Extended Space for

(half) Maximally Supersymmetric Theories

Falk Hassler

bases on

arXiv: 1611.07978 and 1705.09304

in collaboration with

Pascal du Bosque and Dieter Lüst

University of North Carolina at Chapel Hill

June 7, 2017

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Why an extended space?

- Why an extended space?
 - additional coordinates are winding modes on T^d
 - they make U/T-duality manifest

- Why an extended space?
 - additional coordinates are winding modes on T^d
 - they make U/T-duality manifest
- Tori are boring. Can you do more?

- Why an extended space?
 - additional coordinates are winding modes on T^d
 - they make U/T-duality manifest
- Tori are boring. Can you do more?
 - yes, after imposing the SC (section condition)

- Why an extended space?
 - additional coordinates are winding modes on T^d
 - they make U/T-duality manifest
- Tori are boring. Can you do more?
 - yes, after imposing the SC (section condition)
- But then you have GG (generalized geometry).

- Why an extended space?
 - additional coordinates are winding modes on T^d
 - they make U/T-duality manifest
- Tori are boring. Can you do more?
 - yes, after imposing the SC (section condition)
- ► But then you have GG (generalized geometry).
 - yes, but extended space is great bookkeeping device

- Why an extended space?
 - additional coordinates are winding modes on T^d
 - they make U/T-duality manifest
- Tori are boring. Can you do more?
 - yes, after imposing the SC (section condition)
- ► But then you have GG (generalized geometry).
 - yes, but extended space is great bookkeeping device
- Examples please!

- Why an extended space?
 - additional coordinates are winding modes on T^d
 - they make U/T-duality manifest
- Tori are boring. Can you do more?
 - yes, after imposing the SC (section condition)
- ► But then you have GG (generalized geometry).
 - yes, but extended space is great bookkeeping device
- Examples please!
 - generalized Scherk-Schwarz reductions

- Why an extended space?
 - additional coordinates are winding modes on T^d
 - they make U/T-duality manifest
- Tori are boring. Can you do more?
 - yes, after imposing the SC (section condition)
- ► But then you have GG (generalized geometry).
 - yes, but extended space is great bookkeeping device
- Examples please!
 - generalized Scherk-Schwarz reductions
- You classify all consistent reductions with maximal SUSY?
- By the way, what happens to the manifest dualities?

- compactification on group manifold M=G
- Frame field e^{a_i} (left-invariant Maurer-Cartan form)

 $t_a e^a{}_i dx^i = g^{-1} dg$ with $t_a \in \mathfrak{g}$ and $g \in G$

- compactification on group manifold M=G
- Frame field e^{a_i} (left-invariant Maurer-Cartan form)

 $t_a e^a{}_i dx^i = g^{-1} dg$ with $t_a \in \mathfrak{g}$ and $g \in G$

► frame algebra with const. $f_{ab}{}^c$ generated by Lie derivative $L_{e_a}e_b{}^ie^c{}_i = f_{ab}{}^ce_c{}^i$

- compactification on group manifold M=G
- frame field e^{a_i} (left-invariant Maurer-Cartan form)

 $t_a e^a{}_i dx^i = g^{-1} dg$ with $t_a \in \mathfrak{g}$ and $g \in G$

- ► frame algebra with const. $f_{ab}{}^c$ generated by Lie derivative $L_{e_a}e_b{}^ie^c{}_i = f_{ab}{}^ce_c{}^i$
- ► invariant, non-degenerate, symmetric two-form $\delta_{ab} \rightarrow$ metric $ds^2 = \delta_{ab} e^a{}_i e^b{}_j dx^i dx^j$

- compactification on group manifold M=G
- frame field e^a_i (left-invariant Maurer-Cartan form)

 $t_a e^a{}_i dx^i = g^{-1} dg$ with $t_a \in \mathfrak{g}$ and $g \in G$

- ► frame algebra with const. $f_{ab}{}^c$ generated by Lie derivative $L_{e_a}e_b{}^ie^c{}_i = f_{ab}{}^ce_c{}^i$
- ► invariant, non-degenerate, symmetric two-form $\delta_{ab} \rightarrow$ metric $ds^2 = \delta_{ab} e^a{}_i e^b{}_j dx^i dx^j$
- no fluxes
- ► *M* is parallelizable space
- tangent bundle trivial, maximal SUSY
- consistent reduction to gauged SUGRA

