## Extended Space for

# (half) Maximally Supersymmetric Theories 

Falk Hassler

bases on<br>arXiv: 1611.07978 and 1705.09304<br>in collaboration with<br>Pascal du Bosque and Dieter Lüst<br>University of North Carolina at Chapel Hill

June 7, 2017
THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

## Typical conversation with non-DFT/EFT hep-th people

- Why an extended space?


## Typical conversation with non-DFT/EFT hep-th people

- Why an extended space?
- additional coordinates are winding modes on $T^{d}$
- they make U/T-duality manifest


## Typical conversation with non-DFT/EFT hep-th people

- Why an extended space?
- additional coordinates are winding modes on $T^{d}$
- they make U/T-duality manifest
- Tori are boring. Can you do more?


## Typical conversation with non-DFT/EFT hep-th people

- Why an extended space?
- additional coordinates are winding modes on $T^{d}$
- they make U/T-duality manifest
- Tori are boring. Can you do more?
- yes, after imposing the SC (section condition)


## Typical conversation with non-DFT/EFT hep-th people

- Why an extended space?
- additional coordinates are winding modes on $T^{d}$
- they make U/T-duality manifest
- Tori are boring. Can you do more?
- yes, after imposing the SC (section condition)
- But then you have GG (generalized geometry).


## Typical conversation with non-DFT/EFT hep-th people

- Why an extended space?
- additional coordinates are winding modes on $T^{d}$
- they make U/T-duality manifest
- Tori are boring. Can you do more?
- yes, after imposing the SC (section condition)
- But then you have GG (generalized geometry).
- yes, but extended space is great bookkeeping device


## Typical conversation with non-DFT/EFT hep-th people

- Why an extended space?
- additional coordinates are winding modes on $T^{d}$
- they make U/T-duality manifest
- Tori are boring. Can you do more?
- yes, after imposing the SC (section condition)
- But then you have GG (generalized geometry).
- yes, but extended space is great bookkeeping device
- Examples please!


## Typical conversation with non-DFT/EFT hep-th people

- Why an extended space?
- additional coordinates are winding modes on $T^{d}$
- they make U/T-duality manifest
- Tori are boring. Can you do more?
- yes, after imposing the SC (section condition)
- But then you have GG (generalized geometry).
- yes, but extended space is great bookkeeping device
- Examples please!
- generalized Scherk-Schwarz reductions ...


## Typical conversation with non-DFT/EFT hep-th people

- Why an extended space?
- additional coordinates are winding modes on $T^{d}$
- they make U/T-duality manifest
- Tori are boring. Can you do more?
- yes, after imposing the SC (section condition)
- But then you have GG (generalized geometry).
- yes, but extended space is great bookkeeping device
- Examples please!
- generalized Scherk-Schwarz reductions ...
- You classify all consistent reductions with maximal SUSY?
- By the way, what happens to the manifest dualities?


## Scherk-Schwarz reductions at a glance

- compactification on group manifold $M=G$
- frame field $e^{a}{ }_{i}$ (left-invariant Maurer-Cartan form)

$$
t_{a} e^{a}{ }_{i} d x^{i}=g^{-1} d g \quad \text { with } \quad t_{a} \in \mathfrak{g} \quad \text { and } \quad g \in G
$$

## Scherk-Schwarz reductions at a glance

- compactification on group manifold $M=G$
- frame field $e^{a}{ }_{i}$ (left-invariant Maurer-Cartan form)

$$
t_{a} e^{a}{ }_{i} d x^{i}=g^{-1} d g \quad \text { with } \quad t_{a} \in \mathfrak{g} \quad \text { and } \quad g \in G
$$

- frame algebra with const. $f_{a b}{ }^{c}$ generated by Lie derivative

$$
L_{e_{a}} e_{b}{ }^{i} e^{c}{ }_{i}=f_{a b}{ }^{c} e_{c}{ }^{i}
$$

## Scherk-Schwarz reductions at a glance

- compactification on group manifold $M=G$
- frame field $e^{a}{ }_{i}$ (left-invariant Maurer-Cartan form)

$$
t_{a} e^{a}{ }_{i} d x^{i}=g^{-1} d g \quad \text { with } \quad t_{a} \in \mathfrak{g} \quad \text { and } \quad g \in G
$$

- frame algebra with const. $f_{a b}{ }^{c}$ generated by Lie derivative

$$
L_{e_{a}} e_{b}{ }^{i} e^{c}{ }_{i}=f_{a b}{ }^{c} e_{c}{ }^{i}
$$

- invariant, non-degenerate, symmetric two-form $\delta_{a b} \rightarrow$ metric

$$
d s^{2}=\delta_{a b} e^{a}{ }_{i} e^{b}{ }_{j} d x^{i} d x^{j}
$$

## Scherk-Schwarz reductions at a glance

- compactification on group manifold $M=G$
- frame field $e^{a}{ }_{i}$ (left-invariant Maurer-Cartan form)

$$
t_{a} e^{a}{ }_{i} d x^{i}=g^{-1} d g \quad \text { with } \quad t_{a} \in \mathfrak{g} \quad \text { and } \quad g \in G
$$

