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Typical conversation with non-DFT/EFT hep-th people

I Why an extended space?

I additional coordinates are winding modes on T d

I they make U/T-duality manifest

I Tori are boring. Can you do more?

I yes, after imposing the SC (section condition)

I But then you have GG (generalized geometry).

I yes, but extended space is great bookkeeping device

I Examples please!

I generalized Scherk-Schwarz reductions . . .

I You classify all consistent reductions with maximal SUSY?

I By the way, what happens to the manifest dualities?



Scherk-Schwarz reductions at a glance

I compactification on group manifold M=G

I frame field ea
i (left-invariant Maurer-Cartan form)

taea
idx i = g−1dg with ta ∈ g and g ∈ G

I frame algebra with const. fab
c generated by Lie derivative

Leaeb
iec

i = fab
cec

i

I invariant, non-degenerate, symmetric two-form δab → metric

ds2 = δabea
ieb

jdx idx j

I no fluxes

I M is parallelizable space

I tangent bundle trivial, maximal SUSY

I consistent reduction to gauged SUGRA
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Generalized Scherk-Schwarz reductions at a glance

I compactification on group manifold M

I generalized frame field EA
Î (left-invariant Maurer-Cartan form)

???

I frame algebra with const. XAB
C generated by gen. Lie derivative

L̂EAEB
ÎEC

Î = XAB
C

I invariant, non-degenerate, symmetric two-form δAB→ gen. metric

HÎ Ĵ = δABEA
ÎE

B
Ĵ

I no fluxes

I M is generalized parallelizable space

I generalized tangent bundle trivial, maximal SUSY

I consistent reduction to gauged SUGRA
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Generalized Frame Field

EA
Î

• with constant XAB
C

• solution to SC

• element of duality group

I examples, no construction yet

today
1. revisit extended space
2. solve SC
3. construct EA

Î



Alternative proposal for extended space

I extended space = group manifold G

I relevant structure

1. left-invariant Maurer-Cartan form

tAEA
Idx I = g−1dg with tA ∈ g and g ∈ G

2. flat derivative

DA = EA
I∂I

3. covariant derivative

∇AV B = DAV B + ΓAC
BV C

I why?
I suggested by CSFT (Closed String Field Theory) on WZW-model
I for G abelian→ standard formulation
I it works

Extended space as group manifold Solutions of SC and dualities Generalized frame field Summary
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Action of the duality group Ed(d)/O(d-1,d-1)

I indices A, B, . . . transform in coordiante irrep of duality group

e.g. 10 of SL(5)=E4(4) or vector irrep of O(d-1,d-1)

I introduce generalized Lie derivative

LξV A = ξB∇BV A − V B∇Bξ
A + Y AB

CD∇Bξ
CV D

I whose closure requires SC constraint

Y CD
ABDC · DD· = 0
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Action of the duality group Ed(d)/O(d-1,d-1)

I indices A, B, . . . transform in coordiante irrep of duality group

e.g. 10 of SL(5)=E4(4) or vector irrep of O(d-1,d-1)

I introduce generalized Lie derivative

LξV A = ξB∇BV A − V B∇Bξ
A + Y AB

CD∇Bξ
CV D

I whose closure requires SC constraint

Y CD
ABDC · DD· = 0

fix connection Γ

by requiring
I Y -tensor is covariant constant
I closure of generalized Lie derivative

results in
I two linear constraints
I one quadratic constraint

Extended space as group manifold Solutions of SC and dualities Generalized frame field Summary



Solutions
I linear constraints restrict G to embedding tensor solutions

e.g. SO(3,3) ∼= SL(4): 6× 15→ 10 + 10

or SL(5): 10× 24→ 15 + 40

I if embedding tensor XAB
C 6= X[AB]

C

dim G < dim coordinate irrep→ break duality group

I happens in 40 of SL(5)

e.g. dim G=9, branch to SL(3)×SL(2)

coordinate irrep: 10→ (3,2) + (3,1) +��
�H
HH(1,1)

embedding tensor: (1,3) + (3,2) + (6,1) + (1,2)

I also for E6(6) and G=SO(6) where E6(6) →SL(6)×SL(2)

coordinate irrep: 27→ (15,1) +��
�HHH(6,2)

I quadratic constraint = Jacobi identity

Extended space as group manifold Solutions of SC and dualities Generalized frame field Summary



Solutions
I linear constraints restrict G to embedding tensor solutions

e.g. SO(3,3) ∼= SL(4): 6× 15→ 10 + 10

or SL(5): 10× 24→ 15 + 40

I if embedding tensor XAB
C 6= X[AB]

