∂M xλ = (Aµ , 0) , DxM = (dx̃µ − Aµ , dxν) .

With the appropriate transformations of the gauge potential, the coordinate gauge
symmetry invariance and the diffeomorphism covariance can be assured for DxM ,

δC.G. xM = Φ1∂
M Φ2 , δC.G.AM = d

(
Φ1∂

M Φ2
)
, δC.G. (DxM ) = 0 ;

δxM = ξM , δAM = ∂MξN (dxN −AN ) , δ(DxM ) = (∂Nξ
M − ∂MξN )DxN .
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• Proper length in doubled-yet-gauged spacetime

With the gauged infinitesimal one-form, DxM = dxM −AM , we propose to define the
proper length through a path integral,

Length := − ln
[ ∫
DA exp

(
−
∫ √

DxM DxNHMN

)]
.

For Riemannian DFT-metric, we get a useful relation,

DxM DxNHMN ≡ dxµdxνgµν + (dx̃µ − Aµ + dxρBρµ) (dx̃ν − Aν + dxσBσν) gµν .

Hence, after integrating out the gauge potential, Aµ, the above O(D,D) covariant path
integral definition of the proper length reduces to the conventional one,

Length =⇒
∫ √

dxµdxνgµν .

Apparently, being x̃µ-independent, it measures the distance
between two gauge orbits rather than two points in RD+D ,

which is of course a desired feature.
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• Doubled-yet-gauged point particle action Ko-JHP-Suh 2016

The definition of the proper length readily gives

Sparticle =

∫
dτ
[

e−1 DτX M DτX NHMN (X)− 1
4 m2e

]
,

where e is an einbein and m is the mass of the particle.

With the Riemannian DFT-metric substituted, after integrating out e and AM , the
above action reduces to the conventional one in string frame:

Sparticle ≡
∫

dτ −m
√
−ẊµẊνgµν .

This implies that the particle follows the geodesic path defined in the string frame.

This preferred choice of the frame, i.e. String frame over Einstein frame, is due to the
Symmetry Principle, such as O(D,D), coordinate gauge symmetry, etc.

# Newton mechanics can be also formulated in the doubled-yet-gauged Euclidean space,

LNewton = 1
2 m Dt X M Dt X N δMN − V (X) ,

where M,N = 1, 2, · · · , 6, and the potential,V (X), satisfies the section condition.
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• Doubled-yet-gauged string action Lee-JHP 2013 [c.f. Hull 2006]

1
4πα′

∫
d2σ Lstring , Lstring = − 1

2

√
−h hij Di X M Dj X NHMN (X)− εij Di X MAjM ,

where i, j = 0, 1 and Di X M = ∂i X M −AM
i .

For an arbitrary curved DFT-metric, HMN (X), the above action is fully symmetric :

– worldsheet diffeomorphisms plus Weyl symmetry
– O(D,D) T-duality
– Douled-yet-gauged target spacetime diffeomorphisms
– the coordinate gauge symmetry : X M ∼ X M + Φ1∂

M Φ2
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• With the Riemannian DFT-metric, after integrating out AM , the doubled-yet-gauged
string action reduces to the conventional one,

1
4πα′Lstring ≡ 1

2πα′

[
− 1

2

√
−hhij∂i Xµ∂j Xνgµν(X) + 1

2 ε
ij∂i Xµ∂j XνBµν(X) + 1

2 ε
ij∂i X̃µ∂j Xµ

]
,

plus the bonus of the topological term introduced by Giveon-Rocek; Hull.

– The EOM of AM
i implies self-duality in the full doubled spacetime,

HM
NDi X N + 1√

−h
εij Dj X M = 0 ,

which relates Xµ and X̃µ.

– The EOM of X M is identified as the Stringy Geodesic Equation:

1√
−h
∂i
(√
−hHLM Di X M)+ ΓLMN (P̄M

ADi X A)(PN
BDi X B) = 0 .

– With the conjugate momentum, PM =
δLstring
δ ∂0XM ,

PM PM = 0 (level matching) , PM PNHMN = 0 (mass shell) .

• On the other hand, upon non-Riemannian backbrounds, the doubled-yet-gauged string
action leads to chiral or non-Relativistic string theory a la Siegel or Gomis-Ooguri.

Lee-JHP 2013, Ko-Melby-Thompson-Meyer-JHP 2015
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• Doubled-yet-gagued Green-Schwarz superstring JHP 1609.04265

Ssuperstring = 1
4πα′

∫
d2σ Lsuperstring ,

Lsuperstring = − 1
2

√
−hhij ΠM

i ΠN
j HMN − εij Di X M (AjM − iΣjM

)
,

where
ΠM

i := Di X M − iΣM
i , ΣM

i := θ̄γM∂iθ + θ̄′γ̄M∂iθ
′ ,

and θα and θ′ᾱ are respectively Spin(1, 9)L and Spin(9, 1)R Majorana-Weyl spinors.

