Compactifications on stringy-size tori from double field theory

Mariana Graña

CEA / Saclay

France

In collaboration with
G.Aldazabal, S. Iguri, M. Mayo, C. Nuñez, A. Rosabal
arXiv:I5I0.07644
Y.Cagnacci, S. Iguri, C. Nuñez
arXiv:I 704.04242
"Recent advances in T/U dualities and generalized geometries"
Zagreb, June 2017

Motivation

Closed string

Motivation

Closed string

Motivation

Closed string

$$
\sum e_{\mathrm{s}}
$$

effective theory from
KK reduction of IOd sugra

Motivation

Closed string

effective theory from
KK reduction of IOd sugra
Keep only zero modes of KK tower \rightarrow effective description valid at $\quad E \ll \frac{1}{R} \ll \frac{1}{\sqrt{\alpha^{\prime}}}$

Motivation

Closed string

effective theory from
KK reduction of IOd sugra
Keep only zero modes of KK tower \rightarrow effective description valid at $\quad E \ll \frac{1}{R} \ll \frac{1}{\sqrt{\alpha^{\prime}}}$

Motivation

Closed string

$$
\sum e_{\mathrm{s}}
$$

effective thebry from
KK reduction of IOd sugra
Keep only zero modes of KK tower \rightarrow effective description valid at $\quad E \ll \frac{1}{R} \ll \frac{1}{\sqrt{\alpha^{\prime}}}$

Motivation

Closed string

effective thebry from
KK reduction of IOd sugra
Keep only zero modes of KK tower \rightarrow effective description valid at $\quad E \ll \frac{1}{R} \ll \frac{1}{\sqrt{\alpha^{\prime}}}$

Can we get an effective description valid at $E \ll \frac{1}{R} \sim \frac{1}{\sqrt{\alpha^{\prime}}}$

Strings on S^{1} at $R \sim \sqrt{\alpha^{\prime}} \quad$ (Closed bosonic string)

$$
\tilde{R}=\frac{\alpha^{\prime}}{R}
$$

[^0]

Strings on S^{1} at $R \sim \sqrt{\alpha^{\prime}} \quad$ (Closed bosonic string)
Hamiltonian $\quad M^{2}=\frac{2}{\alpha^{\prime}}(N+\bar{N}-2)+\frac{p^{2}}{R^{2}}+\frac{\tilde{p}^{2}}{\tilde{R}^{2}}$
Level-matching $\quad \bar{N}-N=p \tilde{p}$

$$
\begin{array}{ll}
\text { Hamiltonian } & M^{2}=\frac{2}{\alpha^{\prime}}(N \\
\text { Level-matching } & \bar{N}-N=p \tilde{p}
\end{array}
$$

Besides $N=\bar{N}=1$ kept in sugra, at $\quad R=\tilde{R}=\sqrt{\alpha^{\prime}}$
Extra massless states for ex: $\bar{N}=1, N=0 \quad p=\tilde{p}= \pm 1$

Strings on S^{1} at $R \sim \sqrt{\alpha^{\prime}} \quad$ (Closed bosonic string)
Hamiltonian $\quad M^{2}=\frac{2}{\alpha^{\prime}}(N+\bar{N}-2)+\frac{p^{2}}{R^{2}}+\frac{\tilde{p}^{2}}{\tilde{R}^{2}}$
Level-matching $\quad \bar{N}-N=p \tilde{p}$

$$
\tilde{R}=\frac{\alpha^{\prime}}{R}
$$

Besides $N=\bar{N}=1$ kept in sugra, at $\quad R=\tilde{R}=\sqrt{\alpha^{\prime}}$
Extra massless states for ex: $\bar{N}=1, N=0 \quad p=\tilde{p}= \pm 1$

Extra massless states have momentum and/or winding on circle

Strings on S^{1} at $R \sim \sqrt{\alpha^{\prime}} \quad$ (Closed bosonic string)

$$
\tilde{R}=\frac{\alpha^{\prime}}{R}
$$

$$
\begin{array}{ll}
\text { Hamiltonian } & M^{2}=\frac{2}{\alpha^{\prime}}(N+\bar{N}-2)+\frac{p^{2}}{R^{2}}+\frac{\tilde{p}^{2}}{\tilde{R}^{2}} \\
\text { Level-matching } & \bar{N}-N=p \tilde{p}
\end{array}
$$

Besides $N=\bar{N}=1$ kept in sugra, at $\quad R=\tilde{R}=\sqrt{\alpha^{\prime}}$

Extra massless states for ex: $\bar{N}=1, N=0 \quad p=\tilde{p}= \pm 1$

Extra massless states have momentum and/or winding on circle

Double Field Theory gives a good effective description of the physics including these modes at $\quad E \ll \frac{1}{R} \sim \frac{1}{\sqrt{\alpha^{\prime}}}$

Strings on S^{1} at $R \sim \sqrt{\alpha^{\prime}} \quad$ (Closed bosonic string)

$$
\tilde{R}=\frac{\alpha^{\prime}}{R}
$$

Hamiltonian $\quad M^{2}=\frac{2}{\alpha^{\prime}}(N+\bar{N}-2)+\frac{p^{2}}{R^{2}}+\frac{\tilde{p}^{2}}{\tilde{R}^{2}}$
Level-matching $\quad \bar{N}-N=p \tilde{p}$

Besides $N=\bar{N}=1$ kept in sugra, at $\quad R=\tilde{R}=\sqrt{\alpha^{\prime}}$

Extra massless states for ex: $\bar{N}=1, N=0 \quad p=\tilde{p}= \pm 1$

Extra massless states have momentum and/or winding on circle

Double Field Theory gives a good effective description of the physics including these modes at

$$
E \ll \frac{1}{R} \sim \frac{1}{\sqrt{\alpha^{\prime}}} \quad \alpha^{\prime}=1
$$

Strings on S^{1} at $R \sim \sqrt{\alpha^{\prime}} \quad$ (Closed bosonic string)

$$
\tilde{R}=\frac{\alpha^{\prime}}{R}
$$

$$
\begin{array}{ll}
\text { Hamiltonian } & M^{2}=\frac{2}{\alpha^{\prime}}(N+\bar{N}-2)+\frac{p^{2}}{R^{2}}+\frac{\tilde{p}^{2}}{\tilde{R}^{2}} \\
\text { Level-matching } & \bar{N}-N=p \tilde{p}
\end{array}
$$

Besides $N=\bar{N}=1$ kept in sugra, at $\quad R=\tilde{R}=\sqrt{\alpha^{\prime}}$
Extra massless states for ex: $\bar{N}=1, N=0 \quad p=\tilde{p}= \pm 1$

Extra massless states have momentum and/or winding on circle

Double Field Theory gives a good effective description of the physics including these modes at

$$
E \ll \frac{1}{R} \sim \frac{1}{\sqrt{\alpha^{\prime}}} \quad \alpha^{\prime}=1
$$

Effective action for compactifications of bosonic string on stringy-size T^{d} from DFT

Double field theory

Double field theory

Field theory incorporating T-duality

momentum	$P \longleftrightarrow y$	compact coordinate
winding	$\tilde{P} \longleftrightarrow \tilde{y}$	new, dual coordinate

Double field theory

Field theory incorporating T-duality

momentum	$p \longleftrightarrow y$	compact coordinate
winding	$\tilde{p} \longleftrightarrow \tilde{y}$	new, dual coordinate

However, it requires constraints
Level matching condition $\underbrace{\bar{N}-N}_{\begin{array}{c}=0 \text { in usual } \\ \text { massless states }\end{array}}=\underbrace{\partial_{y}}_{=0} \Rightarrow \tilde{p}^{\partial_{\tilde{y}}} \Rightarrow \partial_{y} \partial_{\tilde{y}}(\quad)=0$

Double field theory

Field theory incorporating T-duality

| momentum | $P \longleftrightarrow y$ | compact coordinate |
| :--- | :--- | :--- | :--- |
| winding | $\tilde{D} \longleftrightarrow \tilde{y}$ | new, dual coordinate |

$$
\eta_{M N}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

However, it requires constraints

Double field theory

Field theory incorporating T-duality

| momentum | $p \longleftrightarrow y$ | compact coordinate |
| :---: | :--- | :--- | :--- |
| winding | $\tilde{p} \longleftrightarrow \tilde{y}$ | new, dual coordinate |

$$
\partial_{y^{R}}=\partial_{y}-\partial_{\tilde{y}}
$$

$$
\begin{aligned}
\eta_{M N} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\eta^{L R} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

However, it requires constraints

$$
\partial_{y^{L}}=\partial_{y}+\partial_{\tilde{y}}
$$

Double field theory

Field theory incorporating T-duality

$\underset{\text { winding }}{\text { momentum }}$	$p \longleftrightarrow y$	compact coordinate

$$
\partial_{y^{L}}=\partial_{y}+\partial_{\tilde{y}}
$$

$$
\begin{aligned}
\eta_{M N} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\eta^{L R} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

However, it requires constraints

$$
\partial_{y^{R}}=\partial_{y}-\partial_{\tilde{y}}
$$

strong constraint or
section condition

Double field theory

Field theory incorporating T-duality

At special points in the torus moduli space there are extra massless states with momentum or winding.
We will not include them here

Weak constraint not enough $\Rightarrow \partial_{M}() \partial^{M}()=0$
strong constraint or
section condition

Double field theory

Field theory incorporating T-duality

At special points in the torus moduli space there are extra massless states with momentum or winding.
We will not include them here

Weak constraint not enough $\Rightarrow \partial_{M}() \partial^{M}()=0$
strong constraint or
section condition

Include winding modes here

Double field theory

Field theory incorporating T-duality

At special points in the torus moduli space there are extra massless states with momentum or winding.
We will not include them here

Weak constraint not enough $\Rightarrow \partial_{M}() \partial^{M}()=0$
strong constraint or
section condition

Include winding modes here

Double field theory

Field theory incorporating T-duality

At special points in the torus moduli space there are extra massless states with momentum or winding.
We will not include them here
$\left.\begin{array}{llll}\begin{array}{lll}\text { momentum } \\ \text { winding }\end{array} & p \longleftrightarrow y & \text { compact coordinate } & \\ & \tilde{p} \longleftrightarrow \tilde{y} & \eta_{M N}=\left(\begin{array}{ll}0 & 1 \\ \text { new, dual coordinate }\end{array}\right. \\ \\ \text { However, it requires constraints } & 0\end{array}\right)$

Weak constraint not enough $\Rightarrow \partial_{M}() \partial^{M}()=0$
strong constraint or
section condition

Include winding modes here , violating weak constraint
(though satisfying level matching condition)

Strong constraint sufficient but not necessary

Efforts in trying to get consistency while relaxing strong constraint

- Necessary and sufficient conditions for closure of algebra
M.G., Marques 12

Interpretation in a generic context obscure...
But in the context of "Generalized Sherk-Schwarz reductions" (leading to gauged maximal or half-maximal sugra)

Closure of algebra \Leftrightarrow quadratic constraints of gauged sugra weaker than strong constraint (also weak \Leftrightarrow strong in GSS)

Bosonic string on S^{1}
Massless states at $R=\tilde{R}=1$

Mass $\quad M^{2}=2(N+\bar{N}-2)+\frac{p^{2}}{R^{2}}+\frac{\tilde{p}^{2}}{\tilde{R}^{2}}$
Level-matching $\quad \bar{N}-N=p \tilde{p}$

Bosonic string on S^{1}
Massless states at $R=\tilde{R}=1$
Mass $\quad M^{2}=2(N+\bar{N}-2)+\frac{p^{2}}{R^{2}}+\frac{\tilde{p}^{2}}{\tilde{R}^{2}}$
Level-matching $\quad \bar{N}-N=p \tilde{p}$

- $N_{y}=1 \quad\left(g_{\mu y}+B_{\mu y}\right)$
$-N_{y}=0 \quad p=\tilde{p}= \pm 1 \quad\left(k_{L}= \pm 2\right)$

Bosonic string on S^{1}
Massless states at $R=\tilde{R}=1$
Vectors $\bar{N}_{x}=1$

- $N_{y}=1 \quad\left(g_{\mu y}+B_{\mu y}\right)$
$-N_{y}=0 \quad p=\tilde{p}= \pm 1 \quad\left(k_{L}= \pm 2\right)$

Mass $\quad M^{2}=2(N+\bar{N}-2)+\frac{p^{2}}{R^{2}}+\frac{\tilde{p}^{2}}{\tilde{R}^{2}}$ Level-matching $\quad \bar{N}-N=p \tilde{p}$

$$
\begin{gathered}
V \sim J^{3}(z) \cdot\left(\bar{\partial} X^{\mu} e^{i k X}\right) \\
V \sim J^{ \pm}(z) \cdot\left(\bar{\partial} X^{\mu} e^{i k X}\right)
\end{gathered}
$$

$$
\begin{aligned}
& J^{3}(z)=\partial Y^{L}(z) \\
& J^{ \pm}(z)=\mathrm{e}^{ \pm 2 i Y^{L}}(z)
\end{aligned}
$$

Bosonic string on S^{1}
Massless states at $R=\tilde{R}=1$
Mass $\quad M^{2}=2(N+\bar{N}-2)+\frac{p^{2}}{R^{2}}+\frac{\tilde{p}^{2}}{\tilde{R}^{2}}$ Level-matching $\quad \bar{N}-N=p \tilde{p}$

- $N_{y}=1 \quad\left(g_{\mu y}+B_{\mu y}\right)$
$-N_{y}=0 \quad p=\tilde{p}= \pm 1 \quad\left(k_{L}= \pm 2\right)$

$$
\begin{aligned}
V & \sim J^{3}(z) \cdot\left(\bar{\partial} X^{\mu} e^{i k X}\right) \\
V & \sim J^{ \pm}(z) \cdot\left(\bar{\partial} X^{\mu} e^{i k X}\right)
\end{aligned}
$$