Generalized Scherk-Schwarz reductions at a glance

- compactification on group manifold M
- generalized frame field $\mathcal{E}^{A}_{\hat{j}}$ (left-invariant Maurer-Cartan form) ???
- ► frame algebra with const. $X_{AB}{}^{C}$ generated by gen. Lie derivative $\hat{\mathcal{L}}_{\mathcal{E}_{A}} \mathcal{E}_{B}{}^{\hat{l}} \mathcal{E}^{C}{}_{\hat{l}} = X_{AB}{}^{C}$
- ► invariant, non-degenerate, symmetric two-form δ_{AB} → gen. metric $\mathcal{H}_{\hat{j}\hat{j}} = \delta_{AB} \mathcal{E}^{A}_{\hat{j}} \mathcal{E}^{B}_{\hat{j}}$
- no fluxes
- ► *M* is generalized parallelizable space
- generalized tangent bundle trivial, maximal SUSY
- consistent reduction to gauged SUGRA

Generalized Frame Field $\mathcal{E}_{A}^{\hat{l}}$

- with constant X_{AB}^{C}
- solution to SC
- element of duality group

Dead or Alive

examples, no construction yet

today

- 1. revisit extended space
- 2. solve SC
- 3. construct $\mathcal{E}_A^{\hat{l}}$

extended space = group manifold G

Extended space as group manifold •oo Solutions of SC and dualities

Generalized frame field

- extended space = group manifold G
- relevant structure
 - 1. left-invariant Maurer-Cartan form

 $t_A E^A{}_I dx' = g^{-1} dg$ with $t_A \in \mathfrak{g}$ and $g \in G$

- extended space = group manifold G
- relevant structure
 - 1. left-invariant Maurer-Cartan form $t_A E^A{}_I dx^I = g^{-1} dg$ with $t_A \in \mathfrak{g}$ and $g \in G$ 2. flat derivative

$$D_A = E_A{}^I \partial_I$$

- extended space = group manifold G
- relevant structure
 - 1. left-invariant Maurer-Cartan form $t_A E^A{}_I dx^I = g^{-1} dg$ with $t_A \in \mathfrak{g}$ and $g \in G$
 - flat derivative

$$D_A = E_A{}^I \partial_I$$

3. covariant derivative

$$\nabla_A V^B = D_A V^B + \Gamma_{AC}{}^B V^C$$

Solutions of SC and dualities

Generalized frame field

- extended space = group manifold G
- relevant structure
 - 1. left-invariant Maurer-Cartan form

 $t_A E^A{}_I dx^I = g^{-1} dg$ with $t_A \in \mathfrak{g}$ and $g \in G$

2. flat derivative

$$D_A = E_A{}^I \partial_I$$

3. covariant derivative

$$\nabla_A V^B = D_A V^B + \Gamma_{AC}{}^B V^C$$

why?

- suggested by CSFT (Closed String Field Theory) on WZW-model
- for G abelian \rightarrow standard formulation
- it works

```
Extended space as group manifold 
•••
```

Solutions of SC and dualities

Generalized frame field

indices A, B, ... transform in coordiante irrep of duality group
 e.g. 10 of SL(5)=E₄₍₄₎ or vector irrep of O(d-1,d-1)

Generalized frame field

- indices A, B, ... transform in coordiante irrep of duality group
 e.g. 10 of SL(5)=E₄₍₄₎ or vector irrep of O(d-1,d-1)
- introduce generalized Lie derivative

$$\mathcal{L}_{\xi}V^{A} = \xi^{B}\nabla_{B}V^{A} - V^{B}\nabla_{B}\xi^{A} + Y^{AB}{}_{CD}\nabla_{B}\xi^{C}V^{D}$$

whose closure requires SC constraint

$$Y^{CD}_{AB}D_C \cdot D_D \cdot = 0$$

- indices A, B, ... transform in coordiante irrep of duality group
 e.g. 10 of SL(5)=E₄₍₄₎ or vector irrep of O(d-1,d-1)
- introduce generalized Lie derivative

$$\mathcal{L}_{\xi}V^{A} = \xi^{B}\nabla_{B}V^{A} - V^{B}\nabla_{B}\xi^{A} + Y^{AB}{}_{CD}\nabla_{B}\xi^{C}V^{D}$$

