T-DUALITY IN HETEROTIC STRING THEORY

Rudjer Bošković Institute Zagreb, 6-9 June 2017

Pedram Hekmati

IMPA, Rio de Janeiro

1. Review the global approach to T-duality in type II string theory.

1. Review the global approach to T-duality in type II string theory.

2. Describe a global approach to T-duality in heterotic string theory.

1. Review the global approach to T-duality in type II string theory.

2. Describe a global approach to T-duality in heterotic string theory.

Joint work with David Baraglia (ATMP, 19, 2015, 613-672)

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

STEP 1: Address the problems of **existence**, **uniqueness** and **construction** of T-dual space-times.

STEP 1: Address the problems of **existence**, **uniqueness** and **construction** of T-dual space-times.

STEP 2: Obtain the **Buscher rules** in a unified and systematic manner:

STEP 1: Address the problems of **existence**, **uniqueness** and **construction** of T-dual space-times.

STEP 2: Obtain the **Buscher rules** in a unified and systematic manner:

- (g, B, ϕ) via generalised metrics and densities on Courant algebroids,

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

STEP 1: Address the problems of **existence**, **uniqueness** and **construction** of T-dual space-times.

STEP 2: Obtain the **Buscher rules** in a unified and systematic manner:

- (g, B, ϕ) via generalised metrics and densities on Courant algebroids,
- RR-fields and D-brane charges via twisted cohomology and K-theory.

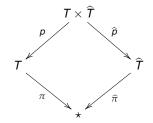
< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Let $T = \mathbb{R}^n / \mathbb{Z}^n$, so that $\pi_1(T) = \mathbb{Z}^n$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $T = \mathbb{R}^n / \mathbb{Z}^n$, so that $\pi_1(T) = \mathbb{Z}^n$.

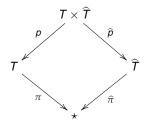
STEP 1: The *T*-dual is simply the **dual torus** $\hat{T} = (\mathbb{R}^n)^* / (\mathbb{Z}^n)^*$.



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let $T = \mathbb{R}^n / \mathbb{Z}^n$, so that $\pi_1(T) = \mathbb{Z}^n$.

STEP 1: The *T*-dual is simply the **dual torus** $\hat{T} = (\mathbb{R}^n)^* / (\mathbb{Z}^n)^*$.

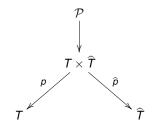


Note that

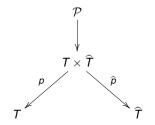
 $\widehat{T} \cong Hom(\pi_1(T), U(1)), \qquad T \cong Hom(\pi_1(\widehat{T}), U(1)).$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

STEP 2: The Poincaré line bundle \mathcal{P} :



STEP 2: The Poincaré line bundle \mathcal{P} :

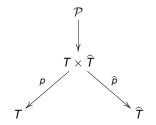


Isomorphism between cohomology rings:

$$\mathcal{T}: H^*(X, \mathbb{R}) \to H^{n-*}(\widehat{\mathcal{T}}, \mathbb{R}), \quad \alpha \mapsto \widehat{p}_*(p^*(\alpha) \wedge ch(\mathcal{P}))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

STEP 2: The Poincaré line bundle \mathcal{P} :



Isomorphism between cohomology rings:

$$\mathcal{T}: H^*(X, \mathbb{R}) \to H^{n-*}(\widehat{T}, \mathbb{R}), \quad \alpha \mapsto \widehat{p}_*(p^*(\alpha) \wedge ch(\mathcal{P}))$$

More explicitly:

$$\mathcal{T}(\alpha) = \int_{\mathcal{T}} \boldsymbol{p}^*(\alpha) \wedge \boldsymbol{e}^{\boldsymbol{c}_1(\mathcal{P})}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Basic idea: extend from T to a family of tori.

Basic idea: extend from T to a family of tori.

- 1. Product manifold $M \times T$
- 2. Principal *T*-bundle $X \rightarrow M$.
- 3. Singular *T*-fibrations (*i.e.* mirror symmetry by the SYZ conjecture).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Basic idea: extend from T to a family of tori.