C

dim G < dim coordinate irrep→ break duality group

I happens in 40 of SL(5)

e.g. dim G=9, branch to SL(3)×SL(2)

coordinate irrep: 10→ (3,2) + (3,1) +��
�H
HH(1,1)

embedding tensor: (1,3) + (3,2) + (6,1) + (1,2)

I also for E6(6) and G=SO(6) where E6(6) →SL(6)×SL(2)

coordinate irrep: 27→ (15,1) +��
�HHH(6,2)

I quadratic constraint = Jacobi identity

Extended space as group manifold Solutions of SC and dualities Generalized frame field Summary



Solutions
I linear constraints restrict G to embedding tensor solutions

e.g. SO(3,3) ∼= SL(4): 6× 15→ 10 + 10

or SL(5): 10× 24→ 15 + 40

I if embedding tensor XAB
C 6= X[AB]

C

dim G < dim coordinate irrep→ break duality group

I happens in 40 of SL(5)

e.g. dim G=9, branch to SL(3)×SL(2)

coordinate irrep: 10→ (3,2) + (3,1) +��
�H
HH(1,1)

embedding tensor: (1,3) + (3,2) + (6,1) + (1,2)

I also for E6(6) and G=SO(6) where E6(6) →SL(6)×SL(2)

coordinate irrep: 27→ (15,1) +��
�HHH(6,2)

I quadratic constraint = Jacobi identity

Extended space as group manifold Solutions of SC and dualities Generalized frame field Summary



Solutions
I linear constraints restrict G to embedding tensor solutions

e.g. SO(3,3) ∼= SL(4): 6× 15→ 10 + 10

or SL(5): 10× 24→ 15 + 40

I if embedding tensor XAB
C 6= X[AB]

C

dim G < dim coordinate irrep→ break duality group

I happens in 40 of SL(5)

e.g. dim G=9, branch to SL(3)×SL(2)

coordinate irrep: 10→ (3,2) + (3,1) +��
�H
HH(1,1)

embedding tensor: (1,3) + (3,2) + (6,1) + (1,2)

I also for E6(6) and G=SO(6) where E6(6) →SL(6)×SL(2)

coordinate irrep: 27→ (15,1) +��
�HHH(6,2)

I quadratic constraint = Jacobi identity
Extended space as group manifold Solutions of SC and dualities Generalized frame field Summary



SC and H-principal bundle

I SC selects d physical directions in extended space

I split TG into
{

d physical
dim G − d SC violating

directions

I convenient tool is a H-principal bundle G

splits TG into
{

HG horizontal=physical
VG vertical=auxiliary

subbundles

I physical manifold M = G/H is coset space

I H is a maximally isotropic subgroup of G for O(d-1,d-1)

I for SL(5) EFT linear SC v0
a ε

aBC∂C · = 0 is a map 10→ 10

m is its kernel and h the complement

I in total g = m + h
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Sections and connections

I the bundle π : G→ M has sections σi : M ⊃ Ui → G

I and a h-valued connection one-form ω

I at each g ∈ G, ωg(X ) = 0 for all X ∈ HgG

I solving SC in patch Ui requires ωσi ∗ = σ∗i ω = Ai = 0

I A is gauge connection on M

I corresponding field strength has to vanish (flat connection)

I A severely constraint by linear version of SC

e.g. O(d-1,d-1): A = ta(−BabEb
i + δb

aEbi)

SL(5): A = tα̃(ηγδ,α̃CβγδEβ
i + δα̃

β̃
E β̃

i)dx i

I Bab, Cαβγ are totally anti-symmetric
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Two ways to find A=0 (and solve the SC)

I the hard way

1. take arbitrary coset representative m(x i )

2. choose B/C in connection A that F=DA=0 (in general very hard)

3. A is (at least locally) pure gauge

4. set A=0 by gauge transformation

I much simpler if

1. m and h form symmetric pair

[h, h] ⊂ h [h,m] ⊂ m [m,m] ⊂ h

2. m is a subgroup

e.g. for O(d-1,d-1) Drinfeld double

then coset representative m = exp(f (x i)) results in A = 0

Extended space as group manifold Solutions of SC and dualities Generalized frame field Summary
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Connection to generalized geometry

I identify

{
HG with tangent bundle TM of M
VG the reset of the generalized tangent bundle

I for all g ∈ G, VgG ∼= h; introduce map

ηg : h→ ΛnT ∗g M n=1 for O(d-1,d-1) / n=2 for SL(5)

I in combination with

1. component Ea
i of left-invariant Maurer-Cartan form EA

I

2. Bab / Cαβγ from A=0

a canoical generalized frame field ÊA
Î arises

I apply to vectors V Î =
(
V i Vi

)
= ÊA

ÎV A and gen. Lie derivative

LξV Î = L̂ξV Î + FĴK̂
ÎξĴV K̂

Extended space as group manifold Solutions of SC and dualities Generalized frame field Summary
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Connection to generalized geometry