- frame algebra with const. $f_{a b}{ }^{c}$ generated by Lie derivative

$$
L_{e_{a}} e_{b}{ }^{i} e^{c}{ }_{i}=f_{a b}{ }^{c} e_{c}{ }^{i}
$$

- invariant, non-degenerate, symmetric two-form $\delta_{a b} \rightarrow$ metric $d s^{2}=\delta_{a b} e^{a}{ }_{i} e^{b}{ }_{j} d x^{i} d x^{j}$
- no fluxes
- $M$ is parallelizable space
- tangent bundle trivial, maximal SUSY
- consistent reduction to gauged SUGRA


## Generalized Scherk-Schwarz reductions at a glance

- compactification on group manifold $M$
- generalized frame field $\mathcal{E}^{A}$ (left invariant Maurer-Gartan form) ???
- frame algebra with const. $X_{A B}{ }^{C}$ generated by gen. Lie derivative $\widehat{\mathcal{L}}_{\mathcal{E}_{A}} \mathcal{E}_{B}{ }^{1} \mathcal{E}^{C}{ }_{\gamma}=X_{A B}{ }^{C}$
- invariant, non-degenerate, symmetric two-form $\delta_{A B} \rightarrow$ gen. metric $\mathcal{H}_{\hat{\jmath}}=\delta_{A B} \mathcal{E}^{A} \mathcal{E}^{B}{ }_{\jmath}$
- no fluxes
- $M$ is generalized parallelizable space
- generalized tangent bundle trivial, maximal SUSY
- consistent reduction to gauged SUGRA

Generalized Frame Field

## $\mathcal{E}_{A}{ }^{\hat{I}}$

- with constant $X_{A B}{ }^{C}$
- solution to SC
- element of duality group


## REWARD Dead or Alive

Generalized Frame Field

## $\mathcal{E}_{A} \hat{\jmath}$

- with constant $X_{A B}{ }^{C}$
- solution to SC
- element of duality group


## BFWAR1 Dead or Alive

## Alternative proposal for extended space

- extended space = group manifold $G$


## Alternative proposal for extended space

- extended space = group manifold $G$
- relevant structure

1. left-invariant Maurer-Cartan form

$$
t_{A} E^{A}, d x^{\prime}=g^{-1} d g \quad \text { with } \quad t_{A} \in \mathfrak{g} \quad \text { and } \quad g \in G
$$

## Alternative proposal for extended space

- extended space = group manifold $G$
- relevant structure

1. left-invariant Maurer-Cartan form

$$
t_{A} E^{A}, d x^{\prime}=g^{-1} d g \quad \text { with } \quad t_{A} \in \mathfrak{g} \quad \text { and } \quad g \in G
$$

2. flat derivative

$$
D_{A}=E_{A}{ }^{\prime} \partial_{I}
$$

## Alternative proposal for extended space

- extended space = group manifold $G$
- relevant structure

1. left-invariant Maurer-Cartan form

$$
t_{A} E^{A}, d x^{\prime}=g^{-1} d g \quad \text { with } \quad t_{A} \in \mathfrak{g} \quad \text { and } \quad g \in G
$$

2. flat derivative

$$
D_{A}=E_{A} \partial_{I}
$$

3. covariant derivative

$$
\nabla_{A} V^{B}=D_{A} V^{B}+\Gamma_{A C}{ }^{B} V^{C}
$$

## Alternative proposal for extended space

- extended space = group manifold $G$
- relevant structure

1. left-invariant Maurer-Cartan form

$$
t_{A} E^{A}, d x^{\prime}=g^{-1} d g \quad \text { with } \quad t_{A} \in \mathfrak{g} \quad \text { and } \quad g \in G
$$

2. flat derivative

$$
D_{A}=E_{A}{ }^{\prime} \partial_{l}
$$

3. covariant derivative

$$
\nabla_{A} V^{B}=D_{A} V^{B}+\Gamma_{A C}{ }^{B} V^{C}
$$

- why?
- suggested by CSFT (Closed String Field Theory) on WZW-model
- for $G$ abelian $\rightarrow$ standard formulation
- it works


## Action of the duality group $\mathrm{E}_{d(d)} / \mathbf{O}(d-1, d-1)$

- indices $A, B, \ldots$ transform in coordiante irrep of duality group e.g. 10 of $\mathrm{SL}(5)=\mathrm{E}_{4(4)}$ or vector irrep of $\mathrm{O}(d-1, d-1)$