- 1. Product manifold $M \times T$
- 2. Principal *T*-bundle $X \rightarrow M$.
- 3. Singular *T*-fibrations (*i.e.* mirror symmetry by the SYZ conjecture).

We restrict to case 2. These are classifed by their first Chern class,

 $c_1(X) \in H^2(M, (\mathbb{Z}^n)^*).$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Basic idea: extend from *T* to a family of tori.

- 1. Product manifold $M \times T$
- 2. Principal *T*-bundle $X \rightarrow M$.
- 3. Singular *T*-fibrations (*i.e.* mirror symmetry by the SYZ conjecture).

We restrict to case 2. These are classifed by their first Chern class,

$$c_1(X) \in H^2(M, (\mathbb{Z}^n)^*).$$

Need the Neveu-Schwarz flux

$$[H] \in H^3(X, \mathbb{Z})$$

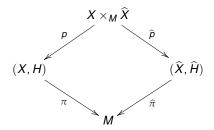
◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

to construct a non-trivial T-duals.

STEP 1: Given a pair (X, H), what is the *T*-dual?

STEP 1: Given a pair (X, H), what is the *T*-dual?

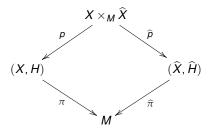
THEOREM (BOUWKNEGT-EVSLIN-MATHAI)



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

STEP 1: Given a pair (X, H), what is the *T*-dual?

THEOREM (BOUWKNEGT-EVSLIN-MATHAI)



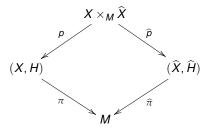
n = 1: there always exists a unique pair $(\widehat{X}, \widehat{H})$, satisfying

 $\pi_*([H]) = c_1(\widehat{X}), \qquad \widehat{\pi}_*([\widehat{H}]) = c_1(X), \qquad p^*[H] = \widehat{p}^*[\widehat{H}].$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

STEP 1: Given a pair (X, H), what is the *T*-dual?

THEOREM (BOUWKNEGT-EVSLIN-MATHAI)

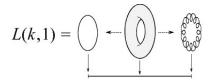


n = 1: there always exists a unique pair $(\widehat{X}, \widehat{H})$, satisfying

 $\pi_*([H]) = c_1(\widehat{X}), \qquad \widehat{\pi}_*([\widehat{H}]) = c_1(X), \qquad p^*[H] = \widehat{p}^*[\widehat{H}].$

n > 1: if there exists a T-dual (\hat{X}, \hat{H}) , it is **not** unique in general.

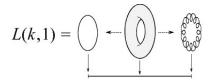
- Lens space $L(k;q) = S^3/\mathbb{Z}_k$ is a S^1 -bundle over \mathbb{CP}^1 (for a suitable q)



(日) (日) (日) (日) (日) (日) (日)

with first Chern class $c_1(L(k;q)) = k \in H^2(\mathbb{CP}^1,\mathbb{Z}) \cong \mathbb{Z}$.

- Lens space $L(k;q) = S^3/\mathbb{Z}_k$ is a S^1 -bundle over \mathbb{CP}^1 (for a suitable q)

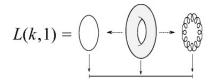


(日) (日) (日) (日) (日) (日) (日)

with first Chern class $c_1(L(k;q)) = k \in H^2(\mathbb{CP}^1,\mathbb{Z}) \cong \mathbb{Z}$.

- Choose an *H*-flux $h \in H^3(L(k;q),\mathbb{Z}) \cong \mathbb{Z}$.

- Lens space $L(k;q) = S^3/\mathbb{Z}_k$ is a S^1 -bundle over \mathbb{CP}^1 (for a suitable q)



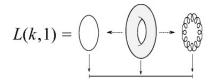
(日) (日) (日) (日) (日) (日) (日)

with first Chern class $c_1(L(k;q)) = k \in H^2(\mathbb{CP}^1,\mathbb{Z}) \cong \mathbb{Z}$.

- Choose an *H*-flux $h \in H^3(L(k;q),\mathbb{Z}) \cong \mathbb{Z}$.