Bosonic string on S^{1}

Massless states at $R=\tilde{R}=1$
Mass $\quad M^{2}=2(N+\bar{N}-2)+\frac{p^{2}}{R^{2}}+\frac{\tilde{p}^{2}}{\tilde{R}^{2}}$ Level-matching $\quad \bar{N}-N=p \tilde{p}$

- $\mathrm{SU}(2)\left\llcorner\right.$ Vectors $\bar{N}_{x}=1$
- $N_{y}=1 \quad\left(g_{\mu y}+B_{\mu y}\right)$

$$
\begin{array}{r}
V \sim J^{3}(z) \cdot\left(\bar{\partial} X^{\mu} e^{i k X}\right) \\
V \sim J^{ \pm}(z) \cdot\left(\bar{\partial} X^{\mu} e^{i k X}\right)
\end{array}
$$

$-N_{y}=0 \quad p=\tilde{p}= \pm 1$

$J^{3}(z)=\partial Y^{L}(z)$
$J^{ \pm}(z)=\mathrm{e}^{ \pm 2 i Y^{L}(z)}$

$J^{i}(z) J^{j}(0) \sim \frac{\delta^{i j}}{z^{2}}+\frac{i \epsilon^{i j k}}{z} J^{k}(0)$

Bosonic string on S^{1}
Massless states at $R=\tilde{R}=1$

- $\mathrm{SU}(2)\left\llcorner\right.$ Vectors $\bar{N}_{x}=1$
- $N_{y}=1 \quad\left(g_{\mu y}+B_{\mu y}\right)$ $: A_{\mu}^{3} \quad V \sim J^{3}(z) \cdot\left(\bar{\partial} X^{\mu} e^{i k X}\right)$
$-N_{y}=0 \quad p=\tilde{p}= \pm 1$
$\left(k_{L}= \pm 2\right): A_{\mu}^{ \pm}$
- $\operatorname{SU}(2)_{\mathrm{R}}$ Vectors $N_{x}=1 \quad A^{i} \rightarrow \bar{A}^{i}$

Mass $\quad M^{2}=2(N+\bar{N}-2)+\frac{p^{2}}{R^{2}}+\frac{\tilde{p}^{2}}{\tilde{R}^{2}}$ Level-matching $\quad \bar{N}-N=p \tilde{p}$

$$
\begin{aligned}
& V \sim J^{3}(z) \cdot\left(\bar{\partial} X^{\mu} e^{i k X}\right) \\
& V \sim J^{ \pm}(z) \cdot\left(\bar{\partial} X^{\mu} e^{i k X}\right) \\
& \quad J^{i}(z) \rightarrow \bar{J}^{i}(\bar{z}) \quad Y^{L}(z) \rightarrow Y^{R}(\bar{z})
\end{aligned}
$$

$$
\begin{aligned}
& J^{3}(z)=\partial Y^{L}(z) \\
& J^{ \pm}(z)=\mathrm{e}^{ \pm 2 i Y^{L}(z)}
\end{aligned}
$$

$$
J^{i}(z) J^{j}(0) \sim \frac{\delta^{i j}}{z^{2}}+\frac{i \epsilon^{i j k}}{z} J^{k}(0)
$$

Bosonic string on S^{1}
Massless states at $R=\tilde{R}=1$
Mass $\quad M^{2}=2(N+\bar{N}-2)+\frac{p^{2}}{R^{2}}+\frac{\tilde{p}^{2}}{\tilde{R}^{2}}$ Level-matching $\quad \bar{N}-N=p \tilde{p}$

- $\operatorname{sU}(2)\left\llcorner\right.$ Vectors $\bar{N}_{x}=1$
- $N_{y}=1 \quad\left(g_{\mu y}+B_{\mu y}\right)$

$$
\begin{aligned}
V & \sim J^{3}(z) \cdot\left(\bar{\partial} X^{\mu} e^{i k X}\right) \\
V & \sim J^{ \pm}(z) \cdot\left(\bar{\partial} X^{\mu} e^{i k X}\right)
\end{aligned}
$$

$-N_{y}=0 \quad p=\tilde{p}= \pm 1$
$\left(k_{L}= \pm 2\right): A_{\mu}^{ \pm}$
$J^{i}(z) \rightarrow \bar{J}^{i}(\bar{z}) \quad Y^{L}(z) \rightarrow Y^{R}(\bar{z})$

- Scalars

$$
N_{x}=\bar{N}_{x}=0
$$

Bosonic string on S^{1}

Massless states at $R=\tilde{R}=1$
Mass $\quad M^{2}=2(N+\bar{N}-2)+\frac{p^{2}}{R^{2}}+\frac{\tilde{p}^{2}}{\tilde{R}^{2}}$ Level-matching $\quad \bar{N}-N=p \tilde{p}$

- $\mathrm{SU}(2)\left\llcorner\right.$ Vectors $\bar{N}_{x}=1$
- $N_{y}=1 \quad\left(g_{\mu y}+B_{\mu y}\right)$ $: A_{\mu}^{3} \quad V \sim J^{3}(z) \cdot\left(\bar{\partial} X^{\mu} e^{i k X}\right)$
$-N_{y}=0 \quad p=\tilde{p}= \pm 1 \quad\left(k_{L}= \pm 2\right): A_{\mu}^{ \pm}$
$V \sim J^{ \pm}(z) \cdot\left(\bar{\partial} X^{\mu} e^{i k X}\right)$
- $\operatorname{SU}(2)_{\mathrm{R}}$ Vectors $N_{x}=1 \quad A^{i} \rightarrow \bar{A}^{i}$

$$
J^{i}(z) \rightarrow \bar{J}^{i}(\bar{z}) \quad Y^{L}(z) \rightarrow Y^{R}(\bar{z})
$$

- Scalars $\quad N_{x}=\bar{N}_{x}=0$
$N_{y}=1, \bar{N}_{y}=1\left(g_{y y}\right)$
$N_{y}=1, p=-\tilde{p}= \pm 1(\bar{k}= \pm 2)$
$\bar{N}_{y}=1, p=\tilde{p}= \pm 1(k= \pm 2)$
$p= \pm 2, \tilde{p}=0(k=\bar{k}= \pm 2)$
$p=0, \tilde{p}= \pm 2(k=-\bar{k}= \pm 2)$

$$
\begin{aligned}
& J^{3}(z)=\partial Y^{L}(z) \\
& J^{ \pm}(z)=\mathrm{e}^{ \pm 2 i Y^{L}(z)}
\end{aligned}
$$

$$
J^{i}(z) J^{j}(0) \sim \frac{\delta^{i j}}{z^{2}}+\frac{i \epsilon^{i j k}}{z} J^{k}(0)
$$

Bosonic string on S^{1}

Massless states at $R=\tilde{R}=1$
Mass $\quad M^{2}=2(N+\bar{N}-2)+\frac{p^{2}}{R^{2}}+\frac{\tilde{p}^{2}}{\tilde{R}^{2}}$ Level-matching $\quad \bar{N}-N=p \tilde{p}$

- $\operatorname{SU}(2)\left\llcorner\right.$ Vectors $\bar{N}_{x}=1$
- $N_{y}=1 \quad\left(g_{\mu y}+B_{\mu y}\right)$
$: A_{\mu}^{3} \quad V \sim J^{3}(z) \cdot\left(\bar{\partial} X^{\mu} e^{i k X}\right)$
$-N_{y}=0 \quad p=\tilde{p}= \pm 1 \quad\left(k_{L}= \pm 2\right): A_{\mu}^{ \pm}$
$V \sim J^{ \pm}(z) \cdot\left(\bar{\partial} X^{\mu} e^{i k X}\right)$
- $\operatorname{SU}(2)_{\mathrm{R}}$ Vectors $N_{x}=1 \quad A^{i} \rightarrow \bar{A}^{i}$

$$
J^{i}(z) \rightarrow \bar{J}^{i}(\bar{z}) \quad Y^{L}(z) \rightarrow Y^{R}(\bar{z})
$$

- Scalars $(3,3) \quad N_{x}=\bar{N}_{x}=0$

$$
\begin{array}{lll}
N_{y}=1, \bar{N}_{y}=1\left(g_{y y}\right) & : & M^{33} \\
N_{y}=1, p=-\tilde{p}= \pm 1(\bar{k}= \pm 2) & : & M^{3 \pm} \\
\bar{N}_{y}=1, p=\tilde{p}= \pm 1(k= \pm 2) & : & M^{ \pm 3} \\
p= \pm 2, \tilde{p}=0(k=\bar{k}= \pm 2) & : & M^{ \pm \pm} \\
p=0, \tilde{p}= \pm 2(k=-\bar{k}= \pm 2) & : & M^{ \pm \mp}
\end{array}
$$

$$
\begin{aligned}
& J^{3}(z)=\partial Y^{L}(z) \\
& J^{ \pm}(z)=\mathrm{e}^{ \pm 2 i Y^{L}(z)}
\end{aligned}
$$

$$
J^{i}(z) J^{j}(0) \sim \frac{\delta^{i j}}{z^{2}}+\frac{i \epsilon^{i j k}}{z} J^{k}(0)
$$

Symmetry enhancement (recap)

$$
\begin{gathered}
R \neq 1(\neq \tilde{R}) \\
U(1) \times U(1) \\
A \quad \bar{A} \\
2 \text { vectors } \\
\left(g_{\mu y} \pm B_{\mu y}\right) \\
M \\
1 \text { scalar } \\
\left(g_{y y}\right)
\end{gathered}
$$

Symmetry enhancement (recap)

$$
\begin{array}{cc}
R \neq 1(\neq \tilde{R}) & R=\tilde{R}=1 \\
U(1) \times U(1) & \longrightarrow \\
A^{3} \bar{A}^{3} & S U(2) \times S U(2) \\
2 \text { vectors } & A^{i} \\
\left(g_{\mu y} \pm B_{\mu y}\right) & \bar{A}^{i} \\
& \\
M & \\
\begin{array}{c}
1 \text { scalar } \\
\left(g_{y y}\right)
\end{array} &
\end{array}
$$

Symmetry enhancement (recap)

$$
\begin{array}{cc}
R \neq 1(\neq \tilde{R}) & R=\tilde{R}=1 \\
U(1) \times U(1) & \longrightarrow \\
A^{3} \bar{A}^{3} & S U(2) \times S U(2) \\
2 \text { vectors } & A^{i} \quad \bar{A}^{i} \\
\left(g_{\mu y} \pm B_{\mu y}\right) & 6 \text { vectors } \\
M^{33} & M^{i j} \\
1 \text { scalar } & 9 \text { scalars } \\
\left(g_{y y}\right) &
\end{array}
$$

Effective action from string theory

Computing 3-point functions <VVV> we read off

$$
\begin{aligned}
\mathcal{L}= & R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} F_{\mu \nu}^{i} F^{i \mu \nu}+\frac{1}{4} \bar{F}_{\mu \nu}^{i} \bar{F}^{i \mu \nu} \\
& +\frac{1}{4} M^{i j} F_{\mu \nu}^{i} \bar{F}^{j \mu \nu}+D_{\mu} M^{i j} D^{\mu} M^{i j}-\operatorname{det} M
\end{aligned}
$$

Effective action from string theory

Computing 3-point functions <VVV> we read off

$$
\begin{aligned}
& \mathcal{L}= R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} F_{\mu \nu}^{i} F^{i \mu \nu}+\frac{1}{4} \bar{F}_{\mu \nu}^{i} \bar{F}^{i \mu \nu} \\
&+\frac{1}{4} M^{i j} F_{\mu \nu}^{i} \bar{F}^{j \mu \nu}+D_{\mu} M^{i j} D^{\mu} M^{i j}-\operatorname{det} M \\
& H=d B+ A^{i} \wedge F^{i}+\epsilon_{i j k} A^{i} \wedge A^{j} \wedge A^{k} \\
&-\bar{A}^{i} \wedge \bar{F}^{i}-\epsilon_{i j k} \bar{A}^{i} \wedge \bar{A}^{j} \wedge \bar{A}^{k} \\
& F^{i}=d A^{i}+\epsilon^{i j k} A^{j} \wedge A^{k}
\end{aligned}
$$

$D_{\mu} M^{i i}=\partial_{\mu} M^{i i}+f^{i j k} A_{\mu}^{j} M^{k i}+f^{i j k} \bar{A}_{\mu}^{j} M^{i k}$

Effective action from string theory

Computing 3-point functions <VVV> we read off

$$
\begin{aligned}
& \mathcal{L}= R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} F_{\mu \nu}^{i} F^{i \mu \nu}+\frac{1}{4} \bar{F}_{\mu \nu}^{i} \bar{F}^{i \mu \nu} \\
&+\frac{1}{4} M^{i j} F_{\mu \nu}^{i} \bar{F}^{j \mu \nu}+D_{\mu} M^{i j} D^{\mu} M^{i j}-\operatorname{det} M \\
& H=d B+ A^{i} \wedge F^{i}+\epsilon_{i j k} A^{i} \wedge A^{j} \wedge A^{k} \\
&-\bar{A}^{i} \wedge \bar{F}^{i}-\epsilon_{i j k} \bar{A}^{i} \wedge \bar{A}^{j} \wedge \bar{A}^{k} \\
& F^{i}=d A^{i}+\epsilon^{i j k} A^{j} \wedge A^{k}
\end{aligned}
$$