whose closure requires SC constraint

$$Y^{CD}{}_{AB}D_C\cdot D_D\cdot=0$$

fix connection Г

Y-tensor is covariant constant

by requiring

closure of generalized Lie derivative

Solutions of SC and dualities

- indices A, B, ... transform in coordiante irrep of duality group
 e.g. 10 of SL(5)=E₄₍₄₎ or vector irrep of O(d-1,d-1)
- introduce generalized Lie derivative

$$\mathcal{L}_{\xi} V^{A} = \xi^{B} \nabla_{B} V^{A} - V^{B} \nabla_{B} \xi^{A} + Y^{AB}{}_{CD} \nabla_{B} \xi^{C} V^{D}$$

whose closure requires SC constraint

$$Y^{CD}_{AB}D_C \cdot D_D \cdot = 0$$

fix connection Г

- Y-tensor is covariant constant
- by requiring
- closure of generalized Lie derivative
- results in
- two linear constraints
- one quadratic constraint

Extended space as group manifold $\circ \bullet \circ$

Solutions of SC and dualities

► linear constraints restrict *G* to embedding tensor solutions

Solutions of SC and dualities

Generalized frame field

► linear constraints restrict *G* to embedding tensor solutions

- if embedding tensor X_{AB}^C ≠ X_[AB]^C
 dim G < dim coordinate irrep → break duality group
- happens in 40 of SL(5)

e.g. dim G=9, branch to SL(3)×SL(2)

coordinate irrep: $10 \rightarrow (3,2) + (\overline{3},1) + (1,2)$ embedding tensor: (1,3) + (3,2) + (6,1) + (1,2)

Solutions of SC and dualities

► linear constraints restrict *G* to embedding tensor solutions

- if embedding tensor X_{AB}^C ≠ X_[AB]^C
 dim G < dim coordinate irrep → break duality group
- happens in 40 of SL(5)

e.g. dim G=9, branch to SL(3)×SL(2)

coordinate irrep: $10 \rightarrow (3,2) + (\overline{3},1) + (1,2)$ embedding tensor: (1,3) + (3,2) + (6,1) + (1,2)

▶ also for $E_{6(6)}$ and G=SO(6) where $E_{6(6)} \rightarrow$ SL(6)×SL(2) coordinate irrep: **27** \rightarrow (**15**, 1) + (**6**, **2**)

► linear constraints restrict *G* to embedding tensor solutions

- if embedding tensor X_{AB}^C ≠ X_[AB]^C
 dim G < dim coordinate irrep → break duality group
- happens in 40 of SL(5)

e.g. dim G=9, branch to SL(3)×SL(2)

coordinate irrep: $10 \rightarrow (3,2) + (\overline{3},1) + (1,2)$ embedding tensor: (1,3) + (3,2) + (6,1) + (1,2)

▶ also for $E_{6(6)}$ and G=SO(6) where $E_{6(6)} \rightarrow$ SL(6)×SL(2) coordinate irrep: **27** \rightarrow (**15**, 1) + (**6**, **2**)

quadratic constraint = Jacobi identity

Extended space as group manifold

Solutions of SC and dualities

SC and *H*-principal bundle

SC selects *d* physical directions in extended space

► split *TG* into
$$\begin{cases} d & physical \\ dim G - d & SC violating \end{cases}$$
 directions

Solutions of SC and dualities

SC and *H*-principal bundle

- SC selects d physical directions in extended space
- ► split *TG* into $\begin{cases} d & physical \\ dim G d & SC violating \end{cases}$ directions
- physical manifold M = G/H is coset space

SC and *H*-principal bundle

- SC selects d physical directions in extended space
- ► split *TG* into $\begin{cases} d & physical \\ dim G d & SC violating \end{cases}$ directions
- physical manifold M = G/H is coset space
- *H* is a maximally isotropic subgroup of *G* for O(d-1,d-1)
- for SL(5) EFT linear SC v_a⁰ e^{aBC}∂_C = 0 is a map 10 → 10 m is its kernel and h the complement
- in total $\mathfrak{g} = \mathfrak{m} + \mathfrak{h}$