It enjoys symmetries:

– worldsheet diffeomorphisms plus Weyl symmetry
– O(D,D) T-duality
– Doubled-yet-gauged target spacetime diffeomorphisms
– coordinate gauge symmetry : X M ∼ X M + Φ1∂

M Φ2
– twofold Lorentz symmetry, Spin(1, 9)L × Spin(9, 1)R ⇒ Unification of IIA & IIB
– Maximal 16+16 SUSY & kappa symmetries

Further, it encompasses type IIC, or the supersymmetric extension of the
Gomis-Ooguri non-relativistic string.

∗ String theory is better formulated on doubled-yet-gauged spacetime.
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Gravitational Implication

‘Uroboros’: an ancient Egyptian symbol for a serpent which eats its own tail.

“The rotation curve of a point particle in stringy gravity"
Ko-JHP-Suh 1606.09307 [JCAP]
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Dark Matter Problem

Galaxy rotation curves : observation Keplerian
√

MG/R fall-off : GR or Newton

• The galaxy rotation curve is a plot of the orbital velocities of visible stars versus their
radial distance from the galactic center.

• While Einstein gravity (GR), with Schwarzschild solution, predicts the Keplerian
(inverse square root) monotonic fall-off of the velocities, V =

√
1/x, x = R/MG,

observations however show rather ‘flat’ (∼ 200 km/s) curves after a fairly rapid rise.
• The resolution of the discrepancy may call for ‘dark matter’, or modifications of the

law of gravity, or perhaps both as is the case with Stringy Gravity.
• I will argue that Stringy Gravity modifies GR at ‘short’ distance and may solve the

dark matter and energy problems in ‘Uroboros’ manner.
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• Darkness of Stringy Gravity

i) Point-like particles couple to the string metric only,∫
dτ
[

e−1 DτX M DτX NHMN (X)− 1
4 m2e

]
=⇒

∫
dτ −m

√
−ẊµẊνgµν .

Hence, the string dilaton, φ, and B-field are dark to point particles.

ii) Each SM fermion couples to Stringy Gravity as

e−2d ψ̄γADAψ = e−2d ψ̄γpV A
p(∂Aψ + 1

4 ΦApqγ
pqψ)

≡ 1√
2

√
−g χ̄γµ

(
∂µχ+ 1

4ωµpqγpqχ+ 1
24 Hµpqγpqχ

)
c.f. Coimbra-Strickland-Constable-Waldram

where χ ≡ e−φψ. This field redefinition removes the string dilaton, φ, completely.
– The string dilaton, φ, is dark to the SM fermions, χ ;
– Like F1, χ can source the H-flux, and seems to remember it stringy origin!

iii) Each SM gauge boson couples to Stringy Gravity as

e−2d Tr
(

PABP̄CDFACFBD

)
≡ − 1

4
√
−ge−2φ Tr

(
gκλgµνFκµFλν

)
– B-field, or ‘axion’ (dual scalar), is dark to the gauge bosons;
– Standard Model gauge bosons can source the string dilaton, φ.
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• Spherical symmetry in doubled-yet-gauged spacetime

While φ and B-field are ‘dark’ to point particles, the self-interaction of the massless
closed string sector, together with its coupling to the Standard Model, should let
Stringy Gravity modify General Relativity.

This motivates us to look for spherically symmetric vacua of Stringy Gravity,
especially D = 4.

– Spherical solutions should admit three Killing vectors, V A
a , a = 1, 2, 3,

L̂VaHMN = 0 ⇐⇒ (P∇)M (P̄Va)N − (P̄∇)N (PVa)M = 0

L̂Va

(
e−2d)= 0 ⇐⇒ ∇M V M

a = 0

which form an so(3) algebra in terms of the C-bracket,

[Va,Vb]C =
∑

c
εabcVc .

JHP-Rey-Rim-Sakatani 2015
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• Asymptotically flat spherical vacuum:

e2φ = γ+

(
r−α
r+β

) b√
a2+b2 + γ−

(
r−α
r+β

) −b√
a2+b2 , B(2) = h cosϑ dt ∧ dϕ ,

ds2 = e2φ

[
−
(

r−α
r+β

) a√
a2+b2 dt2 +

(
r−α
r+β

) −a√
a2+b2 (dr2 + (r − α)(r + β)dΩ2)] ,

where a, b, h (h2 ≤ b2) are three free parameters and

α = a
a+b

√
a2 + b2 , β = b

a+b

√
a2 + b2 , γ± = 1

2

(
1±

√
1− h2/b2

)
.