$D_{\mu} M^{i i}=\partial_{\mu} M^{i i}+f^{i j k} A_{\mu}^{j} M^{k i}+f^{i j k} \bar{A}_{\mu}^{j} M^{i k}$
Higgs mechanism

$$
M^{i j} \rightarrow \epsilon \delta_{33}^{i j}+M^{\prime i j}
$$

Effective action from string theory

Computing 3-point functions <VVV> we read off

$$
\begin{aligned}
\mathcal{L}= & R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} F_{\mu \nu}^{i} F^{i \mu \nu}+\frac{1}{4} \bar{F}_{\mu \nu}^{i} \bar{F}^{i \mu \nu} \\
& +\frac{1}{4} M^{i j} F_{\mu \nu}^{i} \bar{F}^{j \mu \nu}+D_{\mu} M^{i j} D^{\mu} M^{i j}-\operatorname{det} M \\
H= & d B+A^{i} \wedge F^{i}+\epsilon_{i j k} A^{i} \wedge A^{j} \wedge A^{k} \\
& -\bar{A}^{i} \wedge \bar{F}^{i}-\epsilon_{i j k} \bar{A}^{i} \wedge \bar{A}^{j} \wedge \bar{A}^{k} \\
F^{i}=d A^{i}+\epsilon^{i j k} A^{j} \wedge A^{k} & \bar{A}^{ \pm}
\end{aligned}
$$

$D_{\mu} M^{i i}=\partial_{\mu} M^{i i}+f^{i j k} A_{\mu}^{j} M^{k i}+f^{i j k} \bar{A}_{\mu}^{j} M^{i k}$
Higgs mechanism

$$
M^{i j} \rightarrow \epsilon \delta_{33}^{i j}+M^{\prime i j}
$$

Effective action from string theory

Computing 3-point functions <VVV> we read off

$$
\begin{aligned}
& \mathcal{L}=R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} F_{\mu \nu}^{i} F^{i \mu \nu}+\frac{1}{4} \bar{F}_{\mu \nu}^{i} \bar{F}^{i \mu \nu} \\
& \begin{array}{l}
+\frac{1}{4} M^{i j} F_{\mu \nu}^{i} \bar{F}^{j \mu \nu}+D_{\mu} M^{i j} D^{\mu} M^{i j}-\operatorname{det} M \\
+A^{i} \wedge F^{i}+\epsilon_{i j k} A^{i} \wedge A^{j} \wedge A^{k} \quad A^{ \pm}
\end{array} \\
& -\bar{A}^{i} \wedge \bar{F}^{i}-\epsilon_{i j k} \bar{A}^{i} \wedge \bar{A}^{j} \wedge \bar{A}^{k} \\
& F^{i}=d A^{i}+\epsilon^{i j k} A^{j} \wedge A^{k} \\
& S U(2) \times S U(2) \rightarrow U(1) x U(1)
\end{aligned}
$$

$D_{\mu} M^{i i}=\partial_{\mu} M^{i i}+f^{i j k} A_{\mu}^{j} M^{k i}+f^{i j k} \bar{A}_{\mu}^{j} M^{i k}$
Higgs mechanism

$$
M^{i j} \rightarrow \epsilon \delta_{33}^{i j}+M^{\prime i j}
$$

Effective action from string theory

Computing 3-point functions <VVV> we read off

$$
\begin{aligned}
& \mathcal{L}=R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} F_{\mu \nu}^{i} F^{i \mu \nu}+\frac{1}{4} \bar{F}_{\mu \nu}^{i} \bar{F}^{i \mu \nu} \\
& +\frac{1}{4} M^{i j} F_{\mu \nu}^{i} \bar{F}^{j \mu \nu}+D_{\mu} M^{i j} D^{\mu} M^{i j}-\operatorname{det} M \quad M^{ \pm \pm}, M^{ \pm \mp} \\
& \text { acquire mass }{ }^{2}=\epsilon \\
& H=d B+A^{i} \wedge F^{i}+\epsilon_{i j k} A^{i} \wedge A^{j} \wedge A^{k} \\
& -\bar{A}^{i} \wedge \bar{F}^{i}-\epsilon_{i j k} \bar{A}^{i} \wedge \bar{A}^{j} \wedge \bar{A}^{k} \\
& F^{i}=d A^{i}+\epsilon^{i j k} A^{j} \wedge A^{k} \\
& S U(2) \times S U(2) \rightarrow U(1) x U(1)
\end{aligned}
$$

$D_{\mu} M^{i i}=\partial_{\mu} M^{i i}+f^{i j k} A_{\mu}^{j} M^{k i}+f^{i j k} \bar{A}_{\mu}^{j} M^{i k}$
Higgs mechanism

$$
M^{i j} \rightarrow \epsilon \delta_{33}^{i j}+M^{\prime i j}
$$

Bosonic string on T^{d}

Massless states:

$g_{\mu m}, B_{\mu m} \quad 2 \mathrm{~d}$ vectors: $\mathrm{U}(\mathrm{I})^{\mathrm{d}} \times \mathrm{U}(\mathrm{I})^{\mathrm{d}}$
$g_{m n}, B_{m n} \quad \mathrm{~d}^{2}$ scalars

Bosonic string on T^{d}

Massless states:

$g_{\mu m}, B_{\mu m} \quad 2 \mathrm{~d}$ vectors: $\mathrm{U}(\mathrm{I})^{\mathrm{d}} \times \mathrm{U}(\mathrm{I})^{\mathrm{d}}$
$g_{m n}, B_{m n} \quad \mathrm{~d}^{2}$ scalars
$+$
lots of extra vectors \& scalars with mom \& winding at points of enhancement where

$$
\begin{gathered}
\mathcal{H}=\mathcal{H}^{-1} \\
2 \mathrm{~d} \times 2 \mathrm{~d} \\
\mathcal{H}=\left(\begin{array}{cc}
g^{-1} & -g^{-1} B \\
B g^{-1} & g-B g^{-1} B
\end{array}\right) \\
\mathcal{H}^{-1}=\left(\begin{array}{cc}
g-B g^{-1} B & -B g^{-1} \\
g^{-1} B & g^{-1}
\end{array}\right)
\end{gathered}
$$

Bosonic string on T^{d}

Massless states:

$g_{\mu m}, B_{\mu m} \quad 2 \mathrm{~d}$ vectors: $\mathrm{U}(\mathrm{I})^{\mathrm{d}} \times \mathrm{U}(\mathrm{I})^{\mathrm{d}}$
$g_{m n}, B_{m n} \quad \mathrm{~d}^{2}$ scalars
$+$
lots of extra vectors \& scalars with mom \& winding at points of enhancement where

$$
\begin{array}{cl}
\mathcal{H}=\mathcal{H}^{-1} & (\text { up to } \operatorname{SL}(\mathrm{k}, \mathbb{Z}) \text { and } \\
2 \mathrm{~d} \times 2 \mathrm{~d} & \mathrm{~B} \rightarrow \mathrm{~B}+\mathrm{n})
\end{array}
$$

$$
\mathcal{H}=\left(\begin{array}{cc}
g^{-1} & -g^{-1} B \\
B g^{-1} & g-B g^{-1} B
\end{array}\right)
$$

$$
\mathcal{H}^{-1}=\left(\begin{array}{cc}
g-B g^{-1} B & -B g^{-1} \\
g^{-1} B & g^{-1}
\end{array}\right)
$$

Bosonic string on T^{d}

Massless states:

$$
\begin{aligned}
\mathrm{S}^{1} \quad M^{2} & =2(N+\bar{N}-2)+\frac{p^{2}}{R^{2}}+\frac{\tilde{p}^{2}}{\tilde{R}^{2}} \\
0 & =N-\bar{N}+p \tilde{p}
\end{aligned}
$$

$g_{m n}, B_{m n} \quad \mathrm{~d}^{2}$ scalars

$$
\text { Mass } \quad M^{2}=2(N+\bar{N}-2)+Z^{t} \mathcal{H} Z \quad Z=\binom{p_{m}}{\tilde{p}^{m}}
$$

$+$
lots of extra vectors \& scalars with mom \& winding at points of enhancement where

$$
\begin{array}{cl}
\mathcal{H}=\mathcal{H}^{-1} & (\text { up to } \operatorname{SL}(k, \mathbb{Z}) \text { and } \\
2 d \times 2 d & B \rightarrow B+n)
\end{array}
$$

$g_{\mu m}, B_{\mu m} \quad 2 \mathrm{~d}$ vectors: $\mathrm{U}(\mathrm{I})^{\mathrm{d}} \times \mathrm{U}(\mathrm{I})^{\mathrm{d}}$

$$
\mathcal{H}=\left(\begin{array}{cc}
g^{-1} & -g^{-1} B \\
B g^{-1} & g-B g^{-1} B
\end{array}\right)
$$

$$
\mathcal{H}^{-1}=\left(\begin{array}{cc}
g-B g^{-1} B & -B g^{-1} \\
g^{-1} B & g^{-1}
\end{array}\right)
$$

Bosonic string on T^{d}

Massless states:

$$
\begin{aligned}
\mathrm{S}^{1} \quad M^{2} & =2(N+\bar{N}-2)+\frac{p^{2}}{R^{2}}+\frac{\tilde{p}^{2}}{\tilde{R}^{2}} \\
0 & =N-\bar{N}+p \tilde{p}
\end{aligned}
$$

$g_{m n}, B_{m n} \quad \mathrm{~d}^{2}$ scalars

$$
\text { Mass } \quad M^{2}=2(N+\bar{N}-2)+\underbrace{Z^{t} \mathcal{H} Z}_{E^{T} E} \quad Z=\binom{p_{m}}{\tilde{p}^{m}}
$$

$+$
lots of extra vectors \& scalars with mom \& winding at points of enhancement where

$$
\begin{array}{cl}
\mathcal{H}=\mathcal{H}^{-1} & (\text { up to } \operatorname{SL}(k, \mathbb{Z}) \text { and } \\
2 d \times 2 d & B \rightarrow B+n)
\end{array}
$$

$g_{\mu m}, B_{\mu m} \quad 2 \mathrm{~d}$ vectors: $\mathrm{U}(\mathrm{I})^{\mathrm{d}} \times \mathrm{U}(\mathrm{I})^{\mathrm{d}}$

$$
\mathcal{H}=\left(\begin{array}{cc}
g^{-1} & -g^{-1} B \\
B g^{-1} & g-B g^{-1} B
\end{array}\right)
$$

$$
\mathcal{H}^{-1}=\left(\begin{array}{cc}
g-B g^{-1} B & -B g^{-1} \\
g^{-1} B & g^{-1}
\end{array}\right)
$$

Bosonic string on T^{d}

Massless states:

$$
\begin{aligned}
\mathrm{S}^{1} \quad M^{2} & =2(N+\bar{N}-2)+\frac{p^{2}}{R^{2}}+\frac{\tilde{p}^{2}}{\tilde{R}^{2}} \\
0 & =N-\bar{N}+p \tilde{p}
\end{aligned}
$$

$g_{m n}, B_{m n} \quad \mathrm{~d}^{2}$ scalars
$g_{\mu m}, B_{\mu m} \quad 2 \mathrm{~d}$ vectors: $\mathrm{U}(\mathrm{I})^{\mathrm{d}} \times \mathrm{U}(\mathrm{I})^{\mathrm{d}}$

$$
\text { Mass } \quad M^{2}=2(N+\bar{N}-2)+\underbrace{Z^{t} \mathcal{H} Z}_{E^{T} E} \quad Z=\binom{p_{m}}{\tilde{p}^{m}}
$$

$+$
lots of extra vectors \& scalars with mom \& winding at points of enhancement where

$$
\begin{array}{cl}
\mathcal{H}=\mathcal{H}^{-1} & (\text { up to } \mathrm{SL}(\mathrm{k}, \mathbb{Z}) \text { and } \\
2 \mathrm{~d} \times 2 \mathrm{~d} & \mathrm{~B} \rightarrow \mathrm{~B}+\mathrm{n})
\end{array}
$$

$$
\mathcal{H}=\left(\begin{array}{cc}
g^{-1} & -g^{-1} B \\
B g^{-1} & g-B g^{-1} B
\end{array}\right)
$$

$$
\mathcal{H}^{-1}=\left(\begin{array}{cc}
g-B g^{-1} B & -B g^{-1} \\
g^{-1} B & g^{-1}
\end{array}\right)
$$

Bosonic string on T^{d}

Massless states:

$$
\begin{aligned}
\mathrm{S}^{1} \quad M^{2} & =2(N+\bar{N}-2)+\frac{p^{2}}{R^{2}}+\frac{\tilde{p}^{2}}{\tilde{R}^{2}} \\
0 & =N-\bar{N}+p \tilde{p}
\end{aligned}
$$

$g_{m n}, B_{m n} \quad \mathrm{~d}^{2}$ scalars

$$
\text { Mass } \quad M^{2}=2(N+\bar{N}-2)+\underbrace{Z^{t} \mathcal{H} Z}_{E^{T} E} \quad Z=\binom{p_{m}}{\tilde{p}^{m}}
$$

$+$
lots of extra vectors \& scalars with mom \& winding at points of enhancement where

$$
\begin{gathered}
\mathcal{H}=\mathcal{H}^{-1} \\
\text { 2dx2d } \\
\left(\begin{array}{cc}
\text { up to } \operatorname{SL}(\mathrm{k}, \mathbb{Z})
\end{array}\right) \text { and } \\
\mathcal{H}=\left(\begin{array}{cc}
g^{-1} & -g^{-1} B \\
B g^{-1} & g-B g^{-1} B
\end{array}\right) \\
\mathcal{H}^{-1}=\left(\begin{array}{cc}
g-B g^{-1} B & -B g^{-1} \\
g^{-1} B & g^{-1}
\end{array}\right)
\end{gathered}
$$