Solutions of SC and dualities • 00000

- the bundle $\pi : G \to M$ has sections $\sigma_i : M \supset U_i \to G$
- \blacktriangleright and a $\mathfrak{h}\text{-valued}$ connection one-form ω

• the bundle $\pi : G \to M$ has sections $\sigma_i : M \supset U_i \to G$

 \blacktriangleright and a $\mathfrak{h}\text{-valued}$ connection one-form ω

- ▶ at each $g \in G$, $\omega_g(X) = 0$ for all $X \in H_gG$
- ▶ solving SC in patch U_i requires $\omega \sigma_{i*} = \sigma_i^* \omega = A_i = 0$

- the bundle $\pi : G \to M$ has sections $\sigma_i : M \supset U_i \to G$
- and a \mathfrak{h} -valued connection one-form ω
- ▶ at each $g \in G$, $\omega_g(X) = 0$ for all $X \in H_gG$
- ▶ solving SC in patch U_i requires $\omega \sigma_{i*} = \sigma_i^* \omega = A_i = 0$
- A is gauge connection on M
- corresponding field strength has to vanish (flat connection)

- the bundle $\pi : G \to M$ has sections $\sigma_i : M \supset U_i \to G$
- and a $\mathfrak{h}\text{-valued}$ connection one-form ω
- ▶ at each $g \in G$, $\omega_g(X) = 0$ for all $X \in H_gG$
- ► solving SC in patch U_i requires $\omega \sigma_{i*} = \sigma_i^* \omega = A_i = 0$
- A is gauge connection on M
- corresponding field strength has to vanish (flat connection)
- A severely constraint by linear version of SC
 e.g. O(d-1,d-1): A = t^a(-B_{ab}E^b_i + δ^b_aE_{bi})
 SL(5): A = t_α(η^{γδ,α}C_{βγδ}E^β_i + δ^α_βE^β_i)dxⁱ

•
$$B_{ab}$$
, $C_{\alpha\beta\gamma}$ are totally anti-symmetric

Extended space as group manifold

Solutions of SC and dualities

Generalized frame field

Two ways to find A=0 (and solve the SC)

- the hard way
 - 1. take arbitrary coset representative $m(x^i)$
 - 2. choose B/C in connection A that F=DA=0 (in general very hard)
 - 3. A is (at least locally) pure gauge
 - 4. set A=0 by gauge transformation

Two ways to find A=0 (and solve the SC)

the hard way

- 1. take arbitrary coset representative $m(x^i)$
- 2. choose B/C in connection A that F=DA=0 (in general very hard)
- 3. A is (at least locally) pure gauge
- 4. set A=0 by gauge transformation
- much simpler if
 - 1. \mathfrak{m} and \mathfrak{h} form symmetric pair

 $[\mathfrak{h},\mathfrak{h}]\subset\mathfrak{h}\qquad [\mathfrak{h},\mathfrak{m}]\subset\mathfrak{m}\qquad [\mathfrak{m},\mathfrak{m}]\subset\mathfrak{h}$

2. \mathfrak{m} is a subgroup

e.g. for O(d-1, d-1) Drinfeld double

then coset representative $m = \exp(f(x^i))$ results in A = 0

Extended space as group manifold

Solutions of SC and dualities 000000

Generalized frame field

Solutions of SC and dualities 000000

Generalized frame field

 $\eta_g : \mathfrak{h} \to \Lambda^n T_g^* M$ n=1 for O(d-1,d-1) / n=2 for SL(5)

 $\eta_g : \mathfrak{h} \to \Lambda^n T_g^* M$ n=1 for O(d-1,d-1) / n=2 for SL(5)

- in combination with
 - 1. component E^{a}_{i} of left-invariant Maurer-Cartan form E^{A}_{I}
 - 2. $B_{ab} / C_{\alpha\beta\gamma}$ from A=0

a canoical generalized frame field $\hat{E}_A^{\hat{l}}$ arises

Extended space as group manifold

Solutions of SC and dualities

Generalized frame field

• identify
$$\begin{cases} HG & \text{with tangent bundle } TM \text{ of } M \\ VG & \text{the reset of the generalized tangent bundle} \end{cases}$$

For all g ∈ G, V_gG ≅ 𝔥; introduce map $\eta_g : 𝔥 → ΛⁿT[*]_gM n=1 \text{ for O}(d-1,d-1) / n=2 \text{ for SL}(5)$