- The T-dual of (L(k; q), h) is another lens space (L(h; q'), k).

- Lens space $L(k;q) = S^3/\mathbb{Z}_k$ is a S^1 -bundle over \mathbb{CP}^1 (for a suitable q)



(日) (日) (日) (日) (日) (日) (日)

with first Chern class $c_1(L(k;q)) = k \in H^2(\mathbb{CP}^1,\mathbb{Z}) \cong \mathbb{Z}$.

- Choose an *H*-flux $h \in H^3(L(k;q), \mathbb{Z}) \cong \mathbb{Z}$.
- The T-dual of (L(k; q), h) is another lens space (L(h; q'), k).
- In particular, $(S^3, 0)$ is T-dual to $(S^2 \times S^1, 1)$.

STEP 2: What are the dual Ramond-Ramond fields and their D-brane charges?

STEP 2: What are the dual Ramond-Ramond fields and their D-brane charges?

- Pick connections θ , $\hat{\theta}$ on X, \hat{X} , with curvatures F, \hat{F} respectively. Then

 $H = h + \widehat{F} \wedge \theta, \qquad \widehat{H} = h + F \wedge \widehat{\theta} \qquad p^* H - \widehat{p}^* \widehat{H} = d\mathcal{F},$

where $h \in \Omega^3_{cl}(M)$ and $\mathcal{F} = \langle p^* \theta \wedge \widehat{p}^* \widehat{\theta} \rangle$.

STEP 2: What are the dual Ramond-Ramond fields and their D-brane charges?

- Pick connections θ , $\hat{\theta}$ on X, \hat{X} , with curvatures F, \hat{F} respectively. Then

$$H = h + \widehat{F} \wedge \theta$$
, $\widehat{H} = h + F \wedge \widehat{\theta}$ $p^* H - \widehat{p}^* \widehat{H} = d\mathcal{F}$,

where $h \in \Omega^3_{cl}(M)$ and $\mathcal{F} = \langle p^* \theta \wedge \widehat{p}^* \widehat{\theta} \rangle$.

- Isomorphism between twisted cohomology groups:

$$\mathcal{T} \colon H^*(X, H) \to H^{n-*}(\widehat{X}, \widehat{H}), \quad \alpha \mapsto \int_{\mathcal{T}} p^*(\alpha) \wedge e^{\mathcal{F}}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

STEP 2: What are the dual Ramond-Ramond fields and their D-brane charges?

- Pick connections θ , $\hat{\theta}$ on X, \hat{X} , with curvatures F, \hat{F} respectively. Then

$$H = h + \widehat{F} \wedge \theta$$
, $\widehat{H} = h + F \wedge \widehat{\theta}$ $p^* H - \widehat{p}^* \widehat{H} = d\mathcal{F}$,

where $h \in \Omega^3_{cl}(M)$ and $\mathcal{F} = \langle p^* \theta \wedge \widehat{p}^* \widehat{\theta} \rangle$.

- Isomorphism between twisted cohomology groups:

$$\mathcal{T} \colon H^*(X, H) \to H^{n-*}(\widehat{X}, \widehat{H}), \quad \alpha \mapsto \int_T p^*(\alpha) \wedge e^{\mathcal{F}}$$

- Isomorphism between twisted K-theory groups:

$$\mathcal{T} \colon \mathsf{K}^*(\mathsf{X},\mathsf{H}) o \mathsf{K}^{\mathsf{n}-*}(\widehat{\mathsf{X}},\widehat{\mathsf{H}}), \quad \beta \mapsto \widehat{p}_*(p^*(\beta) \otimes \mathcal{P})$$

where \mathcal{P} is a twisted Poincaré line bundle.

STEP 2: What about the Buscher rules for (g, B)?

STEP 2: What about the Buscher rules for (g, B)?

THEOREM (ŠEVERA)

 $[H] \in H^3(X, \mathbb{R})$ determines an **exact** Courant algebroid $(E, [\cdot, \cdot], \langle \cdot, \cdot \rangle)$ up to isomorphism.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

STEP 2: What about the Buscher rules for (g, B)?