## Action of the duality group $\mathrm{E}_{d(d)} / \mathbf{O}(d-1, d-1)$

- indices $A, B, \ldots$ transform in coordiante irrep of duality group
e.g. 10 of $\mathrm{SL}(5)=\mathrm{E}_{4(4)}$ or vector irrep of $\mathrm{O}(d-1, d-1)$
- introduce generalized Lie derivative

$$
\mathcal{L}_{\xi} V^{A}=\xi^{B} \nabla_{B} V^{A}-V^{B} \nabla_{B} \xi^{A}+Y^{A B}{ }_{C D} \nabla_{B} \xi^{C} V^{D}
$$

- whose closure requires SC constraint

$$
Y^{C D}{ }_{A B} D_{C} \cdot D_{D}=0
$$

## Action of the duality group $\mathrm{E}_{d(d)} / \mathbf{O}(d-1, d-1)$

- indices $A, B, \ldots$ transform in coordiante irrep of duality group
e.g. 10 of $\mathrm{SL}(5)=\mathrm{E}_{4(4)}$ or vector irrep of $\mathrm{O}(d-1, d-1)$
- introduce generalized Lie derivative

$$
\mathcal{L}_{\xi} V^{A}=\xi^{B} \nabla_{B} V^{A}-V^{B} \nabla_{B} \xi^{A}+Y^{A B}{ }_{C D} \nabla_{B} \xi^{C} V^{D}
$$

- whose closure requires SC constraint

$$
Y^{C D}{ }_{A B} D_{C} \cdot D_{D}=0
$$

## fix connection 「

by requiring

- $Y$-tensor is covariant constant
- closure of generalized Lie derivative


## Action of the duality group $\mathrm{E}_{d(d)} / \mathbf{O}(d-1, d-1)$

- indices $A, B, \ldots$ transform in coordiante irrep of duality group
e.g. 10 of $\mathrm{SL}(5)=\mathrm{E}_{4(4)}$ or vector irrep of $\mathrm{O}(d-1, d-1)$
- introduce generalized Lie derivative

$$
\mathcal{L}_{\xi} V^{A}=\xi^{B} \nabla_{B} V^{A}-V^{B} \nabla_{B} \xi^{A}+Y^{A B}{ }_{C D} \nabla_{B} \xi^{C} V^{D}
$$

- whose closure requires SC constraint

$$
Y^{C D}{ }_{A B} D_{C} \cdot D_{D}=0
$$

## fix connection 「

 by requiring- $Y$-tensor is covariant constant
- closure of generalized Lie derivative
- two linear constraints
results in
- one quadratic constraint


## Solutions

- linear constraints restrict $G$ to embedding tensor solutions

$$
\begin{aligned}
\text { e.g. } \mathrm{SO}(3,3) & \cong \mathrm{SL}(4): & \mathbf{6} \times \mathbf{1 5} \rightarrow \mathbf{1 0}+\overline{\mathbf{1 0}} \\
& \text { or } S L(5): & \mathbf{1 0} \times \mathbf{2 4} \rightarrow \mathbf{1 5}+\overline{\mathbf{4 0}}
\end{aligned}
$$

## Solutions

- linear constraints restrict $G$ to embedding tensor solutions

$$
\begin{array}{rlrl}
\text { e.g. } \mathrm{SO}(3,3) & \cong \mathrm{SL}(4): & \quad \mathbf{6} \times \mathbf{1 5} & \rightarrow \mathbf{1 0}+\overline{\mathbf{1 0}} \\
& \text { or } S L(5): & \mathbf{1 0} \times \mathbf{2 4} \rightarrow \mathbf{1 5}+\overline{\mathbf{4 0}}
\end{array}
$$

- if embedding tensor $X_{A B}{ }^{C} \neq X_{[A B]}{ }^{C}$
$\operatorname{dim} G<\operatorname{dim}$ coordinate irrep $\rightarrow$ break duality group
- happens in $\mathbf{4 0}$ of $\operatorname{SL}(5)$
e.g. $\operatorname{dim} G=9$, branch to $\operatorname{SL}(3) \times \operatorname{SL}(2)$
coordinate irrep: $\mathbf{1 0} \rightarrow(\mathbf{3}, \mathbf{2})+(\mathbf{3}, \mathbf{1})+(\mathbf{1}, 4)$
embedding tensor: $(\mathbf{1}, \mathbf{3})+(\mathbf{3}, \mathbf{2})+(\mathbf{6}, \mathbf{1})+(\mathbf{1}, \mathbf{2})$