I L̂ = untwisted gen. Lie derivative of GG (generalized geometry) on M

I FÎ Ĵ
K̂ = additional twist

LÊA
ÊB

ÎÊC
Î = XAB

C

I ÊA 6= EA, because L 6= L̂

I TODO: push twist completely in gen. frame field

Extended space as group manifold Solutions of SC and dualities Generalized frame field Summary
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LÊA
ÊB
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Connection to generalized geometry

I L̂ = untwisted gen. Lie derivative of GG (generalized geometry) on M

I FÎ Ĵ
K̂ = additional twist

LÊA
ÊB

ÎÊC
Î = XAB

C

I ÊA 6= EA, because L 6= L̂

I TODO: push twist completely in gen. frame field

FÎ Ĵ
K̂

ÊB
Î

Extended space as group manifold Solutions of SC and dualities Generalized frame field Summary



Different solutions and dualities

I in general more than one tuple (M, EA) with same XAB
C

I related by duality transformations

e.g. G=CSO(1,0,3) ⊂ SO(3,3)
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Different solutions and dualities

I in general more than one tuple (M, EA) with same XAB
C

I related by duality transformations

e.g. G=CSO(1,0,3) ⊂ SO(3,3)

Hijk f i
jk Qij

k R ijk

H = R3 H = R3 H = H3 no subgroup

Ti Tj Tk

T1 T2 T3

torus with
H-flux

twisted torus with
geometric f -flux

non-comm. T-fold
with Q-flux

non-ass.
with R-flux

︸ ︷︷ ︸
Drinfeld double

Extended space as group manifold Solutions of SC and dualities Generalized frame field Summary



Construction of the generalized frame field EA
Î

I ansatz EA
Î = −MA

BÊ ′B
Î with

MA
BtB = m−1tAm

Ê ′A
Î = similar as ÊA

Î but with B/C instead of B/C

G/H 3 m = from splitting g = mh induced by SC solution

I requires

1. additional linear constraint

2. appropriate choice of B/C

e.g. SL(5): dC = −3
4

Y11 vol

I by construction element of duality group & SC solution
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Î but with B/C instead of B/C

G/H 3 m = from splitting g = mh induced by SC solution

I requires

1. additional linear constraint

2. appropriate choice of B/C

e.g. SL(5): dC = −3
4

Y11 vol

I by construction element of duality group & SC solution

Extended space as group manifold Solutions of SC and dualities Generalized frame field Summary



Solutions of the additional constraint for SL(5)

I SC solution requires choosing a v0
a

I breaks SL(5) to SL(4), . . .

I linear constraints remove certain irreps from embedding tensor

dim G = 10 : SL(5)→ SL(4)
15→ 1 +�S4 + 10

I all allowed gaugings in the 15 only result in symmetric spaces
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15→ 1 +�S4 + 10
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Example S4 with radius R

I group G=SO(5), only one subgroup H=SO(4)

I M=SO(5)/SO(4), symmetric space

I A vanishes globally for

C = R3 tan
(
φ1

2

)
sin3(φ1) sin2(φ2) sin(φ3) dφ2 ∧ dφ3 ∧ dφ4

I choose C in Ê ′A
Î such that

dC = 3R3 sin3(φ1) sin2(φ2) sin(φ3) dφ1 ∧ dφ2 ∧ dφ3 ∧ dφ4 = 3
R vol

and we construct EA
Î

I alternative parameterization, embedding in R5

I reproduces known results

Extended space as group manifold Solutions of SC and dualities Generalized frame field Summary



Example S4 with radius R

I group G=SO(5), only one subgroup H=SO(4)

I M=SO(5)/SO(4), symmetric space

I A vanishes globally for

C = R3 tan
(
φ1

2

)
sin3(φ1) sin2(φ2) sin(φ3) dφ2 ∧ dφ3 ∧ dφ4

I choose C in Ê ′A
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Summary

DFT/EFT gives us an explicit construction of generalized
parallelizable spaces, if we change the perspective on
the extended space.
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DFT/EFT gives us an explicit construction of generalized
parallelizable spaces, if we change the perspective on
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Advantages

I group G is manifest in extended space
I dualities are manifest as different solutions of the SC
I results depends on having extended space
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Summary

DFT/EFT gives us an explicit construction of generalized
parallelizable spaces, if we change the perspective on
the extended space.

Advantages

I group G is manifest in extended space
I dualities are manifest as different solutions of the SC
I results depends on having extended space

Project proposal: Classification of gen. parall. spaces

I redo analysis for Ed(d) with d > 4
I solve linear constraints completely
I are there examples not covered by the construction?
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H-principal bundle construction “visualized”
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