- in combination with
 - 1. component E^{a}_{i} of left-invariant Maurer-Cartan form E^{A}_{i}
 - 2. $B_{ab} / C_{\alpha\beta\gamma}$ from A=0

a canoical generalized frame field $\hat{E}_A^{\hat{I}}$ arises

• apply to vectors $V^{\hat{I}} = \begin{pmatrix} V^i & V_i \end{pmatrix} = \widehat{E}_A{}^{\hat{I}}V^A$ and gen. Lie derivative

$$\mathcal{L}_{\xi} V^{\hat{l}} = \widehat{\mathcal{L}}_{\xi} V^{\hat{l}} + \mathcal{F}_{\hat{J}\hat{K}}{}^{\hat{l}}\xi^{\hat{J}} V^{\hat{K}}$$

Extended space as group manifold

Solutions of SC and dualities

- $\widehat{\mathcal{L}}$ = untwisted gen. Lie derivative of GG (generalized geometry) on M
- $\mathcal{F}_{\hat{I}\hat{J}}^{\hat{K}}$ = additional twist

$$\mathcal{L}_{\widehat{E}_{A}}\widehat{E}_{B}^{\hat{i}}\widehat{E}^{C}_{\hat{j}}=X_{AB}{}^{C}$$

- $\widehat{\mathcal{L}}$ = untwisted gen. Lie derivative of GG (generalized geometry) on M
- $\mathcal{F}_{\hat{I}\hat{J}}^{\hat{K}}$ = additional twist

$$\mathcal{L}_{\widehat{E}_{A}}\widehat{E}_{B}^{\hat{i}}\widehat{E}^{C}_{\hat{j}}=X_{AB}^{C}$$

• $\widehat{E}_A \neq \mathcal{E}_A$, because $\mathcal{L} \neq \widehat{\mathcal{L}}$

- $\widehat{\mathcal{L}}$ = untwisted gen. Lie derivative of GG (generalized geometry) on M
- $\mathcal{F}_{\hat{I}\hat{J}}^{\hat{K}}$ = additional twist

$$\mathcal{L}_{\widehat{E}_{A}}\widehat{E}_{B}^{\hat{I}}\widehat{E}^{C}_{\hat{I}}=X_{AB}^{C}$$

• $\widehat{E}_A \neq \mathcal{E}_A$, because $\mathcal{L} \neq \widehat{\mathcal{L}}$

► TODO: push twist completely in gen. frame field

Extended space as group manifold

Solutions of SC and dualities

Generalized frame field

Ê_BÎ

▶ in general more than one tuple (M, \mathcal{E}_A) with same X_{AB}^{C}

Solutions of SC and dualities

Generalized frame field

- ▶ in general more than one tuple (M, \mathcal{E}_A) with same $X_{AB}{}^C$
- related by duality transformations

e.g. $G=CSO(1,0,3) \subset SO(3,3)$

Solutions of SC and dualities

Generalized frame field

- ▶ in general more than one tuple (M, \mathcal{E}_A) with same $X_{AB}{}^C$
- related by duality transformations

e.g. $G=CSO(1,0,3) \subset SO(3,3)$

Extended space as group manifold

Solutions of SC and dualities

Generalized frame field

- ▶ in general more than one tuple (M, \mathcal{E}_A) with same X_{AB}^{C}
- related by duality transformations

e.g. $G=CSO(1,0,3) \subset SO(3,3)$

Construction of the generalized frame field $\mathcal{E}_{A}^{\ \gamma}$

► ansatz
$$\mathcal{E}_A{}^{\hat{l}} = -M_A{}^B \widehat{E}_B{}'{}^{\hat{l}}$$
 with
 $M_A{}^B t_B = m^{-1} t_A m$
 $\widehat{E}_A{}'{}^{\hat{l}} = \text{similar as } \widehat{E}_A{}^{\hat{l}}$ but with \mathcal{B}/\mathcal{C} instead of B/C
 $G/H \ni m = \text{from splitting } g = mh$ induced by SC solution