Bosonic string on T^{d}

Massless states:

$$
\begin{aligned}
\mathrm{S}^{1} \quad M^{2} & =2(N+\bar{N}-2)+\frac{p^{2}}{R^{2}}+\frac{\tilde{p}^{2}}{\tilde{R}^{2}} \\
0 & =N-\bar{N}+p \tilde{p}
\end{aligned}
$$

$$
\text { Mass } \quad M^{2}=2(N+\bar{N}-2)+\underbrace{p_{L}^{2}+p_{R}^{2}}_{E_{E^{T} E}^{Z} \mathcal{H} Z} \quad Z=\binom{p_{m}}{\tilde{p}^{m}}
$$

Level-matching $\quad 0=(N-\bar{N})+\frac{1}{2} Z^{t} \underbrace{\eta} Z$

$$
E^{T} \eta E
$$

lots of extra vectors \& scalars with mom \& winding at points of enhancement where

$$
p_{L}^{2}-p_{R}^{2}
$$

$$
\begin{aligned}
& \mathcal{H}=\mathcal{H}^{-1} \quad\left(\begin{array}{l}
\text { up to } \operatorname{SL}(k, \mathbb{Z}) \text { and } \\
\mathrm{B} \rightarrow \mathrm{~B}+\mathrm{n})
\end{array}\right. \\
& 2 \mathrm{~d} \times 2 \mathrm{~d} \\
& B \rightarrow B+n) \\
& \mathcal{H}=\left(\begin{array}{cc}
g^{-1} & -g^{-1} B \\
B g^{-1} & g-B g^{-1} B
\end{array}\right) \\
& \mathcal{H}^{-1}=\left(\begin{array}{cc}
g-B g^{-1} B & -B g^{-1} \\
g^{-1} B & g^{-1}
\end{array}\right)
\end{aligned}
$$

Symmetry enhancement, bosonic string on T^{d}

Fields of reduced theory $\mathcal{M}_{D} \times T^{d}$

$$
U(1)^{d} \times U(1)^{d}
$$

Fields of reduced theory $\mathcal{M}_{D} \times T^{d}$
$U(1)^{d} \times U(1)^{d}$
$A^{m} \quad \bar{A}^{m}$

2d vectors
$g_{\mu m} \pm B_{\mu m}$

Fields of reduced theory $\quad \mathcal{M}_{D} \times T^{d}$
rank d rank d $\operatorname{dim} \mathrm{n} \operatorname{dim} \mathrm{n}$
$U(1)^{d} \times U(1)^{d} \quad \longrightarrow \quad G \times G$
$A^{m} \quad \bar{A}^{m}$

2 d vectors

$$
g_{\mu m} \pm B_{\mu m}
$$

Fields of reduced theory $\mathcal{M}_{D} \times T^{d}$

$$
0=M^{2}=2(N+\bar{N}-2)+\left(p_{L}^{2}+p_{R}^{2}\right)
$$

LMC $\quad 0=2(N-\bar{N})+\left(p_{L}^{2}-p_{R}^{2}\right)$

$$
p=E Z
$$

Vectors $\quad N=0, \bar{N}=1$

$$
\begin{aligned}
& p_{L}^{2}-p_{R}^{2}=2 \quad \mathrm{LMC} \\
& p_{L}^{2}+p_{R}^{2}=2 \quad \mathrm{M}^{2}=0
\end{aligned}
$$

2 d vectors
$2 n$ vectors

$$
g_{\mu m} \pm B_{\mu m}
$$

Fields of reduced theory $\mathcal{M}_{D} \times T^{d}$

$$
0=M^{2}=2(N+\bar{N}-2)+\left(p_{L}^{2}+p_{R}^{2}\right)
$$

LMC

$$
\begin{array}{r}
0=2(N-\bar{N})+\left(p_{L}^{2}-p_{R}^{2}\right) \\
\quad p=E Z
\end{array}
$$

$$
A^{m}, A^{\alpha}, A^{-\alpha} \begin{gathered}
\text { positive root } \\
\text { negative root } \\
A^{m}, A^{\alpha}, A^{-\alpha}
\end{gathered}
$$

$$
\text { Vectors } \quad N=0, \bar{N}=1
$$

$$
p_{L}^{2}-p_{R}^{2}=2 \quad \mathrm{LMC}
$$

$$
p_{L}^{2}+p_{R}^{2}=2 \quad \mathrm{M}^{2}=0
$$

2 d vectors
$2 n$ vectors

$$
\begin{gathered}
g_{\mu m} \pm B_{\mu m} \\
M^{m n} \\
\mathrm{~d}^{2} \text { scalars } \\
g_{m n}+B_{m n}
\end{gathered}
$$

$$
\text { Scalars } \quad \bar{N}_{y}=N_{y}=1
$$

Fields of reduced theory $\mathcal{M}_{D} \times T^{d}$
rank d rank d $\operatorname{dim} \mathrm{n} \operatorname{dim} \mathrm{n}$
$U(1)^{d} \times U(1)^{d} \quad \longrightarrow \quad G \times G$
$A^{m} \quad \bar{A}^{m} \quad A^{m}, A^{\alpha}, A^{-\alpha} \quad A^{m}, A^{\alpha}, A^{-\alpha}$
$2 n$ vectors

$M^{m n}$
$\mathrm{~d}^{2}$ scalars
$g_{m n}+B_{m n}$

$g_{\mu m} \pm B_{\mu m}$
2d vectors

$$
0=M^{2}=2(N+\bar{N}-2)+\left(p_{L}^{2}+p_{R}^{2}\right)
$$

LMC $\quad 0=2(N-\bar{N})+\left(p_{L}^{2}-p_{R}^{2}\right)$

$$
p=E Z
$$

Vectors $\quad N=0, \bar{N}=1$

$$
\begin{aligned}
& p_{L}^{2}-p_{R}^{2}=2 \quad \mathrm{LMC} \\
& p_{L}^{2}+p_{R}^{2}=2 \quad \mathrm{M}^{2}=0
\end{aligned}
$$

Scalars $\quad \bar{N}_{y}=N_{y}=1 \quad M^{m n}$

$$
N_{y}=1, \bar{N}=0 M^{m \beta}
$$

$$
N=0, \bar{N}_{y}=0 M^{\alpha n}
$$

$$
N=\bar{N}=0 \quad M^{\alpha \beta}
$$

$$
p_{L}^{2}-p_{R}^{2}=2
$$

$$
p_{L}^{2}+p_{R}^{2}=4
$$

$$
p_{L}^{2}=p_{R}^{2}=2
$$

Fields of reduced theory $\mathcal{M}_{D} \times T^{d}$
rank d rank d $\operatorname{dim} \mathrm{n} \operatorname{dim} \mathrm{n}$
$U(1)^{d} \times U(1)^{d} \quad \longrightarrow \quad G \times G$
$A^{m} \quad \bar{A}^{m} \quad A^{m}, A^{\alpha}, A^{-\alpha} \quad A^{m}, A^{\alpha}, A^{-\alpha}$

2d vectors
$g_{\mu m} \pm B_{\mu m}$

$M^{m n}$
$\mathrm{~d}^{2}$ scalars
$g_{m n}+B_{m n}$
:---

$2 n$ vectors

$$
\begin{aligned}
& \text { 0= } M^{2}=2(N+\bar{N}-2)+\left(p_{L}^{2}+p_{R}^{2}\right) \\
& \text { LMC } \quad 0=2(N-\bar{N})+\left(p_{L}^{2}-p_{R}^{2}\right)
\end{aligned}
$$

$$
p=E Z
$$

Vectors $\quad N=0, \bar{N}=1$

$$
\begin{aligned}
& p_{L}^{2}-p_{R}^{2}=2 \quad \mathrm{LMC} \\
& p_{L}^{2}+p_{R}^{2}=2 \quad \mathrm{M}^{2}=0
\end{aligned}
$$

Scalars $\quad \bar{N}_{y}=N_{y}=1 \quad M^{m n}$

$$
N_{y}=1, \bar{N}=0 M^{m \beta}
$$

$$
N=0, \bar{N}_{y}=0 M^{\alpha n}
$$

$$
N=\bar{N}=0 \quad M^{\alpha \beta}
$$

$$
p_{L}^{2}-p_{R}^{2}=2
$$

$$
p_{L}^{2}+p_{R}^{2}=4
$$

$$
p_{L}^{2}=p_{R}^{2}=2
$$

Fields of reduced theory $\mathcal{M}_{D} \times T^{d}$
rank d rank d $\operatorname{dim} \mathrm{n} \operatorname{dim} \mathrm{n}$
$U(1)^{d} \times U(1)^{d} \quad \longrightarrow \quad G \times G$
$A^{m} \quad \bar{A}^{m} \quad A^{m}, A^{\alpha}, A^{-\alpha} \quad A^{m}, A^{\alpha}, A^{-\alpha}$
$2 d$ vectors
$g_{\mu m} \pm B_{\mu m}$

$\mathcal{H} \in \frac{O(d, d)}{O(d) \times O(d)}$

$\mathcal{H} \in \frac{O(n, n)}{O(n) \times O(n)}$

$$
0=M^{2}=2(N+\bar{N}-2)+\left(p_{L}^{2}+p_{R}^{2}\right)
$$

LMC $\quad 0=2(N-\bar{N})+\left(p_{L}^{2}-p_{R}^{2}\right)$

$$
p=E Z
$$

Vectors $\quad N=0, \bar{N}=1$

$$
\begin{aligned}
p_{L}^{2}-p_{R}^{2} & =2 \mathrm{LMC} \\
p_{L}^{2}+p_{R}^{2} & =2 \quad \mathrm{M}^{2}=0
\end{aligned}
$$

$2 n$ vectors

Scalars $\quad \bar{N}_{y}=N_{y}=1 \quad M^{m n}$

$$
N_{y}=1, \bar{N}=0 M^{m \beta}
$$

$$
N=0, \bar{N}_{y}=0 M^{\alpha n}
$$

$$
N=\bar{N}=0 \quad M^{\alpha \beta}
$$

$$
p_{L}^{2}-p_{R}^{2}=2
$$

$$
p_{L}^{2}+p_{R}^{2}=4
$$

$$
p_{L}^{2}=p_{R}^{2}=2
$$

Fields of reduced theory $\quad \mathcal{M}_{D} \times T^{d}$
rank d rank d $\operatorname{dim} n \operatorname{dim} n$
$U(1)^{d} \times U(1)^{d} \quad \longrightarrow \quad G \times G$

LMC $\quad 0=2(N-\bar{N})+\left(p_{L}^{2}-p_{R}^{2}\right)$

$$
p=E Z
$$

Vectors $\quad N=0, \bar{N}=1$

$$
\begin{aligned}
& p_{L}^{2}-p_{R}^{2}=2 \quad \mathrm{LMC} \\
& p_{L}^{2}+p_{R}^{2}=2 \quad \mathrm{M}^{2}=0
\end{aligned}
$$

Scalars $\quad \bar{N}_{y}=N_{y}=1 \quad M^{m n}$

$$
N_{y}=1, \bar{N}=0 M^{m \beta}
$$

$$
N=0, \bar{N}_{y}=0 M^{\alpha n}
$$

$$
N=\bar{N}=0 \quad M^{\alpha \beta}
$$

$$
p_{L}^{2}-p_{R}^{2}=2
$$

$$
p_{L}^{2}+p_{R}^{2}=4
$$

$$
p_{L}^{2}=p_{R}^{2}=2
$$

Fields of reduced theory $\quad \mathcal{M}_{D} \times T^{d}$
rank d rank d $\operatorname{dim} \mathrm{n} \operatorname{dim} \mathrm{n}$
$U(1)^{d} \times U(1)^{d} \quad \longrightarrow \quad G \times G$

D^{2}	tensors	tensors
dof	$g_{\mu \nu}, B_{\mu \nu}$	$g_{\mu \nu}, B_{\mu \nu}$

$\mathcal{H} \in \frac{O(d, d)}{O(d) \times O(d)}$

LMC $\quad 0=2(N-\bar{N})+\left(p_{L}^{2}-p_{R}^{2}\right)$

$$
p=E Z
$$

Vectors $\quad N=0, \bar{N}=1$

$$
\begin{aligned}
p_{L}^{2}-p_{R}^{2} & =2 \quad \mathrm{LMC} \\
p_{L}^{2}+p_{R}^{2} & =2 \quad \mathrm{M}^{2}=0
\end{aligned}
$$

Scalars $\quad \bar{N}_{y}=N_{y}=1 \quad M^{m n}$ $N_{y}=1, \bar{N}=0 M^{m \beta}$

$$
N=0, \bar{N}_{y}=0 M^{\alpha n}
$$

$$
N=\bar{N}=0 \quad M^{\alpha \beta}
$$

$$
p_{L}^{2}-p_{R}^{2}=2
$$

$$
p_{L}^{2}+p_{R}^{2}=4
$$

$$
p_{L}^{2}=p_{R}^{2}=2
$$

Fields of reduced theory $\mathcal{M}_{D} \times T^{d}$
rank d rank d $\operatorname{dim} n \operatorname{dim} n$
$U(1)^{d} \times U(1)^{d} \quad \longrightarrow \quad G \times G$

$\mathcal{H} \in \frac{O(d, d)}{O(d) \times O(d)}$
$\mathcal{H} \in \frac{O(D+d, D+d)}{O(D+d) \times O(D+d)}$

$M^{m n} \quad M^{\alpha n} \quad M^{m \beta} \quad M^{\alpha \beta}$
$\left.\begin{array}{c}M^{a b} \\ \mathrm{n}^{2} \text { scalars }\end{array}\right\} a=1, \ldots, n$
$\mathcal{H} \in \frac{O(n, n)}{O(n) \times O(n)}$
$\mathcal{H} \in \frac{O(D+n, D+n)}{O(D+n) \times O(D+n)}$

$$
0=M^{2}=2(N+\bar{N}-2)+\left(p_{L}^{2}+p_{R}^{2}\right)
$$

LMC $\quad 0=2(N-\bar{N})+\left(p_{L}^{2}-p_{R}^{2}\right)$

$$
p=E Z
$$

Vectors $\quad N=0, \bar{N}=1$

$$
\begin{aligned}
& p_{L}^{2}-p_{R}^{2}=2 \quad \mathrm{LMC} \\
& p_{L}^{2}+p_{R}^{2}=2 \quad \mathrm{M}^{2}=0
\end{aligned}
$$

