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WHY A GLOBAL APPROACH?

STEP 1: Address the problems of existence, uniqueness and construction of
T-dual space-times.

STEP 2: Obtain the Buscher rules in a unified and systematic manner:

- (g,B, φ) via generalised metrics and densities on Courant algebroids,

- RR-fields and D-brane charges via twisted cohomology and K-theory.
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A TOY EXAMPLE OF T-DUALITY

Let T = Rn/Zn, so that π1(T ) = Zn.

STEP 1: The T -dual is simply the dual torus T̂ = (Rn)∗/(Zn)∗.
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Note that

T̂ ∼= Hom(π1(T ),U(1)), T ∼= Hom(π1(T̂ ),U(1)).
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A TOY EXAMPLE OF T-DUALITY

STEP 2: The Poincaré line bundle P :

P
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T × T̂
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Isomorphism between cohomology rings:

T : H∗(X ,R)→ Hn−∗(T̂ ,R), α 7→ p̂∗(p∗(α) ∧ ch(P))

More explicitly:

T (α) =
∫

T
p∗(α) ∧ ec1(P)
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A GENERAL APPROACH TO T-DUALITY

Basic idea: extend from T to a family of tori.

1. Product manifold M × T

2. Principal T -bundle X → M.

3. Singular T -fibrations (i.e. mirror symmetry by the SYZ conjecture).

We restrict to case 2. These are classifed by their first Chern class,

c1(X ) ∈ H2(M, (Zn)∗).

Need the Neveu-Schwarz flux

[H ] ∈ H3(X ,Z)

to construct a non-trivial T-duals.
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TYPE II T-DUALITY

STEP 1: Given a pair (X ,H), what is the T -dual?

THEOREM (BOUWKNEGT-EVSLIN-MATHAI)

X ×M X̂
p
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(X ,H)

π
%%

(X̂ , Ĥ)

π̂
yy

M

n = 1: there always exists a unique pair (X̂ , Ĥ), satisfying

π∗([H ]) = c1(X̂ ), π̂∗([Ĥ ]) = c1(X ), p∗[H ] = p̂∗[Ĥ ].

n > 1: if there exists a T-dual (X̂ , Ĥ), it is not unique in general.



TYPE II T-DUALITY

STEP 1: Given a pair (X ,H), what is the T -dual?

THEOREM (BOUWKNEGT-EVSLIN-MATHAI)

X ×M X̂
p

zz

p̂

$$
(X ,H)

π
%%

(X̂ , Ĥ)
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EXAMPLE OF TYPE II T-DUALS

- Lens space L(k ;q) = S3/Zk is a S1-bundle over CP1 (for a suitable q)

with first Chern class c1(L(k ;q)) = k ∈ H2(CP1,Z) ∼= Z.

- Choose an H-flux h ∈ H3(L(k ;q),Z) ∼= Z.

- The T-dual of (L(k ;q),h) is another lens space (L(h;q′), k).

- In particular, (S3,0) is T-dual to (S2 × S1,1).
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TYPE II T-DUALITY

STEP 2: What are the dual Ramond-Ramond fields and their D-brane charges?

- Pick connections θ, θ̂ on X , X̂ , with curvatures F , F̂ respectively. Then

H = h + F̂ ∧ θ, Ĥ = h + F ∧ θ̂ p∗H − p̂∗Ĥ = dF ,

where h ∈ Ω3
cl (M) and F = 〈p∗θ ∧ p̂∗ θ̂〉.

- Isomorphism between twisted cohomology groups:

T : H∗(X ,H)→ Hn−∗(X̂ , Ĥ), α 7→
∫

T
p∗(α) ∧ eF

- Isomorphism between twisted K-theory groups:

T : K ∗(X ,H)→ K n−∗(X̂ , Ĥ), β 7→ p̂∗(p∗(β)⊗P)

where P is a twisted Poincaré line bundle.
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TYPE II T-DUALITY

STEP 2: What about the Buscher rules for (g,B)?

THEOREM (ŠEVERA)

[H ] ∈ H3(X ,R) determines an exact Courant algebroid (E , [·, ·], 〈·, ·〉) up to
isomorphism.