THEOREM (ŠEVERA)

 $[H] \in H^3(X, \mathbb{R})$ determines an **exact** Courant algebroid $(E, [\cdot, \cdot], \langle \cdot, \cdot \rangle)$ up to isomorphism.

THEOREM (CAVALCANTI-GUALTIERI)

The map $\Phi\colon E^{\mathcal{T}}\to \widehat{E}^{\widehat{\mathcal{T}}}$ defined by

$$\Phi(\mathbf{v} + \boldsymbol{\xi}) = \widehat{\boldsymbol{\rho}}_*(\widehat{\mathbf{v}}) + \boldsymbol{\rho}^*(\boldsymbol{\xi}) - \mathcal{F}(\widehat{\mathbf{v}})$$

(ロ) (同) (三) (三) (三) (○) (○)

is an isomorphism of transitive Courant algebroids.

STEP 2: What about the Buscher rules for (g, B)?

THEOREM (ŠEVERA)

 $[H] \in H^3(X, \mathbb{R})$ determines an **exact** Courant algebroid $(E, [\cdot, \cdot], \langle \cdot, \cdot \rangle)$ up to isomorphism.

THEOREM (CAVALCANTI-GUALTIERI)

The map $\Phi\colon E^{\mathcal{T}}\to \widehat{E}^{\widehat{\mathcal{T}}}$ defined by

$$\Phi(\mathbf{v} + \boldsymbol{\xi}) = \widehat{\boldsymbol{\rho}}_*(\widehat{\mathbf{v}}) + \boldsymbol{\rho}^*(\boldsymbol{\xi}) - \mathcal{F}(\widehat{\mathbf{v}})$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

is an isomorphism of transitive Courant algebroids.

Recall that (g, B) determines a **generalised metric** G on E.

STEP 2: What about the Buscher rules for (g, B)?

THEOREM (ŠEVERA)

 $[H] \in H^3(X, \mathbb{R})$ determines an **exact** Courant algebroid $(E, [\cdot, \cdot], \langle \cdot, \cdot \rangle)$ up to isomorphism.

THEOREM (CAVALCANTI-GUALTIERI)

The map $\Phi \colon E^T \to \widehat{E}^{\widehat{T}}$ defined by

$$\Phi(\mathbf{v} + \boldsymbol{\xi}) = \widehat{\boldsymbol{\rho}}_*(\widehat{\mathbf{v}}) + \boldsymbol{\rho}^*(\boldsymbol{\xi}) - \mathcal{F}(\widehat{\mathbf{v}})$$

(ロ) (同) (三) (三) (三) (○) (○)

is an isomorphism of transitive Courant algebroids.

Recall that (g, B) determines a **generalised metric** G on E.

The Buscher rules for (\hat{g}, \hat{B}) is read off from $\hat{G} = \Phi(G)$.

HETEROTIC STRING THEORY

- The Green-Schwarz anomaly cancellation:

$$dH_0 = \alpha' \left(Tr(R_{\nabla} \wedge R_{\nabla}) - Tr(F_A \wedge F_A) \right),$$

- The Green-Schwarz anomaly cancellation:

$$dH_0 = \alpha' \left(Tr(R_{\nabla} \wedge R_{\nabla}) - Tr(F_A \wedge F_A) \right),$$

or equivalently

$$dH_0 = p_1(TX \times_X P)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

where $P \rightarrow X$ is the gauge bundle, *e.g.* with the gauge group $E_8 \times E_8$.

- The Green-Schwarz anomaly cancellation:

$$dH_0 = \alpha' \left(Tr(R_{\nabla} \wedge R_{\nabla}) - Tr(F_A \wedge F_A) \right),$$

or equivalently

$$dH_0 = p_1(TX \times_X P)$$

where $P \rightarrow X$ is the gauge bundle, *e.g.* with the gauge group $E_8 \times E_8$.

- Geometric meaning?