Scalars $\quad \bar{N}_{y}=N_{y}=1 \quad M^{m n}$ $N_{y}=1, \bar{N}=0 M^{m \beta}$

$$
N=0, \bar{N}_{y}=0 M^{\alpha n}
$$

$$
N=\bar{N}=0 \quad M^{\alpha \beta}
$$

$$
p_{L}^{2}-p_{R}^{2}=2
$$

$$
p_{L}^{2}+p_{R}^{2}=4
$$

$$
p_{L}^{2}=p_{R}^{2}=2
$$

Fields of reduced theory $\mathcal{M}_{D} \times T^{d}$
rank d rank d $\operatorname{dim} n \operatorname{dim} n$
$U(1)^{d} \times U(1)^{d} \quad \longrightarrow \quad G \times G$

$$
\begin{aligned}
& \text { O= } M^{2}=2(N+\bar{N}-2)+\left(p_{L}^{2}+\right. \\
& \text { LMC } \quad 0=2(N-\bar{N})+\left(p_{L}^{2}-p_{R}^{2}\right)
\end{aligned}
$$

$$
p=E Z
$$

Vectors $\quad N=0, \bar{N}=1$

$$
\begin{aligned}
& p_{L}^{2}-p_{R}^{2}=2 \quad \mathrm{LMC} \\
& p_{L}^{2}+p_{R}^{2}=2 \quad \mathrm{M}^{2}=0
\end{aligned}
$$

Scalars $\quad \bar{N}_{y}=N_{y}=1 \quad M^{m n}$

$$
N_{y}=1, \bar{N}=0 M^{m \beta}
$$

$$
N=0, \bar{N}_{y}=0 M^{\alpha n}
$$

$$
N=\bar{N}=0 \quad M^{\alpha \beta}
$$

$\mathcal{H} \in \frac{O(d, d)}{O(d) \times O(d)}$

$$
p_{L}^{2}-p_{R}^{2}=2
$$

$$
p_{L}^{2}+p_{R}^{2}=4
$$

$\mathcal{H} \in \frac{O(D+d, D+d)}{O(D+d) \times O(D+d)}$

$$
p_{L}^{2}=p_{R}^{2}=2
$$

Effective action from string theory

Computing 3-point functions <VVV> at a point of enhancement we read off

$$
\begin{aligned}
\mathcal{L}= & R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu}+\frac{1}{4} \bar{F}_{\mu \nu}^{a} \bar{F}_{a}^{\mu \nu} \\
& +\frac{1}{4} M_{a a^{\prime}} F_{\mu \nu}^{a} \bar{F}^{a^{\prime} \mu \nu}+D_{\mu} M_{a a^{\prime}} D^{\mu} M^{a a^{\prime}}-\frac{1}{12} f_{a b c} \bar{f}_{a^{\prime} b^{\prime} c^{\prime}} M^{a a^{\prime}} M^{b b^{\prime}} M^{c c^{\prime}}
\end{aligned}
$$

$$
H=d B+A^{a} \wedge F_{a}+f_{a b c} A^{a} \wedge A^{b} \wedge A^{c}
$$

$$
-\bar{A}^{a} \wedge \bar{F}_{a}-\bar{f}_{a b c} \bar{A}^{a} \wedge \bar{A}^{b} \wedge \bar{A}^{c}
$$

$$
F^{a}=d A^{a}+f_{b c}^{a} A^{b} \wedge A^{c}
$$

$D_{\mu} M^{a a^{\prime}}=\partial_{\mu} M^{a a^{\prime}}+f_{b c}^{a} A_{\mu}^{b} M^{c a^{\prime}}+f_{b^{\prime} c^{\prime}}^{a^{\prime}} \bar{A}_{\mu}^{b^{\prime}} M^{a c^{\prime}}$

Effective action from string theory

Computing 3-point functions <VVV> at a point of enhancement we read off

$$
\begin{aligned}
\mathcal{L}= & R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu}+\frac{1}{4} \bar{F}_{\mu \nu}^{a} \bar{F}_{a}^{\mu \nu} \\
& +\frac{1}{4} M_{a a^{\prime}} F_{\mu \nu}^{a} \bar{F}^{a^{\prime} \mu \nu}+D_{\mu} M_{a a^{\prime}} D^{\mu} M^{a a^{\prime}}-\frac{1}{12} f_{a b c} \bar{f}_{a^{\prime} b^{\prime} c^{\prime}} M^{a a^{\prime}} M^{b b^{\prime}} M^{c c^{\prime}}
\end{aligned}
$$

$$
H=d B+A^{a} \wedge F_{a}+f_{a b c} A^{a} \wedge A^{b} \wedge A^{c}
$$

$$
-\bar{A}^{a} \wedge \bar{F}_{a}-\bar{f}_{a b c} \bar{A}^{a} \wedge \bar{A}^{b} \wedge \bar{A}^{c}
$$

$$
F^{a}=d A^{a}+f_{b c}^{a} A^{b} \wedge A^{c}
$$

$D_{\mu} M^{a a^{\prime}}=\partial_{\mu} M^{a a^{\prime}}+f_{b c}^{a} A_{\mu}^{b} M^{c a^{\prime}}+f_{b^{\prime} c^{\prime}}^{a^{\prime}} \bar{A}_{\mu}^{b^{\prime}} M^{a c^{\prime}}$
Higgs mechanism

Effective action from string theory

Computing 3-point functions <VVV> at a point of enhancement we read off

$$
\begin{aligned}
\mathcal{L}= & R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu}+\frac{1}{4} \bar{F}_{\mu \nu}^{a} \bar{F}_{a}^{\mu \nu} \\
& +\frac{1}{4} M_{a a^{\prime}} F_{\mu \nu}^{a} \bar{F}^{a^{\prime} \mu \nu}+D_{\mu} M_{a a^{\prime}} D^{\mu} M^{a a^{\prime}}-\frac{1}{12} f_{a b c} \bar{f}_{a^{\prime} b^{\prime} c^{\prime}} M^{a a^{\prime}} M^{b b^{\prime}} M^{c c^{\prime}}
\end{aligned}
$$

$$
H=d B+A^{a} \wedge F_{a}+f_{a b c} A^{a} \wedge A^{b} \wedge A^{c}
$$

$$
-\bar{A}^{a} \wedge \bar{F}_{a}-\bar{f}_{a b c} \bar{A}^{a} \wedge \bar{A}^{b} \wedge \bar{A}^{c}
$$

$$
F^{a}=d A^{a}+f_{b c}^{a} A^{b} \wedge A^{c}
$$

$$
D_{\mu} M^{a a^{\prime}}=\partial_{\mu} M^{a a^{\prime}}+f_{b c}^{a} A_{\mu}^{b} M^{c a^{\prime}}+f_{b^{\prime} c^{\prime}}^{a^{\prime}} \bar{A}_{\mu}^{b^{\prime}} M^{a c^{\prime}}
$$

Higgs mechanism

$$
M^{m n}=\underbrace{v^{m n}}_{\begin{array}{c}
\text { deviation from } \\
\text { point of enhancement }
\end{array}}+M^{\prime m n}
$$

Effective action from string theory

Computing 3-point functions <VVV> at a point of enhancement we read off

$$
\begin{aligned}
\mathcal{L}= & R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu}+\frac{1}{4} \bar{F}_{\mu \nu}^{a} \bar{F}_{a}^{\mu \nu} \\
& +\frac{1}{4} M_{a a^{\prime}} F_{\mu \nu}^{a} \bar{F}^{a^{\prime} \mu \nu}+D_{\mu} M_{a a^{\prime}} D^{\mu} M^{a a^{\prime}}-\frac{1}{12} f_{a b c} \bar{f}_{a^{\prime} b^{\prime} c^{\prime}} M^{a a^{\prime}} M^{b b^{\prime}} M^{c c^{\prime}} \\
H= & d B+A^{a} \wedge F_{a}+f_{a b c} A^{a} \wedge A^{b} \wedge A^{c} \vartheta^{\prime} A^{\alpha}{ }_{\text {acquire mass }}{ }^{2} \sim v v^{t} \\
& -\bar{A}^{a} \wedge \bar{F}_{a}-\bar{f}_{a b c} \bar{A}^{a} \wedge \bar{A}^{b} \wedge \bar{A}^{c} \quad \bar{A}^{\alpha} \\
F^{a}= & d A^{a}+f_{b c}^{a} A^{b} \wedge A^{c} \\
D_{\mu} M^{a a^{\prime}}= & \partial_{\mu} M^{a a^{\prime}}+f_{b c}^{a} A_{\mu}^{b} M^{c a^{\prime}}+f_{b^{\prime} c^{\prime}}^{a^{\prime}} \bar{A}_{\mu}^{b^{\prime}} M^{a c^{\prime}}
\end{aligned}
$$

Higgs mechanism

$$
M^{m n}=\underbrace{v^{m n}}_{\begin{array}{c}
\text { deviation from } \\
\text { point of enhancement }
\end{array}}+M^{\prime m n}
$$

Effective action from string theory

Computing 3-point functions <VVV> at a point of enhancement we read off

$$
\begin{aligned}
\mathcal{L}= & R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu}+\frac{1}{4} \bar{F}_{\mu \nu}^{a} \bar{F}_{a}^{\mu \nu} \\
& +\frac{1}{4} M_{a a^{\prime}} F_{\mu \nu}^{a} \bar{F}^{a^{\prime} \mu \nu}+D_{\mu} M_{a a^{\prime}} D^{\mu} M^{a a^{\prime}}-\frac{1}{12} f_{a b c} \bar{f}_{a^{\prime} b^{\prime} c^{\prime}} M^{a a^{\prime}} M^{b b^{\prime}} M^{c c^{\prime}}
\end{aligned}
$$

$$
H=d B+A^{a} \wedge F_{a}+f_{a b c} A^{a} \wedge A^{b} \wedge A^{c}
$$

$$
-\bar{A}^{a} \wedge \bar{F}_{a}-\bar{f}_{a b c} \bar{A}^{a} \wedge \bar{A}^{b} \wedge \bar{A}^{c}
$$

$$
F^{a}=d A^{a}+f_{b c}^{a} A^{b} \wedge A^{c}
$$

$G x G \rightarrow U^{d}(1) x U^{d}(1)$

$$
D_{\mu} M^{a a^{\prime}}=\partial_{\mu} M^{a a^{\prime}}+f_{b c}^{a} A_{\mu}^{b} M^{c a^{\prime}}+f_{b^{\prime} c^{\prime}}^{a^{\prime}} \bar{A}_{\mu}^{b^{\prime}} M^{a c^{\prime}}
$$

Higgs mechanism

$$
M^{m n}=\underbrace{v^{m n}}_{\begin{array}{c}
\text { deviation from } \\
\text { point of enhancement }
\end{array}}+M^{\prime m n}
$$

Effective action from string theory

Computing 3-point functions <VVV> at a point of enhancement we read off

$$
\begin{aligned}
\mathcal{L}= & R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu}+\frac{1}{4} \bar{F}_{\mu \nu}^{a} \bar{F}_{a}^{\mu \nu} \quad M^{\alpha \beta} \\
& +\frac{1}{4} M_{a a^{\prime}} F_{\mu \nu}^{a} \bar{F}^{a^{\prime} \mu \nu}+D_{\mu} M_{a a^{\prime}} D^{\mu} M^{a a^{\prime}}-\frac{1}{12} f_{a b c} \bar{f}_{a^{\prime} b^{\prime} c^{\prime}} M^{a a^{\prime}} M^{b b^{\prime}} M^{c c^{\prime}}
\end{aligned}
$$

$$
H=d B+A^{a} \wedge F_{a}+f_{a b c} A^{a} \wedge A^{b} \wedge A^{c}
$$

$$
-\bar{A}^{a} \wedge \bar{F}_{a}-\bar{f}_{a b c} \bar{A}^{a} \wedge \bar{A}^{b} \wedge \bar{A}^{c}
$$

$$
F^{a}=d A^{a}+f_{b c}^{a} A^{b} \wedge A^{c}
$$

$$
G x G \rightarrow \cup^{d}(1) x \cup^{d}(1)
$$

$$
D_{\mu} M^{a a^{\prime}}=\partial_{\mu} M^{a a^{\prime}}+f_{b c}^{a} A_{\mu}^{b} M^{c a^{\prime}}+f_{b^{\prime} c^{\prime}}^{a^{\prime}} \bar{A}_{\mu}^{b^{\prime}} M^{a c^{\prime}}
$$

Higgs mechanism

$$
M^{m n}=\underbrace{v^{m n}}_{\begin{array}{c}
\text { deviation from } \\
\text { point of enhancement }
\end{array}}+M^{\prime m n}
$$