## Solutions

- linear constraints restrict $G$ to embedding tensor solutions

$$
\text { e.g. } \begin{aligned}
\mathrm{SO}(3,3) & \cong \mathrm{SL}(4): & \mathbf{6} \times \mathbf{1 5} \rightarrow \mathbf{1 0}+\overline{\mathbf{1 0}} \\
& \text { or } S L(5): & \mathbf{1 0} \times \mathbf{2 4} \rightarrow \mathbf{1 5}+\overline{\mathbf{4 0}}
\end{aligned}
$$

- if embedding tensor $X_{A B}{ }^{C} \neq X_{[A B]}{ }^{C}$
$\operatorname{dim} G<\operatorname{dim}$ coordinate irrep $\rightarrow$ break duality group
- happens in 40 of $\operatorname{SL}(5)$
e.g. $\operatorname{dim} G=9$, branch to $S L(3) \times S L(2)$
coordinate irrep: $\mathbf{1 0} \rightarrow(\mathbf{3}, \mathbf{2})+(\overline{\mathbf{3}}, \mathbf{1})+(\mathbf{1}, \mathbb{1})$
embedding tensor: $(\mathbf{1}, \mathbf{3})+(\mathbf{3}, \mathbf{2})+(\mathbf{6}, \mathbf{1})+(\mathbf{1}, \mathbf{2})$
- also for $E_{6(6)}$ and $G=S O(6)$ where $E_{6(6)} \rightarrow \mathrm{SL}(6) \times \mathrm{SL}(2)$
coordinate irrep: $27 \rightarrow(15,1)+(6,2)$


## Solutions

- linear constraints restrict $G$ to embedding tensor solutions

$$
\text { e.g. } \begin{aligned}
\mathrm{SO}(3,3) & \cong \mathrm{SL}(4): & \mathbf{6} \times \mathbf{1 5} \rightarrow \mathbf{1 0}+\overline{\mathbf{1 0}} \\
& \text { or } S L(5): & \mathbf{1 0} \times \mathbf{2 4} \rightarrow \mathbf{1 5}+\overline{\mathbf{4 0}}
\end{aligned}
$$

- if embedding tensor $X_{A B}{ }^{C} \neq X_{[A B]}{ }^{C}$
$\operatorname{dim} G<\operatorname{dim}$ coordinate irrep $\rightarrow$ break duality group
- happens in 40 of $\operatorname{SL}(5)$
e.g. $\operatorname{dim} G=9$, branch to $S L(3) \times S L(2)$
coordinate irrep: $10 \rightarrow(\mathbf{3}, 2)+(\overline{3}, 1)+(1,4)$
embedding tensor: $(\mathbf{1}, \mathbf{3})+(\mathbf{3}, \mathbf{2})+(\mathbf{6}, \mathbf{1})+(\mathbf{1}, \mathbf{2})$
- also for $E_{6(6)}$ and $G=S O(6)$ where $E_{6(6)} \rightarrow \mathrm{SL}(6) \times \mathrm{SL}(2)$
coordinate irrep: $27 \rightarrow(15,1)+(6,2)$
- quadratic constraint = Jacobi identity


## SC and H-principal bundle

- SC selects $d$ physical directions in extended space
- split $T G$ into $\left\{\begin{array}{ll}d & \text { physical } \\ \operatorname{dim} G-d & \text { SC violating }\end{array}\right.$ directions


## SC and $H$-principal bundle

- SC selects $d$ physical directions in extended space
- split $T G$ into $\left\{\begin{array}{ll}d & \text { physical } \\ \operatorname{dim} G-d & \text { SC violating }\end{array}\right.$ directions
- convenient tool is a $H$-principal bundle $G$
splits $T G$ into $\left\{\begin{array}{ll}H G & \text { horizontal=physical } \\ V G & \text { vertical=auxiliary }\end{array}\right.$ subbundles
- physical manifold $M=G / H$ is coset space


## SC and $H$-principal bundle

- SC selects $d$ physical directions in extended space
- split $T G$ into $\left\{\begin{array}{ll}d & \text { physical } \\ \operatorname{dim} G-d & \text { SC violating }\end{array}\right.$ directions
- convenient tool is a $H$-principal bundle $G$ splits $T G$ into $\left\{\begin{array}{ll}H G & \text { horizontal=physical } \\ V G & \text { vertical=auxiliary }\end{array}\right.$ subbundles
- physical manifold $M=G / H$ is coset space
- His a maximally isotropic subgroup of $G$ for $O(d-1, d-1)$
- for SL(5) EFT linear SC $v_{a}^{0} \epsilon^{a B C} \partial_{C} \cdot=0$ is a map $\mathbf{1 0} \rightarrow \mathbf{1 0}$ $\mathfrak{m}$ is its kernel and $\mathfrak{h}$ the complement
- in total $\mathfrak{g}=\mathfrak{m}+\mathfrak{h}$