- The Green-Schwarz anomaly cancellation:

$$dH_0 = \alpha' \left(Tr(R_{\nabla} \wedge R_{\nabla}) - Tr(F_A \wedge F_A) \right),$$

or equivalently

$$dH_0 = p_1(TX \times_X P)$$

where $P \rightarrow X$ is the gauge bundle, *e.g.* with the gauge group $E_8 \times E_8$.

- Geometric meaning?
- Analogy: X is **spin** if $w_2(TX)$ vanishes in $H^2(X, \mathbb{Z}_2)$. The space of inequivalent spin structures on X is an affine space over $H^1(X, \mathbb{Z}_2)$.

(日) (日) (日) (日) (日) (日) (日)

- The Green-Schwarz anomaly cancellation:

$$dH_0 = \alpha' \left(\operatorname{Tr}(R_{\nabla} \wedge R_{\nabla}) - \operatorname{Tr}(F_A \wedge F_A) \right),$$

or equivalently

$$dH_0 = p_1(TX \times_X P)$$

where $P \rightarrow X$ is the gauge bundle, *e.g.* with the gauge group $E_8 \times E_8$.

- Geometric meaning?
- Analogy: X is **spin** if $w_2(TX)$ vanishes in $H^2(X, \mathbb{Z}_2)$. The space of inequivalent spin structures on X is an affine space over $H^1(X, \mathbb{Z}_2)$.
- <u>Definition</u>: X is string if p₁(TX) vanishes in H⁴(X, ℤ). The space of inequivalent string structures on X is an affine space over H³(X, ℤ).

- The Green-Schwarz anomaly cancellation:

$$dH_0 = \alpha' \left(Tr(R_{\nabla} \wedge R_{\nabla}) - Tr(F_A \wedge F_A) \right),$$

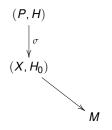
or equivalently

$$dH_0 = p_1(TX \times_X P)$$

where $P \rightarrow X$ is the gauge bundle, *e.g.* with the gauge group $E_8 \times E_8$.

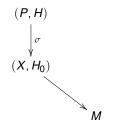
- Geometric meaning?
- Analogy: X is **spin** if $w_2(TX)$ vanishes in $H^2(X, \mathbb{Z}_2)$. The space of inequivalent spin structures on X is an affine space over $H^1(X, \mathbb{Z}_2)$.
- <u>Definition</u>: X is string if p₁(TX) vanishes in H⁴(X, ℤ). The space of inequivalent string structures on X is an affine space over H³(X, ℤ).
- A string structure on X consists of a principal G-bundle $\sigma: P \to X$ and $[H] \in H^3(P, \mathbb{Z})$ which restricts fiberwise to the generator of $H^3(G, \mathbb{Z})$.

STEP 1: The input is



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

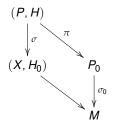
STEP 1: The input is



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

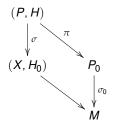
- **Assumption**: *T* lifts to a commuting action on *P*.

STEP 1: The input is



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

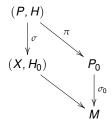
STEP 1: The input is



▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Idea: apply ordinary type II T-dualiy upstairs!

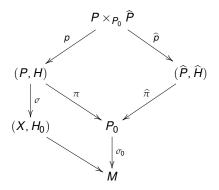
STEP 1: The input is



- Idea: apply ordinary type II T-dualiy upstairs!
- The existence of a T-dual $(\widehat{P}, \widehat{H})$ imposes the usual constraints on H.

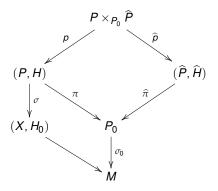
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

STEP 1: Ordinary T-duality gives



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

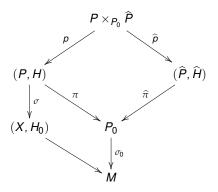
STEP 1: Ordinary T-duality gives



- No guaranty that the *G*-action on P_0 lifts to an action on \hat{P} commuting with the \hat{T} -action.