Effective action from string theory

Computing 3-point functions <VVV> at a point of enhancement we read off

$$
\begin{aligned}
\mathcal{L}= & R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu}+\frac{1}{4} \bar{F}_{\mu \nu}^{a} \bar{F}_{a}^{\mu \nu} \quad M^{\alpha \beta} \\
& +\frac{1}{4} M_{a a^{\prime}} F_{\mu \nu}^{a} \bar{F}^{a^{\prime} \mu \nu}+D_{\mu} M_{a a^{\prime}} D^{\mu} M^{a a^{\prime}}-\frac{1}{12} f_{a b c} \bar{f}_{a^{\prime} b^{\prime} c^{\prime}} M^{a a^{\prime}} M^{b b^{\prime}} M^{c c^{\prime}}
\end{aligned}
$$

$$
H=d B+A^{a} \wedge F_{a}+f_{a b c} A^{a} \wedge A^{b} \wedge A^{c}
$$

$$
A^{\alpha} \text { acquire mass }{ }^{2} \sim v v^{t}
$$

$$
-\bar{A}^{a} \wedge \bar{F}_{a}-\bar{f}_{a b c} \bar{A}^{a} \wedge \bar{A}^{b} \wedge \bar{A}^{c}
$$

$$
\bar{A}^{\alpha}
$$

$$
F^{a}=d A^{a}+f_{b c}^{a} A^{b} \wedge A^{c}
$$

$G x G \rightarrow U^{d}(1) x U^{d}(1)$

$$
D_{\mu} M^{a a^{\prime}}=\partial_{\mu} M^{a a^{\prime}}+f_{b c}^{a} A_{\mu}^{b} M^{c a^{\prime}}+f_{b^{\prime} c^{\prime}}^{a^{\prime}} \bar{A}_{\mu}^{b^{\prime}} M^{a c^{\prime}}
$$

Higgs mechanism

$$
M^{m n}=\underbrace{v^{m n}}_{\begin{array}{c}
\text { devation from } \\
\text { point of enhancement }
\end{array} \delta(g+B)_{m n}}+M^{\prime m n} \quad \text { Can we get this action from DFT ?? }
$$

DFT action

DFT action

DFT O(N,N) action

$S=\int d X\left(-\partial_{M N} \mathcal{H}^{M N}+\frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{K} \mathcal{H}_{N L}\right)$
Equivalent to
$S=\int d X \mathbb{R} \quad$ generalized Ricci scalar

DFT action

DFT $\mathrm{O}(\mathrm{N}, \mathrm{N})$ action

$S=\int d X\left(-\partial_{M N} \mathcal{H}^{M N}+\frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{K} \mathcal{H}_{N L}\right)$
Equivalent to
$S=\int d X \mathbb{R} \quad$ generalized Ricci scalar
Coimbra, Strickland-
Constable, Waldram 09

Generalized Scherk-Schwarz reduction of DFT action
$\mathcal{M}_{\overline{\mathrm{N}}-d} \times \mathcal{M}^{d}$
$\mathrm{O}(\mathrm{N}, \mathrm{N}) \longrightarrow \mathrm{O}(\mathrm{N}-\mathrm{d}, \mathrm{N}-\mathrm{d}) \times \mathrm{O}(\mathrm{d}, \mathrm{d})$ external internal

DFT action

DFT $\mathrm{O}(\mathrm{N}, \mathrm{N})$ action

$S=\int d X\left(-\partial_{M N} \mathcal{H}^{M N}+\frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{K} \mathcal{H}_{N L}\right)$
Equivalent to

$$
S=\int d X \mathbb{R} \quad \text { generalized Ricci scalar }
$$

Generalized Scherk-Schwarz reduction of DFT action

$$
\begin{gathered}
\mathcal{M}_{\overline{\mathrm{N}}-d} \times \mathcal{M}^{d} \\
x, y
\end{gathered}
$$

$$
\mathcal{H}^{M N}=\delta^{A B} E_{A}{ }^{M} E_{B}{ }^{N} \quad E_{A}(x, y)=U_{A}^{A^{\prime}}(x) E_{A^{\prime}}^{\prime}(y)
$$

$$
\mathrm{O}(\mathrm{~N}, \mathrm{~N}) \longrightarrow \mathrm{O}(\mathrm{~N}-\mathrm{d}, \mathrm{~N}-\mathrm{d}) \times \mathrm{O}(\mathrm{~d}, \mathrm{~d})
$$

DFT action

DFT $\mathrm{O}(\mathrm{N}, \mathrm{N})$ action

$S=\int d X\left(-\partial_{M N} \mathcal{H}^{M N}+\frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{K} \mathcal{H}_{N L}\right)$
Equivalent to

$$
S=\int d X \mathbb{R} \quad \text { generalized Ricci scalar }
$$

Generalized Scherk-Schwarz reduction of DFT action

$$
\mathcal{M}_{\overline{\mathrm{N}}-d} \times \mathcal{M}^{d}
$$

$$
\mathcal{H}^{M N}=\delta^{A B} E_{A}{ }^{M} E_{B}^{N} \quad E_{A}(x, y, \tilde{y})=U_{A}^{A^{\prime}}(x) E_{A^{\prime}}^{\prime}(y, \tilde{y})
$$

$$
\mathrm{O}(\mathrm{~N}, \mathrm{~N}) \longrightarrow \mathrm{O}(\mathrm{~N}-\mathrm{d}, \mathrm{~N}-\mathrm{d}) \times \mathrm{O}(\mathrm{~d}, \mathrm{~d})
$$ external internal

$$
\partial_{M}=(\underbrace{\partial_{\mu}}_{N-\mathrm{d}}, \underbrace{\partial_{m}}_{2 \mathrm{~d}}, \partial_{m}, \partial^{\prime K})
$$

$$
\begin{aligned}
& \mathcal{L}=R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} \mathcal{H}_{I J} F^{I \mu \nu} F_{\mu \nu}^{J}+\left(D_{\mu} \mathcal{H}\right)_{I J}\left(D^{\mu} \mathcal{H}\right)^{I J} \\
& -\frac{1}{12} f_{I J K} f_{L M N}\left(\mathcal{H}^{I L} \mathcal{H}^{J M} \mathcal{H}^{K N}-3 \mathcal{H}^{I L} \eta^{J M} \eta^{K N}+2 \eta^{I L} \eta^{J M} \eta^{K N}\right) \\
& H=d B+F^{I} \wedge A_{I} \\
& F^{I}=d A^{I}+f_{J K}^{I} A^{J} \wedge A^{K} \\
& E_{A}(x, y, \tilde{y})=U_{A} A^{A^{\prime}}(x) E_{A^{\prime}}^{\prime}(y, \tilde{y}) \\
& {\left[E_{J}^{\prime}, E_{K}^{\prime}\right]_{C}=f^{I}{ }_{J K} E_{K}^{\prime}} \\
& \partial_{M}=\underbrace{\partial_{\mu}}_{N_{-d}}, \underbrace{\left.\partial_{m}, \partial_{m} \partial^{K}\right)}_{\begin{array}{c}
\text { 2d } \\
I
\end{array}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}=R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} \mathcal{H}_{I J} F^{I \mu \nu} F_{\mu \nu}^{J}+\left(D_{\mu} \mathcal{H}\right)_{I J}\left(D^{\mu} \mathcal{H}\right)^{I J} \\
& -\frac{1}{12} f_{I J K} f_{L M N}\left(\mathcal{H}^{I L} \mathcal{H}^{J M} \mathcal{H}^{K N}-3 \mathcal{H}^{I L} \eta^{J M} \eta^{K N}+2 \eta^{I L} \eta^{J M} \eta^{K N}\right) \\
& H=d B+F^{I} \wedge A_{I} \\
& F^{I}=d A^{I}+f^{I}{ }_{J K} A^{J} \wedge A^{K} \\
& {\left[E_{J}^{\prime}, E_{K}^{\prime}\right]_{C}=f^{I}{ }_{J K} E_{K}^{\prime}} \\
& E_{A}(x, y, \tilde{y})=U_{A}^{A^{\prime}}(x) E_{A^{\prime}}^{\prime}(y, \tilde{y}) \\
& \partial_{M}=(\underbrace{\partial_{\mu}}_{\mathrm{N}-\mathrm{d}}, \underbrace{\partial_{m}, \partial_{m}}_{\substack{2 \mathrm{~d} \\
I}}, \partial^{\mu})
\end{aligned}
$$

Claim: this action reproduces the string theory action compactifications on T^{d} close to enhancement point

For simplicity, do: d=1 (enhancement to $\mathrm{SU}(2) \times \mathrm{SU}(2)$)

Frame on $T \mathcal{M}_{\mathrm{N}} \oplus T^{*} \mathcal{M}_{\mathrm{N}}$

$$
E_{A}=\binom{e_{a}-\iota_{e_{a}} B}{e^{a}}
$$

For simplicity, do: $\mathrm{d}=1$ (enhancement to $\mathrm{SU}(2) \times \mathrm{SU}(2)$) $\quad \mathcal{M}_{\mathrm{N}-1} \times S^{1}$

$$
\begin{aligned}
& \text { Frame on } T \mathcal{M}_{\mathrm{N}} \oplus T^{*} \mathcal{M}_{\mathrm{N}} \\
& \text { frame } e_{a} \quad \begin{array}{c}
\text { dual } \\
\text { frame }
\end{array} e^{a} \\
& T \mathcal{M}_{\mathrm{N}}=T \mathcal{M}_{\mathrm{N}-1} \oplus T S^{1} \\
& E_{A}=\binom{e_{a}-\iota_{e_{a}} B}{e^{a}} \\
& y \sim y+2 \pi
\end{aligned}
$$

For simplicity, do: $\mathrm{d}=1$ (enhancement to $\mathrm{SU}(2) \times \mathrm{SU}(2)$) $\mathcal{M}_{\mathrm{N}-1} \times S^{1}$

$$
\begin{aligned}
& \text { Frame on } T \mathcal{M}_{\mathrm{N}} \oplus T^{*} \mathcal{M}_{\mathrm{N}} \\
& \text { frame } e_{a} \quad \begin{array}{c}
\text { dual } \\
\text { frame }
\end{array} e^{a} \\
& T \mathcal{M}_{\mathrm{N}}=T \mathcal{M}_{\mathrm{N}-1} \oplus T S^{1} \\
& y \sim y+2 \pi \\
& E_{A}=\left(\begin{array}{c}
e_{a}-\iota_{e_{a}} B \\
e^{a} \longrightarrow \underset{\longrightarrow}{\longrightarrow} e^{\hat{a}} \\
\\
\\
\\
\end{array} d y+V_{1}\right), \quad g_{\mu y} \\
& \sqrt{g_{y y}}=R
\end{aligned}
$$

For simplicity, do: $\mathrm{d}=1$ (enhancement to $\mathrm{SU}(2) \times \mathrm{SU}(2)$) $\quad \mathcal{M}_{\mathrm{N}-1} \times S^{1}$

Frame on $T \mathcal{M}_{\mathrm{N}} \oplus T^{*} \mathcal{M}_{\mathrm{N}}$

$$
\begin{aligned}
T \mathcal{M}_{\mathrm{N}}=T \mathcal{M}_{\mathrm{N}-1} & \oplus T S^{1} \\
y & \sim y+2 \pi
\end{aligned}
$$

$$
E_{A}=\left(\begin{array}{c}
e_{a}-\iota_{e_{a}} B \\
\left.e^{a} \longrightarrow\right) \\
\longleftrightarrow e^{\hat{a}} \\
\phi^{-1}\left(\partial_{y}+B_{1}\right) \\
\vdots\left(d y+V_{1}\right), \quad B_{\mu y} \\
\sqrt{g_{y y}}=R
\end{array}\right.
$$

$$
\binom{E_{d}}{E^{d}}=\left(\begin{array}{cc}
\phi^{-1} & 0 \\
0 & \phi
\end{array}\right)\binom{\partial_{y}+B_{1}}{d y+V_{1}}
$$

$$
\binom{E_{d}}{E^{d}}=\left(\begin{array}{cc}
\phi^{-1} & 0 \\
0 & \phi
\end{array}\right)\binom{\partial_{y}+B_{1}}{d y+V_{1}} \underset{L R}{\longrightarrow}\binom{E^{L}}{E^{R}}=\left(\begin{array}{ll}
U^{+} & U^{-} \\
U^{-} & U^{+}
\end{array}\right) \quad\binom{J+A}{\bar{J}-\bar{A}}
$$

$$
\begin{array}{lll}
U^{ \pm}=\frac{1}{2}\left(\phi^{-1} \pm \phi\right) & A & =V_{1}+B_{1} \quad J=\partial_{y}+d y \\
\bar{A} & =V_{1}-B_{1} \quad \bar{J}=\partial_{y}-d y
\end{array}
$$

$$
\binom{E_{d}}{E^{d}}=\left(\begin{array}{cc}
\phi^{-1} & 0 \\
0 & \phi
\end{array}\right)\binom{\partial_{y}+B_{1}}{d y+V_{1}} \underset{L R}{\cdots \cdots \cdots}\binom{E^{L}}{E^{R}}=\left(\begin{array}{ll}
U^{+} & U^{-} \\
U^{-} & U^{+}
\end{array}\right) \quad\binom{J+A}{\bar{J}-\bar{A}}
$$

$$
U^{ \pm}=\frac{1}{2}\left(\phi^{-1} \pm \phi\right) \quad A=V_{1}+B_{1} \quad J=\partial_{y}+d y
$$

$$
\bar{A}=V_{1}-B_{1} \quad \bar{J}=\partial_{y}-d y
$$

$$
\binom{E_{d}}{E^{d}}=\left(\begin{array}{cc}
\phi^{-1} & 0 \\
0 & \phi
\end{array}\right)\binom{\partial_{y}+B_{1}}{d y+V_{1}} \stackrel{L R}{\cdots \cdots \cdots}\binom{E^{L}}{E^{R}}=\left(\begin{array}{ll}
U^{+} & U^{-} \\
U^{-} & U^{+}
\end{array}\right) \quad\binom{J+A}{\bar{J}-\bar{A}}
$$

$$
U^{ \pm}=\frac{1}{2}\left(\phi^{-1} \pm \phi\right) \quad A=V_{1}+B_{1} \quad J=\partial_{y}+d y
$$

$$
\bar{A}=V_{1}-B_{1} \quad \bar{J}=\partial_{y}-d y
$$

$$
E_{A}=\left(\begin{array}{c}
e_{a}-\iota_{e_{a}} B+ \\
\left.e^{a} \longrightarrow\right)
\end{array}\right.
$$