## Sections and connections

- the bundle $\pi: G \rightarrow M$ has sections $\sigma_{i}: M \supset U_{i} \rightarrow G$
- and a $\mathfrak{h}$-valued connection one-form $\omega$


## Sections and connections

- the bundle $\pi: G \rightarrow M$ has sections $\sigma_{i}: M \supset U_{i} \rightarrow G$
- and a $\mathfrak{h}$-valued connection one-form $\omega$
- at each $g \in G, \omega_{g}(X)=0$ for all $X \in H_{g} G$
- solving SC in patch $U_{i}$ requires $\omega \sigma_{i *}=\sigma_{i}^{*} \omega=\boldsymbol{A}_{i}=0$


## Sections and connections

- the bundle $\pi: G \rightarrow M$ has sections $\sigma_{i}: M \supset U_{i} \rightarrow G$
- and a $\mathfrak{h}$-valued connection one-form $\omega$
- at each $g \in G, \omega_{g}(X)=0$ for all $X \in H_{g} G$
- solving SC in patch $U_{i}$ requires $\omega \sigma_{i *}=\sigma_{i}^{*} \omega=A_{i}=0$
- $A$ is gauge connection on $M$
- corresponding field strength has to vanish (flat connection)


## Sections and connections

- the bundle $\pi: G \rightarrow M$ has sections $\sigma_{i}: M \supset U_{i} \rightarrow G$
- and a $\mathfrak{h}$-valued connection one-form $\omega$
- at each $g \in G, \omega_{g}(X)=0$ for all $X \in H_{g} G$
- solving SC in patch $U_{i}$ requires $\omega \sigma_{i *}=\sigma_{i}^{*} \omega=A_{i}=0$
- $A$ is gauge connection on $M$
- corresponding field strength has to vanish (flat connection)
- A severely constraint by linear version of SC

$$
\begin{array}{rl}
\text { e.g. } \mathrm{O}(d-1, d-1): ~ & A=t^{a}\left(-B_{a b} E^{b}{ }_{i}+\delta^{b}{ }_{a} E_{b i}\right) \\
\text { SL(5): } A & =t_{\tilde{\alpha}}\left(\eta^{\gamma \delta, \tilde{\alpha}} C_{\beta \gamma \delta} E^{\beta}{ }_{i}+\delta_{\tilde{\beta}}^{\tilde{\alpha}} E^{\tilde{\beta}}{ }_{i}\right) d x^{i}
\end{array}
$$

- $B_{a b}, C_{\alpha \beta \gamma}$ are totally anti-symmetric


## Two ways to find $A=0$ (and solve the SC )

- the hard way

1. take arbitrary coset representative $m\left(x^{i}\right)$
2. choose $B / C$ in connection $A$ that $F=D A=0$ (in general very hard)
3. $A$ is (at least locally) pure gauge
4. set $A=0$ by gauge transformation

## Two ways to find $A=0$ (and solve the SC )

- the hard way

1. take arbitrary coset representative $m\left(x^{i}\right)$
2. choose $B / C$ in connection $A$ that $F=D A=0$ (in general very hard)
3. $A$ is (at least locally) pure gauge
4. set $A=0$ by gauge transformation

- much simpler if

1. $\mathfrak{m}$ and $\mathfrak{h}$ form symmetric pair

$$
[\mathfrak{h}, \mathfrak{h}] \subset \mathfrak{h} \quad[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m} \quad[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h}
$$

2. $\mathfrak{m}$ is a subgroup
e.g. for $\mathrm{O}(d-1, d-1)$ Drinfeld double
then coset representative $m=\exp \left(f\left(x^{i}\right)\right)$ results in $A=0$

## Connection to generalized geometry

- identify $\left\{\begin{array}{l}H G \text { with tangent bundle } T M \text { of } M\end{array}\right.$ $V G$ the reset of the generalized tangent bundle


## Connection to generalized geometry

- identify $\left\{\begin{array}{l}H G \text { with tangent bundle } T M \text { of } M\end{array}\right.$
$V G$ the reset of the generalized tangent bundle
- for all $g \in G, V_{g} G \cong \mathfrak{h}$; introduce map

$$
\eta_{g}: \mathfrak{h} \rightarrow \Lambda^{n} T_{g}^{*} M \quad n=1 \text { for } \mathrm{O}(d-1, d-1) / n=2 \text { for } \operatorname{SL}(5)
$$