Construction of the generalized frame field \mathcal{E}_{A}^{γ}

• ansatz
$$\mathcal{E}_A{}^{\hat{I}} = -M_A{}^B \widehat{\mathcal{E}}_B{}'^{\hat{I}}$$
 with
 $M_A{}^B t_B = m^{-1} t_A m$
 $\widehat{\mathcal{E}}_A{}'^{\hat{I}} = \text{similar as } \widehat{\mathcal{E}}_A{}^{\hat{I}}$ but with \mathcal{B}/\mathcal{C} instead of B/C
 $G/H \ni m = \text{from splitting } g = mh$ induced by SC solution

requires

- 1. additional linear constraint
- 2. appropriate choice of \mathcal{B}/\mathcal{C} e.g. SL(5): $d\mathcal{C} = -\frac{3}{4}Y_{11}$ vol

Solutions of SC and dualities

Generalized frame field •00

Construction of the generalized frame field \mathcal{E}_{A}^{γ}

• ansatz
$$\mathcal{E}_A{}^{\hat{l}} = -M_A{}^B \widehat{\mathcal{E}}_B{}'^{\hat{l}}$$
 with
 $M_A{}^B t_B = m^{-1} t_A m$
 $\widehat{\mathcal{E}}_A{}'^{\hat{l}} = \text{similar as } \widehat{\mathcal{E}}_A{}^{\hat{l}}$ but with \mathcal{B}/\mathcal{C} instead of B/C
 $G/H \ni m = \text{from splitting } g = mh$ induced by SC solution

requires

1. additional linear constraint

2. appropriate choice of
$$\mathcal{B}/\mathcal{C}$$

e.g. SL(5): $d\mathcal{C} = -\frac{3}{4}Y_{11}$ vol

by construction element of duality group & SC solution

Extended space as group manifold

Solutions of SC and dualities

Generalized frame field

- SC solution requires choosing a v_a^0
- ▶ breaks SL(5) to SL(4), ...

- SC solution requires choosing a v_a^0
- ▶ breaks SL(5) to SL(4), ...
- linear constraints remove certain irreps from embedding tensor

```
\label{eq:G} \begin{array}{ll} \text{dim}~G=10: & \text{SL}(5) \rightarrow \text{SL}(4) \\ & \textbf{15} \rightarrow \textbf{1} + \textbf{\cancel{4}} + \textbf{10} \end{array}
```

- SC solution requires choosing a v_a^0
- ▶ breaks SL(5) to SL(4), ...
- linear constraints remove certain irreps from embedding tensor

dim
$$G = 10$$
: SL(5) \rightarrow SL(4)
15 \rightarrow 1 + A + 10

$$\begin{array}{ll} \dim G = 9: & {\rm SL}(3) \times {\rm SL}(2) \ \rightarrow {\rm SL}(2) \times {\rm SL}(2) \\ & (\mathbf{1},\mathbf{3}) + (\mathbf{3},\mathbf{2}) + (\mathbf{6},\mathbf{1}) + (\mathbf{1},\mathbf{2}) \rightarrow \\ & (\mathbf{1},\mathbf{3}) + (\mathbf{1},\mathbf{2}) + (\mathbf{2},\mathbf{2}) + (\mathbf{1},\mathbf{1}) + (\mathbf{2},\mathbf{1}) + (\mathbf{3},\mathbf{1}) + (\mathbf{1},\mathbf{2}) \end{array}$$

Extended space as group manifold

Solutions of SC and dualities

Generalized frame field

- SC solution requires choosing a v_a^0
- ▶ breaks SL(5) to SL(4), ...
- linear constraints remove certain irreps from embedding tensor

dim
$$G = 10$$
: SL(5) \rightarrow SL(4)
15 \rightarrow 1 + A + 10

$$\begin{array}{ll} \dim G = 9: & {\rm SL}(3) \times {\rm SL}(2) \ \rightarrow {\rm SL}(2) \times {\rm SL}(2) \\ & ({\bf 1},{\bf 3}) + ({\bf 3},{\bf 2}) + ({\bf 6},{\bf 1}) + ({\bf 1},{\bf 2}) \rightarrow \\ & ({\bf 1},{\bf 3}) + ({\bf 1},{\bf 2}) + ({\bf 2},{\bf 2}) + ({\bf 1},{\bf 1}) + ({\bf 2},{\bf 1}) + ({\bf 1},{\bf 2}) \end{array}$$

dim G = 7 : . . .