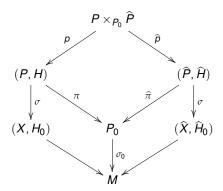
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

STEP 1: Ordinary T-duality gives



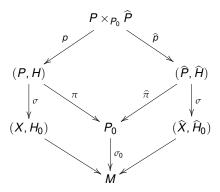
- No guaranty that the *G*-action on P_0 lifts to an action on \hat{P} commuting with the \hat{T} -action.
- In fact, there is a topological obstruction measured by $\kappa \in H^2(G, (\mathbb{Z}^n)^*)$.

STEP 1: Thus, $\hat{X} \to M$ exists and the diagram commutes if and only if $\kappa = 0$:



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

STEP 1: Thus, $\hat{X} \to M$ exists and the diagram commutes if and only if $\kappa = 0$:



- If $\kappa = 0$, then \hat{X} is unique and (\hat{P}, \hat{H}) is a dual string structure on \hat{X} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

STEP 2: How about the heterotic Buscher rules for (g, H, A)?

- STEP 2: How about the heterotic Buscher rules for (g, H, A)?
 - We have a string structure (P, H) on X. Fix an isotropic splitting $E = TP \oplus T^*P$ with Ševera class H.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

STEP 2: How about the heterotic Buscher rules for (g, H, A)?

- We have a string structure (P, H) on X. Fix an isotropic splitting $E = TP \oplus T^*P$ with Ševera class H.
- A connection $A \in \Omega^1(P, \mathfrak{g})$ gives rise to a trivially extended action

$$\alpha : \mathfrak{g} \to \Gamma(E), \quad \mathbf{v} \mapsto \psi(\mathbf{v}) + \xi(\mathbf{v}),$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where ψ denotes the infinitesimal *G*-action on *TP*, and $\xi(\cdot) = k(A, \cdot)$ with *k* the Killing form.

STEP 2: How about the heterotic Buscher rules for (g, H, A)?

- We have a string structure (P, H) on X. Fix an isotropic splitting $E = TP \oplus T^*P$ with Ševera class H.
- A connection $A \in \Omega^1(P, \mathfrak{g})$ gives rise to a trivially extended action

$$\alpha : \mathfrak{g} \to \Gamma(E), \quad \mathbf{v} \mapsto \psi(\mathbf{v}) + \xi(\mathbf{v}),$$

where ψ denotes the infinitesimal *G*-action on *TP*, and $\xi(\cdot) = k(A, \cdot)$ with *k* the Killing form.

 In fact, there is a one-to-one correspondence between string structures and such actions (as affine spaces under H³(X, Z)).

STEP 2: How about the heterotic Buscher rules for (g, H, A)?

- We have a string structure (P, H) on X. Fix an isotropic splitting $E = TP \oplus T^*P$ with Ševera class H.
- A connection $A \in \Omega^1(P, \mathfrak{g})$ gives rise to a trivially extended action

$$\alpha: \mathfrak{g} \to \Gamma(E), \quad \mathbf{v} \mapsto \psi(\mathbf{v}) + \xi(\mathbf{v}),$$

where ψ denotes the infinitesimal *G*-action on *TP*, and $\xi(\cdot) = k(A, \cdot)$ with *k* the Killing form.

- In fact, there is a one-to-one correspondence between string structures and such actions (as affine spaces under H³(X, Z)).
- The reduction

$$E^{red} = im(\alpha)^{\perp} / G \cong TX \oplus ad(P) \oplus T^*X$$

is a transitive Courant algebroid on X.

STEP 2: The triple (g, H, A) defines a generalised metric on

$$E_{red} = TX \oplus ad(P) \oplus T^*X.$$

STEP 2: The triple (g, H, A) defines a generalised metric on

 $E_{red} = TX \oplus ad(P) \oplus T^*X.$

THEOREM The Cavalcanti-Gualtieri isomorphism

 $\Phi\colon E^T\to \widehat{E}^{\widehat{T}}$

exchanges the extended actions α and $\hat{\alpha}$, so we have

$$(\boldsymbol{E}_{red})^T \cong (\boldsymbol{E}^T)_{red} \cong (\widehat{\boldsymbol{E}}^{\widehat{T}})_{red} \cong (\widehat{\boldsymbol{E}}_{red})^{\widehat{T}}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