## Connection to generalized geometry

- identify $\begin{cases}H G & \text { with tangent bundle } T M \text { of } M \\ V G & \text { the reset of the generalized tangent bundle }\end{cases}$
- for all $g \in G, V_{g} G \cong \mathfrak{h}$; introduce map

$$
\eta_{g}: \mathfrak{h} \rightarrow \Lambda^{n} T_{g}^{*} M \quad n=1 \text { for } \mathrm{O}(d-1, d-1) / n=2 \text { for } \operatorname{SL}(5)
$$

- in combination with

1. component $E^{a}$ of left-invariant Maurer-Cartan form $E^{A}$,
2. $B_{a b} / C_{\alpha \beta \gamma}$ from $A=0$
a canoical generalized frame field $\widehat{E}_{A} \hat{}$ arises

## Connection to generalized geometry

- identify $\begin{cases}H G & \text { with tangent bundle } T M \text { of } M \\ V G & \text { the reset of the generalized tangent bundle }\end{cases}$
- for all $g \in G, V_{g} G \cong \mathfrak{h}$; introduce map

$$
\eta_{g}: \mathfrak{h} \rightarrow \Lambda^{n} T_{g}^{*} M \quad n=1 \text { for } O(d-1, d-1) / n=2 \text { for } \operatorname{SL}(5)
$$

- in combination with

1. component $E^{a}$ of left-invariant Maurer-Cartan form $E^{A}$,
2. $B_{a b} / C_{\alpha \beta \gamma}$ from $A=0$
a canoical generalized frame field $\hat{E}_{A}{ }^{\hat{\jmath}}$ arises

- apply to vectors $V^{\hat{\imath}}=\left(\begin{array}{ll}V^{i} & V_{i}\end{array}\right)=\widehat{E}_{A}{ }^{\hat{l}} V^{A}$ and gen. Lie derivative

$$
\mathcal{L}_{\xi} V^{\hat{\imath}}=\widehat{\mathcal{L}}_{\xi} V^{\hat{\imath}}+\mathcal{F}_{\hat{\jmath} \hat{K}} \hat{\xi}^{\hat{\jmath}} V^{\hat{K}}
$$

## Connection to generalized geometry

- $\widehat{\mathcal{L}}=$ untwisted gen. Lie derivative of GG (generalized geometry) on $M$
- $\mathcal{F}_{\hat{\imath} \hat{\jmath}} \hat{K}=$ additional twist

$$
\mathcal{L}_{\widehat{E}_{A}} \widehat{E}_{B} \hat{\imath} \widehat{E}_{\hat{\jmath}}^{C}=X_{A B}{ }^{C}
$$

## Connection to generalized geometry

- $\widehat{\mathcal{L}}=$ untwisted gen. Lie derivative of GG (generalized geometry) on $M$
- $\mathcal{F}_{\hat{\imath} \hat{\jmath}} \hat{K}=$ additional twist
$\mathcal{L}_{\widehat{E}_{A}} \widehat{E}_{B} \hat{\imath} \widehat{E}^{C}{ }_{\hat{\jmath}}=X_{A B}{ }^{C}$
- $\widehat{E}_{A} \neq \mathcal{E}_{A}$, because $\mathcal{L} \neq \widehat{\mathcal{L}}$


## Connection to generalized geometry

- $\widehat{\mathcal{L}}=$ untwisted gen. Lie derivative of $G G$ (generaized geometry) on $M$
- $\mathcal{F}_{\hat{i}}{ }^{\hat{K}}=$ additional twist
$\mathcal{L}_{\widehat{E}_{A}} \widehat{E}_{B}{ }^{i} \hat{E}^{C}{ }_{\hat{\jmath}}=X_{A B}{ }^{C}$
- $\widehat{E}_{A} \neq \mathcal{E}_{A}$, because $\mathcal{L} \neq \widehat{\mathcal{L}}$
- TODO: push twist completely in gen. frame field



## Different solutions and dualities

- in general more than one tuple $\left(M, \mathcal{E}_{A}\right)$ with same $X_{A B}{ }^{C}$


## Different solutions and dualities

- in general more than one tuple $\left(M, \mathcal{E}_{A}\right)$ with same $X_{A B}{ }^{C}$
- related by duality transformations

$$
\text { e.g. } G=C S O(1,0,3) \subset S O(3,3)
$$



## Different solutions and dualities

- in general more than one tuple $\left(M, \mathcal{E}_{A}\right)$ with same $X_{A B}{ }^{C}$
- related by duality transformations

$$
\text { e.g. } G=C S O(1,0,3) \subset S O(3,3)
$$



## Different solutions and dualities

- in general more than one tuple $\left(M, \mathcal{E}_{A}\right)$ with same $X_{A B}{ }^{C}$
- related by duality transformations

$$
\text { e.g. } G=C S O(1,0,3) \subset S O(3,3)
$$



## Construction of the generalized frame field $\mathcal{E}_{A}{ }^{\hat{}}$

- ansatz $\mathcal{E}_{A}{ }^{\hat{l}}=-M_{A}{ }^{B} \widehat{E}_{B}^{\prime} \hat{\imath}$ with

$$
M_{A}^{B} t_{B}=m^{-1} t_{A} m
$$

$\widehat{E}_{A}^{\prime \hat{}}=$ similar as $\widehat{E}_{A}{ }^{\hat{}}$ but with $\mathcal{B} / \mathcal{C}$ instead of $B / C$
$G / H \ni m=$ from splitting $g=m h$ induced by SC solution