$$
\binom{E_{d}}{E^{d}}=\left(\begin{array}{cc}
\phi^{-1} & 0 \\
0 & \phi
\end{array}\right)\binom{\partial_{y}+B_{1}}{d y+V_{1}} \stackrel{L R}{\cdots}\binom{E^{L}}{E^{R}}=\left(\begin{array}{ll}
U^{+} & U^{-} \\
U^{-} & U^{+}
\end{array}\right) \quad\binom{J+A}{\bar{J}-\bar{A}}
$$

$$
U^{+} \approx 1 \quad U^{ \pm}=\frac{1}{2}\left(\phi^{-1} \pm \phi\right) \quad A=V_{1}+B_{1} \quad J=\partial_{y}+d y
$$

$$
\bar{A}=V_{1}-B_{1} \quad \bar{J}=\partial_{y}-d y
$$

$$
E_{A}=\left(\begin{array}{c}
e_{a}-\iota_{e_{a}} B \\
\left.e^{a} \longrightarrow\right) \\
\longrightarrow
\end{array}\right.
$$

$$
\binom{E_{d}}{E^{d}}=\left(\begin{array}{cc}
\phi^{-1} & 0 \\
0 & \phi
\end{array}\right)\binom{\partial_{y}+B_{1}}{d y+V_{1}} \stackrel{L R}{\underset{L R}{ }}\binom{E^{L}}{E^{R}}=\left(\begin{array}{cc}
1 & \frac{1}{2} M \\
\frac{1}{2} M & 1
\end{array}\right)\binom{J+A}{\bar{J}-\bar{A}}
$$

$$
U^{+} \approx 1 \quad U^{ \pm}=\frac{1}{2}\left(\phi^{-1} \pm \phi\right) \quad A=V_{1}+B_{1} \quad J=\partial_{y}+d y
$$

$$
\bar{A}=V_{1}-B_{1} \quad \bar{J}=\partial_{y}-d y
$$

$$
E_{A}=\left(\begin{array}{c}
e_{a}-\iota_{e_{a}} B+ \\
\left.e^{a} \longrightarrow\right) \\
\longrightarrow
\end{array}\right.
$$

$$
\binom{E_{d}}{E^{d}}=\left(\begin{array}{cc}
\phi^{-1} & 0 \\
0 & \phi
\end{array}\right)\binom{\partial_{y}+B_{1}}{d y+V_{1}} \stackrel{L R}{\cdots}\binom{E^{L}}{E^{R}}=\left(\begin{array}{cc}
1 & \frac{1}{2} M \\
\frac{1}{2} M & 1
\end{array}\right)\binom{J+A}{\bar{J}-\bar{A}}
$$

$$
U^{+} \approx 1 \quad U^{ \pm}=\frac{1}{2}\left(\phi^{-1} \pm \phi\right) \quad A=V_{1}+B_{1} \quad J=\partial_{y}+d y
$$

$$
U^{-} \approx \frac{1}{2} M
$$

$$
\bar{A}=V_{1}-B_{1} \quad \bar{J}=\partial_{y}-d y
$$

So far, no enhancement of symmetry

$$
\begin{aligned}
& B_{\mu y}
\end{aligned}
$$

$$
\begin{aligned}
& \langle M\rangle \\
& \binom{E_{d}}{E^{d}}=\left(\begin{array}{cc}
\phi^{-1} & 0 \\
0 & \phi
\end{array}\right)\binom{\partial_{y}+B_{1}}{d y+V_{1}} \underset{L R}{\longrightarrow}\binom{E^{L}}{E^{R}}=\left(\begin{array}{cc}
1 & \frac{1}{2} M \\
\frac{1}{2} M & 1
\end{array}\right)\binom{J+A}{\bar{J}-\bar{A}} \\
& \left.\begin{array}{rlrl}
U^{+} & \approx 1 & U^{ \pm}=\frac{1}{2}\left(\phi^{-1} \pm \phi\right) & A
\end{array}=V_{1}+B_{1} \quad J=\partial_{y}+d y\right]
\end{aligned}
$$

So far, no enhancement of symmetry, no double field theory

DFT
$T \mathcal{M} \oplus T^{*} \mathcal{M} \longrightarrow T \mathcal{M}_{\mathrm{N}_{-}-} \oplus T S^{1} \oplus T^{*} S^{1} \oplus T^{*} \mathcal{M}_{\mathrm{N}-1}$

$$
\begin{aligned}
& J=\partial_{y}+d y \\
& \bar{J}=\partial_{y}-d y
\end{aligned}
$$

DFT
$T \mathcal{M} \oplus T^{*} \mathcal{M} \longrightarrow T \mathcal{M}_{\mathrm{N}-\uparrow} \oplus T S^{1} \oplus T \tilde{S}^{1} \oplus T^{*} \mathcal{M}_{\mathrm{N}-1}$

$$
d y \approx \partial_{\tilde{y}}
$$

$$
\begin{aligned}
& J=\partial_{y}+d y \\
& \bar{J}=\partial_{y}-d y
\end{aligned}
$$

DFT
$T \mathcal{M} \oplus T^{*} \mathcal{M} \longrightarrow T \mathcal{M}_{\mathrm{N}-\uparrow} \oplus T S^{1} \oplus T \tilde{S}^{1} \oplus T^{*} \mathcal{M}_{\mathrm{N}-1}$

$$
d y \approx \partial_{\tilde{y}}
$$

$$
\begin{aligned}
& J=\partial_{y}+d y=\partial_{y}+\partial_{\tilde{y}}=\partial_{y^{L}} \\
& \bar{J}=\partial_{y}-d y=\partial_{y}-\partial_{\tilde{y}}=\partial_{y^{R}}
\end{aligned}
$$

DFT

$$
\begin{gathered}
T \mathcal{M} \oplus T^{*} \mathcal{M} \longrightarrow T \mathcal{M}_{\mathcal{N}_{-} \oplus} \oplus T S^{1} \oplus T \tilde{S}^{1} \oplus T^{*} \mathcal{M}_{\mathrm{N}-1} \\
d y \approx \partial_{\tilde{y}} \\
J=\partial_{y}+d y=\partial_{y}+\partial_{\tilde{y}}=\partial_{y^{L}} \\
\bar{J}=\partial_{y}-d y=\partial_{y}-\partial_{\tilde{y}}=\partial_{y^{R}}
\end{gathered}
$$

Still, this is formal. No dependence on \quad yor \tilde{y}

DFT

$$
\begin{gathered}
T \mathcal{M} \oplus T^{*} \mathcal{M} \longrightarrow T \mathcal{M}_{\mathcal{N}_{-} \oplus} \oplus T S^{1} \oplus T \tilde{S}^{1} \oplus T^{*} \mathcal{M}_{\mathrm{N}-1} \\
d y \approx \partial_{\tilde{y}} \\
J=\partial_{y}+d y=\partial_{y}+\partial_{\tilde{y}}=\partial_{y^{L}} \\
\bar{J}=\partial_{y}-d y=\partial_{y}-\partial_{\tilde{y}}=\partial_{y^{R}}
\end{gathered}
$$

Still, this is formal. No dependence on y or \tilde{y}
Of course, we have not included momentum/winding modes $\sim e^{2 i y} / e^{2 i \tilde{y}}$
To include winding modes we need dependence on S^{1}, \tilde{S}^{1}

DFT \& Enhancement of symmetry

$$
\begin{gathered}
T \mathcal{M} \oplus T^{*} \mathcal{M} \longrightarrow T \mathcal{M}_{\mathcal{N}-\uparrow} \oplus T S^{1} \oplus T \tilde{S}^{1} \oplus T^{*} \mathcal{M}_{\mathrm{N}-1} \\
d y \approx \partial_{\tilde{y}} \\
J=\partial_{y}+d y=\partial_{y}+\partial_{\tilde{y}}=\partial_{y^{L}} \\
\bar{J}=\partial_{y}-d y=\partial_{y}-\partial_{\tilde{y}}=\partial_{y^{R}}
\end{gathered}
$$

Still, this is formal. No dependence on Y or \tilde{y}
Of course, we have not included momentum/winding modes $\sim e^{2 i y} / e^{2 i \tilde{y}}$

To include winding modes we need dependence on S^{1}, \widetilde{S}^{1}
To account for the enhancement of symmetry, we need to enlarge the generalized tangent space

Enhancement of symmetry

$$
T \mathcal{M}_{\mathrm{N}-\oplus} \oplus T S^{1} \oplus T \tilde{S}^{1} \oplus T^{*} \mathcal{M}_{\mathrm{N}-1} \quad\binom{E^{L}}{E^{R}}=\left(\begin{array}{cc}
1 & \frac{1}{2} M \\
\frac{1}{2} M & 1
\end{array}\right)\binom{J+A}{\bar{J}-\bar{A}}
$$

Enhancement of symmetry

$$
T \mathcal{M}_{\mathrm{N}-1} \oplus T S^{1} \oplus T \tilde{S}^{1} \oplus T^{*} \mathcal{M}_{\mathrm{N}-1} \quad\binom{E^{L}}{E^{R}}=\left(\begin{array}{cc}
1 & \frac{1}{2} M \\
\frac{1}{2} M & 1
\end{array}\right)\binom{J+A}{\bar{J}-\bar{A}}
$$

$$
T \mathcal{M}_{\mathrm{N}-1} \oplus \underbrace{V_{2} \oplus T S^{1} \oplus T \tilde{S}^{1} \oplus V_{2}^{*}}_{\mathrm{O}(3,3)} \oplus T^{*} \mathcal{M}_{\mathrm{N}-1}
$$

Enhancement of symmetry

$$
T \mathcal{M}_{N_{1} \oplus} \oplus T S^{1} \oplus T \tilde{S}^{1} \oplus T^{*} \mathcal{M}_{N-1} \quad\binom{E^{L}}{E^{R}}=\left(\begin{array}{cc}
1 & \frac{1}{2} M \\
\frac{1}{2} M & 1
\end{array}\right)\binom{J+A}{\bar{J}-\bar{A}}
$$

$T \mathcal{M}_{\mathrm{N}-1} \oplus V_{2} \oplus T S^{1} \oplus T \tilde{S}^{1} \oplus V_{2}^{*} \oplus T^{*} \mathcal{M}_{\mathrm{N}-1}$
$O(3,3)$

$$
\begin{aligned}
&\binom{E^{a}}{E^{a}}=\left(\begin{array}{cc}
1 & \frac{1}{2} M^{a b} \\
\frac{1}{2} M^{a b} & 1
\end{array}\right)\binom{J^{b}+A^{b}}{\bar{J}^{b}-\bar{A}^{b}} \\
& M^{a b}(x) \\
& 9 \text { scalar feeds } A^{a}(x) \\
& \bar{A}^{a}(x)
\end{aligned}
$$

Enhancement of symmetry

$$
T \mathcal{M}_{N_{1}-1} \oplus T S^{1} \oplus T \tilde{S}^{1} \oplus T^{*} \mathcal{M}_{N_{1}-1} \quad\binom{E^{L}}{E^{R}}=\left(\begin{array}{cc}
1 & \frac{1}{2} M \\
\frac{1}{2} M & 1
\end{array}\right)\binom{J+A}{\bar{J}-\bar{A}}
$$

$T \mathcal{M}_{\mathrm{N}-1} \oplus V_{2} \oplus T S^{1} \oplus T \tilde{S}^{1} \oplus V_{2}^{*} \oplus T^{*} \mathcal{M}_{\mathrm{N}-1}$
$O(3,3)$

$$
\begin{aligned}
&\binom{E^{a}}{E^{a}}=\left(\begin{array}{cc}
1 & \frac{1}{2} M^{a b} \\
\frac{1}{2} M^{a b} & 1
\end{array}\right)\binom{J^{b}+A^{b}}{\bar{J}^{b}-\bar{A}^{b}} \\
& \vdots \\
& M^{a b}(x) \\
& 9 \text { salarfeleds } \begin{array}{c}
A^{a}(x) \\
\bar{A}^{a}(x)
\end{array}
\end{aligned}
$$

$$
6 \text { vector fields }
$$

$$
J^{a}(y, \tilde{y})
$$

$$
\tilde{J}^{a}(y, \tilde{y})
$$

Enhancement of symmetry

$$
T \mathcal{M}_{N-1} \oplus T S^{1} \oplus T \tilde{S}^{1} \oplus T^{*} \mathcal{M}_{N-1} \quad\binom{E^{L}}{E^{R}}=\left(\begin{array}{cc}
1 & \frac{1}{2} M \\
\frac{1}{2} M & 1
\end{array}\right)\binom{J+A}{\bar{J}-\bar{A}}
$$

$$
T \mathcal{M}_{\mathrm{N}-1} \oplus V_{2} \oplus T S^{1} \oplus T \tilde{S}^{1} \oplus V_{2}^{*} \oplus T^{*} \mathcal{M}_{\mathrm{N}-1}
$$

$$
O(3,3)
$$

$$
\begin{aligned}
&\binom{E^{a}}{E^{a}}=\left(\begin{array}{cc}
1 & \frac{1}{2} M^{a b} \\
\frac{1}{2} M^{a b} & 1
\end{array}\right)\binom{J^{b}+A^{b}}{\bar{J}^{b}-\bar{A}^{b}} \\
& M^{a b}(x) \\
& 9 \text { scalar fedess } A^{a}(x) \\
& \bar{A}^{a}(x)
\end{aligned}
$$

$$
6 \text { vector fields }
$$

Should satisfy $\mathrm{SU}(2)\left\llcorner\right.$ algebra $\quad J^{a}(y, \tilde{y})$
Should satisfy $\operatorname{SU}(2)_{\mathrm{R}}$ algebra $\quad \bar{J}^{a}(y, \tilde{y})$

Effective action (for T^{d})