Extended space as group manifold

Solutions of SC and dualities

Generalized frame field

- SC solution requires choosing a v_a^0
- ▶ breaks SL(5) to SL(4), ...
- linear constraints remove certain irreps from embedding tensor

dim
$$G = 10$$
: SL(5) \rightarrow SL(4)
15 \rightarrow 1 + A + 10

$$\begin{array}{ll} \dim G = 9: & {\rm SL}(3) \times {\rm SL}(2) \ \rightarrow {\rm SL}(2) \times {\rm SL}(2) \\ & ({\bf 1},{\bf 3}) + ({\bf 3},{\bf 2}) + ({\bf 6},{\bf 1}) + ({\bf 1},{\bf 2}) \rightarrow \\ & ({\bf 1},{\bf 3}) + ({\bf 1},{\bf 2}) + ({\bf 2},{\bf 2}) + ({\bf 1},{\bf 1}) + ({\bf 2},{\bf 1}) + ({\bf 1},{\bf 2}) \end{array}$$

 $\dim G = 7: \ldots$

all allowed gaugings in the 15 only result in symmetric spaces

Extended space as group manifold

Solutions of SC and dualities

Generalized frame field

- ▶ group G=SO(5), only one subgroup H=SO(4)
- ► M=SO(5)/SO(4), symmetric space

Generalized frame field

- ▶ group *G*=SO(5), only one subgroup *H*=SO(4)
- ► *M*=SO(5)/SO(4), symmetric space
- A vanishes globally for

 $C = R^3 \tan\left(rac{\phi^1}{2}
ight) \sin^3(\phi^1) \sin^2(\phi^2) \sin(\phi^3) d\phi^2 \wedge d\phi^3 \wedge d\phi^4$

- ▶ group *G*=SO(5), only one subgroup *H*=SO(4)
- ► *M*=SO(5)/SO(4), symmetric space
- A vanishes globally for

 $\mathcal{C} = \mathcal{R}^3 \tan\left(rac{\phi^1}{2}
ight) \sin^3(\phi^1) \sin^2(\phi^2) \sin(\phi^3) \, d\phi^2 \wedge d\phi^3 \wedge d\phi^4$

• choose C in $\widehat{E}_A^{\prime \hat{l}}$ such that $dC = 3R^3 \sin^3(\phi^1) \sin^2(\phi^2) \sin(\phi^3) d\phi^1 \wedge d\phi^2 \wedge d\phi^3 \wedge d\phi^4 = \frac{3}{R} \text{vol}$ and we construct $\mathcal{E}_A^{\hat{l}}$

- ▶ group *G*=SO(5), only one subgroup *H*=SO(4)
- ► *M*=SO(5)/SO(4), symmetric space
- A vanishes globally for

 $C = R^3 \tan\left(rac{\phi^1}{2}
ight) \sin^3(\phi^1) \sin^2(\phi^2) \sin(\phi^3) d\phi^2 \wedge d\phi^3 \wedge d\phi^4$

- choose C in $\widehat{E}_A^{\prime \hat{l}}$ such that $dC = 3R^3 \sin^3(\phi^1) \sin^2(\phi^2) \sin(\phi^3) d\phi^1 \wedge d\phi^2 \wedge d\phi^3 \wedge d\phi^4 = \frac{3}{R} \text{vol}$ and we construct $\mathcal{E}_A^{\hat{l}}$
- \blacktriangleright alternative parameterization, embedding in \mathbb{R}^5
- reproduces known results

Summary

DFT/EFT gives us an explicit construction of generalized parallelizable spaces, if we change the perspective on the extended space.

Summary

DFT/EFT gives us an explicit construction of generalized parallelizable spaces, if we change the perspective on the extended space.

Advantages

- group G is manifest in extended space
- dualities are manifest as different solutions of the SC
- results depends on having extended space

Solutions of SC and dualities

Summary

DFT/EFT gives us an explicit construction of generalized parallelizable spaces, if we change the perspective on the extended space.

Advantages

- group G is manifest in extended space
- dualities are manifest as different solutions of the SC
- results depends on having extended space

Project proposal: Classification of gen. parall. spaces

- redo analysis for $E_{d(d)}$ with d > 4
- solve linear constraints completely
- are there examples not covered by the construction?

Solutions of SC and dualities