In particular, the special case of b = h = 0 corresponds to the Schwarzschild geometry.
– This is a rederivation of the solution by Burgess-Myers-Quevedo (1994) who

generated the above solution by applying S-duality to the scalar-gravity solution
of Fischer (1948), Janis-Newman-Winicour (1968). It solves the familiar action,∫

d4x
√
−|g| e−2φ

(
R + 4 |dφ|2 − 1

12 |dB|2
)
.

– Equivalently, it solves the EOMs of D = 4 DFT (i.e. pure Stringy Gravity):

(PABPCD − P̄ABP̄CD)SACBD ≡ 0 , PA
C P̄B

DSCD ≡ 0 .

Thus, within the framework of Stringy Gravity, it should be identified as
the vacuum solution, in analogy with the Schwarzschild solution in GR.

Further, although it would be naked-singular from GR point of view, within
Stringy Gravity it can be regular: no O(4, 4) covariant curvature diverges.
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• Orbital velocity

Given the exact spherical solution, we define ‘proper’ radius, R :=
√

gϑϑ(r), which
converts the string metric into a canonical form,

ds2 = gttdt2 + gRRdR2 + R2(dϑ2 + sin2ϑ dϕ2) .
We then compute the ‘orbital velocity’ of circular geodesics,

Vorbit =
∣∣∣R dϕ

dt

∣∣∣ =
[
− 1

2 R dgtt
dR

] 1
2
,

as a function of R/(M∞G) which is a dimensionless radial variable normalized by
‘asymptotic’ mass (Komar mass1),

M∞G := lim
R→∞

(RV 2
orbit) = 1

2

(
a + b

√
1− h2/b2

)
.

? Stringy Gravity reduces to Newton Gravity at spatial infinity,

gtt → − 1 + 2M∞G
R , Vorbit →

√
M∞G

R as R → ∞ .

? Yet, Stringy Gravity modifies GR at ‘short’ distance, in terms of R/(M∞G).
Generically (b 6= 0), the orbital velocity is not monotonic: it features a maximum.

1c.f. ADM mass a la Wald,Q[∂t ] = 1
4

[
a+
( a−b

a+b

)√
a2+b2

]
JHP-Rey-Rim-Sakatani, Blair 2015
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• Rotation curves

– Specifically, if b = 0 (and hence h = 0), the solution reduces to the Schwarzschild

metric, resulting in the Keplerian orbital velocity, Vorbit =
√

M∞G
R .

– As long as b 6= 0, rotation curves feature a maximum and thus non-Keplerian over a
finite range, while becoming asymptotically Keplerian at infinity.

For example, if a = h = 0 and b = 2M∞G, we reproduce the renowned orbital velocity
formula, Vorbit =

√
M∞R

(R+2M∞G)2 , by Hernquist :

The orbital velocity in Hernquist model
assumes its maximum, 1

2
√

2
, about 35%

of the speed of light, at R = 2M∞G.

However, this value seems too high
compared to observations of galaxies.

– More interesting cases turn out to include nontrivial H-flux (h 6= 0 and hence b 6= 0).
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– By tuning the variable, it is possible to make the maximal velocity arbitrarily small,
such as about 150 km/s c−1, comparable to observations:

Rotation curves in Stringy Gravity
(dimensionless, nonexhaustive).

For sufficiently small R/(M∞G),
the gravitational force can be

repulsive.
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– By tuning the variable, it is possible to make the maximal velocity arbitrarily small,
such as about 150 km/s c−1, comparable to observations:

Rotation curves in Stringy Gravity
(dimensionless, nonexhaustive).

For sufficiently small R/(M∞G),
the gravitational force can be

repulsive.

• Uroboros spectrum of R/(M∞G)

– The observations of stars and galaxies far away, or the dark matter and the dark
energy problems, are revealing the short-distance nature of gravity!

– The repulsive gravitational force at very short-distance, R/(M∞G)→ 0+, may be
responsible for the acceleration of the Universe.
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– By tuning the variable, it is possible to make the maximal velocity arbitrarily small,
such as about 150 km/s c−1, comparable to observations:

Rotation curves in Stringy Gravity
(dimensionless, nonexhaustive).

For sufficiently small R/(M∞G),
the gravitational force can be

repulsive.

• Uroboros spectrum of R/(M∞G)

– The observations of stars and galaxies far away, or the dark matter and the dark
energy problems, are revealing the short-distance nature of gravity!

– The repulsive gravitational force at very short-distance, R/(M∞G)→ 0+, may be
responsible for the acceleration of the Universe. Thank you.
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