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Joint work with David Baraglia (ATMP, 19, 2015, 613—-672)
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STEP 1: Address the problems of existence, uniqueness and construction of
T-dual space-times.

STEP 2: Obtain the Buscher rules in a unified and systematic manner:

- (9., B, ¢) via generalised metrics and densities on Courant algebroids,

- RR-fields and D-brane charges via twisted cohomology and K-theory.
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Let T =R"/Z", so that 7{(T) = Z".

STEP 1: The T-dual is simply the dual torus T = (R")*/(Z")*.
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Note that
T = Hom(m;(T), U(1)), T = Hom(ry(T), U(1)).
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STEP 2: The Poincaré line bundle P:

Isomorphism between cohomology rings:

T:H*(X,R) = H™*(T,R), &+ p.(p"(a) Ach(P))

/p a) A e®(P

More explicitly:
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Basic idea: extend from T to a family of tori.

1. Product manifold M x T
2. Principal T-bundle X — M.
3. Singular T-fibrations (i.e. mirror symmetry by the SYZ conjecture).

We restrict to case 2. These are classifed by their first Chern class,

c1(X) € H3(M, (Z")").

Need the Neveu-Schwarz flux
[H] € H3(X, Z)

to construct a non-trivial T-duals.
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STEP 1: Given a pair (X, H), what is the T-dual?

THEOREM (BOUWKNEGT-EVSLIN-MATHAI)

XXMj\(

n=1: there always exists a unique pair ()A(, Ifl), satisfying

n(H) = (), m(A)=ci(X),  p'IH = pA.

n>1: if there exists a T-dual (X, H), it is not unique in general.
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- Lens space L(k; q) = S3/Z, is a S'-bundle over CPP! (for a suitable q)

L(k,1) = Q () %

] l

with first Chern class ¢ (L(k; q)) = k € H*(CP',Z) = Z.

- Choose an H-flux h € H3(L(k; q), Z) = Z.

- The T-dual of (L(k; q), h) is another lens space (L(h; '), k).

- In particular, (S3,0) is T-dual to (S? x S',1).
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STEP 2: What are the dual Ramond-Ramond fields and their D-brane charges?

- Pick connections 6, 8 on X, X, with curvatures F, F respectively. Then
H=h+FA0, H=h+FAO p‘H-—p'H=dF,
where h € Q3(M) and F = (p*0 A p*8).

- Isomorphism between twisted cohomology groups:

T:H (X, H) = H"*(X,H), a~— p

- Isomorphism between twisted K-theory groups:
T:K*(X,H) = K"*(X,H), B p(p*(B)®P)

where P is a twisted Poincaré line bundle.
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TYPE II T-DUALITY

Step 2: What about the Buscher rules for (g, B)?

THEOREM (SEVERA)

[H] € H3(X,R) determines an exact Courant algebroid (E, [-,-], {-,-)) up to
isomorphism.

THEOREM (CAVALCANTI-GUALTIERI)
The map ®: ET — ET defined by

D(v+8) =p:(V) +p*(8) - F(V)
is an isomorphism of transitive Courant algebroids.
Recall that (g, B) determines a generalised metric G on E.

The Buscher rules for (g, B) is read off from G = ®(G).
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HETEROTIC STRING THEORY

- The Green-Schwarz anomaly cancellation:
dHo = (W(RV N Rv) — TI’(FA A FA)) )

or equivalently
dHo = p1(TX xx P)

where P — X is the gauge bundle, e.g. with the gauge group Eg x Eg.

- Geometric meaning?

- Analogy: X is spin if wy(TX) vanishes in H?>(X, Z,). The space of
inequivalent spin structures on X is an affine space over H'(X, Z5).

- Definition: X is string if p; (TX) vanishes in H*(X, Z). The space of
inequivalent string structures on X is an affine space over H3(X, Z).

- A string structure on X consists of a principal G-bundle o: P — X and
[H] € H3(P, Z) which restricts fiberwise to the generator of H3(G, Z).
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HETEROTIC T-DUALITY

STEP 1: The input is

(P, H)
(X, Ho) Io

- ldea: apply ordinary type Il T-dualiy upstairs!

- The existence of a T-dual (P, H) imposes the usual constraints on H.
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STEP 1: Ordinary T-duality gives
P XPO
(P, )
(X, HO
\ 00

M

- No guaranty that the G-action on P lifts to an action on P commuting
with the T-action.

- In fact, there is a topological obstruction measured by x € H?(G, (Z")*).
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STEP 1: Thus, X — M exists and the diagram commutes if and only if x = 0:

PXPOﬁ

- If k = 0, then X is unique and (P, H) is a dual string structure on X.
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STEP 2: How about the heterotic Buscher rules for (g, H, A)?

- We have a string structure (P, H) on X. Fix an isotropic splitting
E = TP ® T*P with Severa class H.

- A connection A € Q' (P, g) gives rise to a trivially extended action
a:g—T(E), vis Pp(v)+E(v),

where i denotes the infinitesimal G-action on TP, and ¢(-) = k(A, )
with k the Killing form.

- In fact, there is a one-to-one correspondence between string
structures and such actions (as affine spaces under H3(X, Z)).

- The reduction
E™® = im(a)t/G= TX®ad(P)® T*X

is a transitive Courant algebroid on X.
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STEP 2: The triple (g, H, A) defines a generalised metric on

Ereg = TX® ad(P) & T*X.

THEOREM
The Cavalcanti-Gualtieri isomorphism

b ET—>E?

exchanges the extended actions « and ®, so we have

(Ered)T = (ET)red = (ET)red = (Ered)T

The heterotic Buscher rules are obtained via reduction of generalised metrics.
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EXAMPLES OF HETEROTIC T-DUALS

- The first Chern classes of X and X satisfy:

(c1(X),c1(X)) = p1(Po).

- If Pg = M x G, then p;(Py) = 0 and we recover type Il T-duality.

- Heterotic T-duality therefore allows for much more flexibility in the
possible changes in topology.

- Example 1: The lens spaces S?"t1/Z and S?>"*1/Z; are heterotic
T-duals with Py — CIP" the spin bundle, if n > 3 odd and ¢¢ = }(n+1).

- Example 2: The homogeneous space G — G/K, where K C Gis a
Dynkin index 1 closed connected subgroup, defines a string structure on

G/K with H = 5> tr(g~ " dg)3.

Thank you!