THEOREM (CAVALCANTI-GUALTIERI)

The map Φ : ET → Ê T̂ defined by

Φ(v + ξ) = p̂∗(v̂) + p∗(ξ)−F (v̂)

is an isomorphism of transitive Courant algebroids.

Recall that (g,B) determines a generalised metric G on E .

The Buscher rules for (ĝ, B̂) is read off from Ĝ = Φ(G).
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HETEROTIC STRING THEORY

- The Green-Schwarz anomaly cancellation:

dH0 = α′ (Tr (R∇ ∧R∇)− Tr (FA ∧ FA)) ,

or equivalently
dH0 = p1(TX ×X P)

where P → X is the gauge bundle, e.g. with the gauge group E8 × E8.

- Geometric meaning?

- Analogy: X is spin if w2(TX ) vanishes in H2(X ,Z2). The space of
inequivalent spin structures on X is an affine space over H1(X ,Z2).

- Definition: X is string if p1(TX ) vanishes in H4(X ,Z). The space of
inequivalent string structures on X is an affine space over H3(X ,Z).

- A string structure on X consists of a principal G-bundle σ : P → X and
[H ] ∈ H3(P,Z) which restricts fiberwise to the generator of H3(G,Z).
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HETEROTIC T-DUALITY

STEP 1: Ordinary T-duality gives

P ×P0 P̂
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- No guaranty that the G-action on P0 lifts to an action on P̂ commuting
with the T̂ -action.

- In fact, there is a topological obstruction measured by κ ∈ H2(G, (Zn)∗).



HETEROTIC T-DUALITY

STEP 1: Ordinary T-duality gives

P ×P0 P̂

p

zz

p̂

$$
(P,H)

σ

��

π

%%

(P̂, Ĥ)
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HETEROTIC T-DUALITY

STEP 1: Thus, X̂ → M exists and the diagram commutes if and only if κ = 0:
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- If κ = 0, then X̂ is unique and (P̂, Ĥ) is a dual string structure on X̂ .
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yy
M

- If κ = 0, then X̂ is unique and (P̂, Ĥ) is a dual string structure on X̂ .



HETEROTIC T-DUALITY

STEP 2: How about the heterotic Buscher rules for (g,H,A)?

- We have a string structure (P,H) on X . Fix an isotropic splitting
E = TP ⊕ T ∗P with Ševera class H.

- A connection A ∈ Ω1(P, g) gives rise to a trivially extended action

α : g→ Γ(E), v 7→ ψ(v) + ξ(v),

where ψ denotes the infinitesimal G-action on TP, and ξ(·) = k(A, ·)
with k the Killing form.

- In fact, there is a one-to-one correspondence between string
structures and such actions (as affine spaces under H3(X ,Z)).

- The reduction

E red = im(α)⊥/G ∼= TX ⊕ ad(P)⊕ T ∗X

is a transitive Courant algebroid on X .
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HETEROTIC T-DUALITY

STEP 2: The triple (g,H,A) defines a generalised metric on

Ered = TX ⊕ ad(P)⊕ T ∗X .

THEOREM
The Cavalcanti-Gualtieri isomorphism

Φ : ET → Ê T̂

exchanges the extended actions α and α̂, so we have

(Ered )
T ∼= (ET )red ∼= (Ê T̂ )red ∼= (Êred )

T̂

The heterotic Buscher rules are obtained via reduction of generalised metrics.
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EXAMPLES OF HETEROTIC T-DUALS

- The first Chern classes of X and X̂ satisfy:

〈c1(X ), c1(X̂ )〉 = p1(P0).

- If P0 = M ×G, then p1(P0) = 0 and we recover type II T-duality.

- Heterotic T-duality therefore allows for much more flexibility in the
possible changes in topology.

- Example 1: The lens spaces S2n+1/Zc and S2n+1/Zĉ are heterotic
T-duals with P0 → CPn the spin bundle, if n > 3 odd and cĉ = 1

2 (n + 1).

- Example 2: The homogeneous space G→ G/K , where K ⊂ G is a
Dynkin index 1 closed connected subgroup, defines a string structure on
G/K with H = 1

24π2 tr (g−1dg)3.

Thank you!
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