STEP 2: The triple (g, H, A) defines a generalised metric on

 $E_{red} = TX \oplus ad(P) \oplus T^*X.$

THEOREM The Cavalcanti-Gualtieri isomorphism

 $\Phi\colon E^T\to \widehat{E}^{\widehat{T}}$

exchanges the extended actions α and $\hat{\alpha}$, so we have

$$(\boldsymbol{E}_{red})^T \cong (\boldsymbol{E}^T)_{red} \cong (\widehat{\boldsymbol{E}}^{\widehat{T}})_{red} \cong (\widehat{\boldsymbol{E}}_{red})^{\widehat{T}}$$

The heterotic Buscher rules are obtained via reduction of generalised metrics.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- The first Chern classes of X and \hat{X} satisfy:

 $\langle c_1(X), c_1(\widehat{X}) \rangle = p_1(P_0).$

- The first Chern classes of X and \hat{X} satisfy:

$$\langle c_1(X), c_1(\widehat{X}) \rangle = p_1(P_0).$$

- If $P_0 = M \times G$, then $p_1(P_0) = 0$ and we recover type II T-duality.

- The first Chern classes of X and \hat{X} satisfy:

$$\langle c_1(X), c_1(\widehat{X}) \rangle = p_1(P_0).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- If $P_0 = M \times G$, then $p_1(P_0) = 0$ and we recover type II T-duality.
- Heterotic T-duality therefore allows for much more flexibility in the possible changes in topology.

- The first Chern classes of X and \hat{X} satisfy:

$$\langle c_1(X), c_1(\widehat{X}) \rangle = p_1(P_0).$$

- If $P_0 = M \times G$, then $p_1(P_0) = 0$ and we recover type II T-duality.
- Heterotic T-duality therefore allows for much more flexibility in the possible changes in topology.
- **Example 1**: The lens spaces S^{2n+1}/\mathbb{Z}_c and $S^{2n+1}/\mathbb{Z}_{\widehat{c}}$ are heterotic T-duals with $P_0 \to \mathbb{CP}^n$ the spin bundle, if n > 3 odd and $c\widehat{c} = \frac{1}{2}(n+1)$.

(日) (日) (日) (日) (日) (日) (日)

- The first Chern classes of X and \hat{X} satisfy:

$$\langle c_1(X), c_1(\widehat{X}) \rangle = p_1(P_0).$$

- If $P_0 = M \times G$, then $p_1(P_0) = 0$ and we recover type II T-duality.
- Heterotic T-duality therefore allows for much more flexibility in the possible changes in topology.
- **Example 1**: The lens spaces S^{2n+1}/\mathbb{Z}_c and $S^{2n+1}/\mathbb{Z}_{\widehat{c}}$ are heterotic T-duals with $P_0 \to \mathbb{CP}^n$ the spin bundle, if n > 3 odd and $c\widehat{c} = \frac{1}{2}(n+1)$.
- **Example 2**: The homogeneous space $G \to G/K$, where $K \subset G$ is a Dynkin index 1 closed connected subgroup, defines a string structure on G/K with $H = \frac{1}{24\pi^2} tr(g^{-1}dg)^3$.

- The first Chern classes of X and \hat{X} satisfy:

$$\langle c_1(X), c_1(\widehat{X}) \rangle = p_1(P_0).$$

- If $P_0 = M \times G$, then $p_1(P_0) = 0$ and we recover type II T-duality.
- Heterotic T-duality therefore allows for much more flexibility in the possible changes in topology.
- **Example 1**: The lens spaces S^{2n+1}/\mathbb{Z}_c and $S^{2n+1}/\mathbb{Z}_{\widehat{c}}$ are heterotic T-duals with $P_0 \to \mathbb{CP}^n$ the spin bundle, if n > 3 odd and $c\widehat{c} = \frac{1}{2}(n+1)$.
- **Example 2**: The homogeneous space $G \to G/K$, where $K \subset G$ is a Dynkin index 1 closed connected subgroup, defines a string structure on G/K with $H = \frac{1}{24\pi^2} tr(g^{-1}dg)^3$.

Thank you!