## Construction of the generalized frame field $\mathcal{E}_{A}{ }^{i}$

- ansatz $\mathcal{E}_{A}{ }^{\hat{l}}=-M_{A}{ }^{B} \hat{E}_{B}^{\prime \hat{l}}$ with

$$
M_{A}^{B} t_{B}=m^{-1} t_{A} m
$$

$\widehat{E}_{A}^{\prime \hat{}}=$ similar as $\widehat{E}_{A}{ }^{\hat{}}$ but with $\mathcal{B} / \mathcal{C}$ instead of $B / C$
$G / H \ni m=$ from splitting $g=m h$ induced by SC solution

- requires

1. additional linear constraint
2. appropriate choice of $\mathcal{B} / \mathcal{C}$

$$
\text { e.g. } \mathrm{SL}(5): d \mathcal{C}=-\frac{3}{4} Y_{11} \mathrm{vol}
$$

## Construction of the generalized frame field $\mathcal{E}_{A}{ }^{i}$

- ansatz $\mathcal{E}_{A}{ }^{\hat{l}}=-M_{A}{ }^{B} \hat{E}_{B}^{\prime \hat{\imath}}$ with

$$
M_{A}^{B} t_{B}=m^{-1} t_{A} m
$$

$\widehat{E}_{A}^{\prime \hat{}}=$ similar as $\widehat{E}_{A}{ }^{\hat{}}$ but with $\mathcal{B} / \mathcal{C}$ instead of $B / C$
$G / H \ni m=$ from splitting $g=m h$ induced by SC solution

- requires

1. additional linear constraint
2. appropriate choice of $\mathcal{B} / \mathcal{C}$

$$
\text { e.g. } \mathrm{SL}(5): d \mathcal{C}=-\frac{3}{4} Y_{11} \mathrm{vol}
$$

- by construction element of duality group \& SC solution


## Solutions of the additional constraint for $\operatorname{SL}(5)$

- SC solution requires choosing a $v_{a}^{0}$
- breaks $\operatorname{SL}(5)$ to $S L(4), \ldots$


## Solutions of the additional constraint for $\operatorname{SL}(5)$

- SC solution requires choosing a $v_{a}^{0}$
- breaks $\operatorname{SL}(5)$ to $\operatorname{SL}(4), \ldots$
- linear constraints remove certain irreps from embedding tensor $\operatorname{dim} G=10: \quad \mathrm{SL}(5) \rightarrow \mathrm{SL}(4)$
$\mathbf{1 5} \rightarrow \mathbf{1}+\mathbf{1 0}$


## Solutions of the additional constraint for $\operatorname{SL}(5)$

- SC solution requires choosing a $v_{a}^{0}$
- breaks SL(5) to SL(4), ...
- linear constraints remove certain irreps from embedding tensor

$$
\operatorname{dim} G=10: \quad \mathrm{SL}(5) \rightarrow \mathrm{SL}(4)
$$

$$
15 \rightarrow 1+10
$$

$\operatorname{dim} G=9: \quad \mathrm{SL}(3) \times \mathrm{SL}(2) \rightarrow \mathrm{SL}(2) \times \mathrm{SL}(2)$
$(1,3)+(3,2)+(6,1)+(1,2) \rightarrow$
$(1,3)+(1,2)+(2,2)+(1,1)+(2,1)+(3,1)+(1,2)$

## Solutions of the additional constraint for $\operatorname{SL}(5)$

- SC solution requires choosing a $v_{a}^{0}$
- breaks SL(5) to SL(4), ...
- linear constraints remove certain irreps from embedding tensor $\operatorname{dim} G=10: \quad \mathrm{SL}(5) \rightarrow \mathrm{SL}(4)$

$$
15 \rightarrow 1+10
$$

$\operatorname{dim} G=9: \quad \mathrm{SL}(3) \times \mathrm{SL}(2) \rightarrow \mathrm{SL}(2) \times \mathrm{SL}(2)$
$(1,3)+(3,2)+(6,1)+(1,2) \rightarrow$
$(1,3)+(1,2)+(2,2)+(1,1)+(2,1)+(3,1)+(1,2)$
$\operatorname{dim} G=7:$

## Solutions of the additional constraint for $\operatorname{SL}(5)$

- SC solution requires choosing a $v_{a}^{0}$
- breaks SL(5) to SL(4), . .
- linear constraints remove certain irreps from embedding tensor $\operatorname{dim} G=10: \quad \mathrm{SL}(5) \rightarrow \mathrm{SL}(4)$

$$
15 \rightarrow 1+10
$$

$\operatorname{dim} G=9: \quad \mathrm{SL}(3) \times \mathrm{SL}(2) \rightarrow \mathrm{SL}(2) \times \mathrm{SL}(2)$
$(1,3)+(3,2)+(6,1)+(1,2) \rightarrow$
$(1,3)+(1,2)+(2,2)+(1,1)+(2,4)+(3,1)+(1,2)$
$\operatorname{dim} G=7:$

- all allowed gaugings in the $\mathbf{1 5}$ only result in symmetric spaces


## Example $S^{4}$ with radius $R$

- group $G=S O(5)$, only one subgroup $H=S O(4)$
- $M=\mathrm{SO}(5) / \mathrm{SO}(4)$, symmetric space


## Example $S^{4}$ with radius $R$

- group $G=S O(5)$, only one subgroup $H=S O(4)$
- $M=\mathrm{SO}(5) / \mathrm{SO}(4)$, symmetric space
- A vanishes globally for

$$
C=R^{3} \tan \left(\frac{\phi^{1}}{2}\right) \sin ^{3}\left(\phi^{1}\right) \sin ^{2}\left(\phi^{2}\right) \sin \left(\phi^{3}\right) d \phi^{2} \wedge d \phi^{3} \wedge d \phi^{4}
$$

## Example $S^{4}$ with radius $R$

- group $G=S O(5)$, only one subgroup $H=S O(4)$
- $M=\mathrm{SO}(5) / \mathrm{SO}(4)$, symmetric space
- A vanishes globally for

$$
C=R^{3} \tan \left(\frac{\phi^{1}}{2}\right) \sin ^{3}\left(\phi^{1}\right) \sin ^{2}\left(\phi^{2}\right) \sin \left(\phi^{3}\right) d \phi^{2} \wedge d \phi^{3} \wedge d \phi^{4}
$$

- choose $\mathcal{C}$ in $\hat{E}_{A}^{\prime} \hat{l}$ such that $d \mathcal{C}=3 R^{3} \sin ^{3}\left(\phi^{1}\right) \sin ^{2}\left(\phi^{2}\right) \sin \left(\phi^{3}\right) d \phi^{1} \wedge d \phi^{2} \wedge d \phi^{3} \wedge d \phi^{4}=\frac{3}{R} \mathrm{vol}$ and we construct $\mathcal{E}_{A}{ }^{\hat{l}}$


## Example $S^{4}$ with radius $R$

- group $G=S O(5)$, only one subgroup $H=S O(4)$
- $M=\mathrm{SO}(5) / \mathrm{SO}(4)$, symmetric space
- A vanishes globally for

$$
C=R^{3} \tan \left(\frac{\phi^{1}}{2}\right) \sin ^{3}\left(\phi^{1}\right) \sin ^{2}\left(\phi^{2}\right) \sin \left(\phi^{3}\right) d \phi^{2} \wedge d \phi^{3} \wedge d \phi^{4}
$$

- choose $\mathcal{C}$ in $\widehat{E}_{A}^{\prime} \hat{l}$ such that $d \mathcal{C}=3 R^{3} \sin ^{3}\left(\phi^{1}\right) \sin ^{2}\left(\phi^{2}\right) \sin \left(\phi^{3}\right) d \phi^{1} \wedge d \phi^{2} \wedge d \phi^{3} \wedge d \phi^{4}=\frac{3}{R} \mathrm{vol}$ and we construct $\mathcal{E}_{A}{ }^{\hat{}}$
- alternative parameterization, embedding in $\mathbb{R}^{5}$
- reproduces known results


## Summary

DFT/EFT gives us an explicit construction of generalized parallelizable spaces, if we change the perspective on the extended space.

## Summary

DFT/EFT gives us an explicit construction of generalized parallelizable spaces, if we change the perspective on the extended space.

## Advantages

- group $G$ is manifest in extended space
- dualities are manifest as different solutions of the SC
- results depends on having extended space


## Summary

DFT/EFT gives us an explicit construction of generalized parallelizable spaces, if we change the perspective on the extended space.

## Advantages

- group $G$ is manifest in extended space
- dualities are manifest as different solutions of the SC
- results depends on having extended space


## Project proposal: Classification of gen. parall. spaces

- redo analysis for $E_{d(d)}$ with $d>4$
- solve linear constraints completely
- are there examples not covered by the construction?

H-principal bundle construction "visualized"