Generalized Sherk-Schwarz compactification of DFT action

$$
\begin{aligned}
\mathcal{L}= & R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} \mathcal{H}_{I J} F^{I \mu \nu} F_{\mu \nu}^{J}+\left(D_{\mu} \mathcal{H}\right)_{I J}\left(D^{\mu} \mathcal{H}\right)^{I J} \\
& -\frac{1}{12} f_{I J K} f_{L M N}\left(\mathcal{H}^{I L} \mathcal{H}^{J M} \mathcal{H}^{K N}-3 \mathcal{H}^{I L} \eta^{J M} \eta^{K N}+2 \eta^{I L} \eta^{J M} \eta^{K N}\right)
\end{aligned}
$$

Effective action (for T^{d})

Generalized Sherk-Schwarz compactification of DFT action

$$
I=\dot{a}, a
$$

$\mathcal{L}=R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} \mathcal{H}_{I J} F^{I \mu \nu} F_{\mu \nu}^{J}+\left(D_{\mu} \mathcal{H}\right)_{I J}\left(D^{\mu} \mathcal{H}\right)^{I J}$

$$
-\frac{1}{12} f_{I J K} f_{L M N}\left(\mathcal{H}^{I L} \mathcal{H}^{J M} \mathcal{H}^{K N}-3 \mathcal{H}^{I L} \eta^{J M} \eta^{K N}+2 \eta^{I L} \eta^{J M} \eta^{K N}\right)
$$

$$
\begin{gathered}
\left(\begin{array}{l}
E_{a} \\
E^{L} \\
E^{R} \\
E^{a}
\end{array}\right)=\left(\begin{array}{cccc}
e_{a} & \iota_{e_{a}} A & \iota_{e_{a}} \bar{A} & \iota_{e_{a}} B \\
0 & 1 & \frac{1}{2} M & M \bar{A} \\
0 & \frac{1}{2} M^{t} & 1 & M^{t} A \\
0 & 0 & 0 & e^{a}
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & J & 0 & 0 \\
0 & 0 & \bar{J} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
E_{A}(x, y, \tilde{y})=\begin{array}{c}
E_{A^{\prime}}^{\prime}(y, \tilde{y})
\end{array}
\end{gathered}
$$

Effective action (for T^{d})

Generalized Sherk-Schwarz compactification of DFT action

$$
I=\dot{a}, a
$$

$$
\begin{aligned}
\mathcal{L}= & R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} \mathcal{H}_{I J} F^{I \mu \nu} F_{\mu \nu}^{J}+\left(D_{\mu} \mathcal{H}\right)_{I J}\left(D^{\mu} \mathcal{H}\right)^{I J} \\
& -\frac{1}{12} f_{I J K} f_{L M N}\left(\mathcal{H}^{I L} \mathcal{H}^{J M} \mathcal{H}^{K N}-3 \mathcal{H}^{I L} \eta^{J M} \eta^{K N}+2 \eta^{I L} \eta^{J M} \eta^{K N}\right)
\end{aligned}
$$

$$
H=d B+F^{I} \wedge A_{I}
$$

$$
F^{I}=d A^{I}+f_{J K}^{I} A^{J} \wedge A^{K}
$$

$$
\begin{aligned}
& {\left[\underset{\hat{\vdots}}{\left[E_{J}^{\prime}, E_{K}^{\prime}\right]=f_{J K}^{I} E_{I}^{\prime}}\right.} \\
& J, \bar{J}
\end{aligned}
$$

$$
\left(\begin{array}{c}
E_{a} \\
E^{L} \\
E^{R} \\
E^{a}
\end{array}\right)=\left(\begin{array}{cccc}
e_{a} & \iota_{e_{a}} A & \iota_{e_{a}} \bar{A} & \iota_{e_{a}} B \\
0 & 1 & \frac{1}{2} M & M \bar{A} \\
0 & \frac{1}{2} M^{t} & 1 & M^{t} A \\
0 & 0 & 0 & e^{a}
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & J & 0 & 0 \\
0 & 0 & \bar{J} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
E_{A}(x, y, \tilde{y})=\quad U_{A}^{A^{\prime}}(x) \quad E_{A^{\prime}}^{\prime}(y, \tilde{y})
$$

Effective action (for T^{d})

Generalized Sherk-Schwarz compactification of DFT action

$$
\begin{aligned}
& I=\dot{a}, a \\
& \mathcal{L}=R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} \mathcal{H}_{I J} F^{I \mu \nu} F_{\mu \nu}^{J}+\left(D_{\mu} \mathcal{H}\right)_{I J}\left(D^{\mu} \mathcal{H}\right)^{I J} \\
& -\frac{1}{12} f_{I J K} f_{L M N}\left(\mathcal{H}^{I L} \mathcal{H}^{J M} \mathcal{H}^{K N}-3 \mathcal{H}^{I L} \eta^{J M} \eta^{K N}+2 \eta^{I L} \eta^{J M} \eta^{K N}\right) \\
& H=d B+F^{I} \wedge A_{I} \\
& F^{I}=d A^{I}+f^{I}{ }_{J K} A^{J} \wedge A^{K} \\
& \underset{J, E_{J}^{\prime}}{\left[E_{J}^{\prime}, E_{K}^{\prime}\right]=f_{J K}^{I} E_{I}^{\prime}} \\
& \left(\begin{array}{l}
E_{a} \\
E^{L} \\
E^{R} \\
E^{a}
\end{array}\right)=\left(\begin{array}{cccc}
e_{a} & \iota_{e_{a}} A & \iota_{e_{a}} \bar{A} & \iota_{e_{a}} B \\
0 & 1 & \frac{1}{2} M & M \bar{A} \\
0 & \frac{1}{2} M^{t} & 1 & M^{t} A \\
0 & 0 & 0 & e^{a}
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & J & 0 & 0 \\
0 & 0 & \bar{J} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& E_{A}(x, y, \tilde{y})=\quad U_{A} A^{A^{\prime}}(x) \quad E_{A^{\prime}}^{\prime}(y, \tilde{y})
\end{aligned}
$$

Effective action (for T^{d})

Generalized Sherk-Schwarz compactification of DFT action

$$
H=d B+F^{I} \wedge A_{I}
$$

$$
F^{I}=d A^{I}+f_{J K}^{I} A^{J} \wedge A^{K}
$$

$$
\begin{aligned}
& {\left[E_{J}^{\prime}, E_{K}^{\prime}\right]=f_{J K}^{I} E_{I}^{\prime}} \\
& J, \bar{J}
\end{aligned}
$$

$$
\left(\begin{array}{l}
E_{a} \\
E^{L} \\
E^{R} \\
E^{a}
\end{array}\right)=\left(\begin{array}{cccc}
e_{a} & \iota_{e_{a}} A & \iota_{e_{a}} \bar{A} & \iota_{e_{a}} B \\
0 & 1 & \frac{1}{2} M & M \bar{A} \\
0 & \frac{1}{2} M^{t} & 1 & M^{t} A \\
0 & 0 & 0 & e^{a}
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & J & 0 & 0 \\
0 & 0 & \bar{J} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
E_{A}(x, y, \tilde{y})=\quad U_{A}{ }^{A^{\prime}}(x) \quad E_{A^{\prime}}^{\prime}(y, \tilde{y})
$$

$$
\begin{aligned}
& \square^{2} \approx\left(\begin{array}{cc}
1 & M \\
M^{t} & 1
\end{array}\right) \\
& I=a, a \\
& \mathcal{L}=R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} \mathcal{H}_{I J} F^{I \mu \nu} F_{\mu \nu}^{J}+\left(D_{\mu} \mathcal{H}\right)_{I J}\left(D^{\mu} \mathcal{H}\right)^{I J} \\
& -\frac{1}{12} f_{I J K} f_{L M N}\left(\mathcal{H}^{I L} \mathcal{H}^{J M} \mathcal{H}^{K N}-3 \mathcal{H}^{I L} \eta^{J M} \eta^{K N}+2 \eta^{I L} \eta^{J M} \eta^{K N}\right)
\end{aligned}
$$

Effective action (for T^{d})

Generalized Sherk-Schwarz compactification of DFT action

$$
I=\dot{a}, a
$$

$$
\mathcal{L}=R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\frac{1}{4} \bar{F}_{\mu \nu}^{\dot{a}} \bar{F}^{a, u \nu}+\frac{1}{4} M^{a b} F_{\mu \nu}^{a} \bar{F}^{b \mu \nu}+D_{\mu} M^{a b} D^{\mu} M^{a b}
$$

$$
-\frac{1}{12} f_{I J K} f_{L M N}\left(\mathcal{H}^{I L} \mathcal{H}^{J M} \mathcal{H}^{K N}-3 \mathcal{H}^{I L} \eta^{J M} \eta^{K N}+2 \eta^{I L} \eta^{J M} \eta^{K N}\right)
$$

$$
H=d B+F^{I} \wedge A_{I}
$$

$$
F^{I}=d A^{I}+f_{J K}^{I} A^{J} \wedge A^{K}
$$

$$
\begin{aligned}
& {\left[\underset{\hat{\vdots}}{\left.E_{J}^{\prime}, E_{K}^{\prime}\right]=f_{J K}^{I} E_{I}^{\prime}}\right.} \\
& J, \bar{J}
\end{aligned}
$$

$$
\left(\begin{array}{l}
E_{a} \\
E^{L} \\
E^{R} \\
E^{a}
\end{array}\right)=\left(\begin{array}{cccc}
e_{a} & \iota_{e_{a}} A & \iota_{e} \bar{A} & \iota_{e_{a}} B \\
0 & 1 & \frac{1}{2} M & M \bar{A} \\
0 & \frac{1}{2} M^{t} & 1 & M^{t} A \\
0 & 0 & 0 & e^{a}
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & J & 0 & 0 \\
0 & 0 & \bar{J} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
E_{A}(x, y, \tilde{y})=\quad U_{A}^{A^{\prime}}(x) \quad E_{A^{\prime}}^{\prime}(y, \tilde{y})
$$

Effective action (for T^{d})

Generalized Sherk-Schwarz compactification of DFT action

$$
I=\dot{a}, a
$$

$$
\mathcal{L}=R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\frac{1}{4} \bar{F}_{\mu \nu}^{\dot{a}} \bar{F}^{a, u \nu}+\frac{1}{4} M^{a b} F_{\mu \nu}^{a} \bar{F}^{b \mu \nu}+D_{\mu} M^{a b} D^{\mu} M^{a b}
$$

$$
+f_{a b c} f_{a b c} M^{a a} M^{b b} M^{c c}
$$

$$
H=d B+F^{I} \wedge A_{I}
$$

$$
F^{I}=d A^{I}+f_{J K}^{I} A^{J} \wedge A^{K}
$$

$$
\begin{gathered}
{\left[\underset{J}{\left[E_{J}^{\prime}, E_{K}^{\prime}\right.}\right]=f_{J K}^{I} E_{I}^{\prime}} \\
J, \bar{J}
\end{gathered}
$$

$$
\left(\begin{array}{l}
E_{a} \\
E^{L} \\
E^{R} \\
E^{a}
\end{array}\right)=\left(\begin{array}{cccc}
e_{a} & \iota_{e_{a}} A & \iota_{e_{a}} \bar{A} & \iota_{e_{a}} B \\
0 & 1 & \frac{1}{2} M & M \bar{A} \\
0 & \frac{1}{2} M^{t} & 1 & M^{t} A \\
0 & 0 & 0 & e^{a}
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & J & 0 & 0 \\
0 & 0 & \bar{J} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
E_{A}(x, y, \tilde{y})=\quad U_{A}^{A^{\prime}}(x) \quad E_{A^{\prime}}^{\prime}(y, \tilde{y})
$$

Effective action (for T^{d})

Generalized Sherk-Schwarz compactification of DFT action

$$
I=\dot{a}, a
$$

$$
\mathcal{L}=R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\frac{1}{4} \bar{F}_{\mu \nu}^{\dot{a}} \bar{F}^{a, u \nu}+\frac{1}{4} M^{a b} F_{\mu \nu}^{a} \bar{F}^{b \mu \nu}+D_{\mu} M^{a b} D^{\mu} M^{a b}
$$

Exactly string theory action!

$$
\begin{gathered}
H=d B+F^{I} \wedge A_{I} \\
F^{I}=d A^{I}+f_{J K}^{I} A^{J} \wedge A^{K} \\
{\left[E_{J}^{\prime}, E_{K}^{\prime}\right]=f_{J K}^{I} E_{I}^{\prime}} \\
J, \bar{J}
\end{gathered}
$$

$$
\left(\begin{array}{l}
E_{a} \\
E^{L} \\
E^{R} \\
E^{a}
\end{array}\right)=\left(\begin{array}{cccc}
e_{a} & \iota_{e_{a}} A & \iota_{e_{a}} \bar{A} & \iota_{e_{a}} B \\
0 & 1 & \frac{1}{2} M & M \bar{A} \\
0 & \frac{1}{2} M^{t} & 1 & M^{t} A \\
0 & 0 & 0 & e^{a}
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & J & 0 & 0 \\
0 & 0 & \bar{J} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
E_{A}(x, y, \tilde{y})=\quad U_{A}^{A^{\prime}}(x) \quad E_{A^{\prime}}^{\prime}(y, \tilde{y})
$$

Effective action (for T^{d})

Generalized Sherk-Schwarz compactification of DFT action

$$
I=\dot{a}, a
$$

$$
\mathcal{L}=R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\frac{1}{4} \bar{F}_{\mu \nu}^{\dot{a}} \bar{F}^{a, u \nu}+\frac{1}{4} M^{a b} F_{\mu \nu}^{a} \bar{F}^{b \mu \nu}+D_{\mu} M^{a b} D^{\mu} M^{a b}
$$

$$
+f_{a b c} f_{a b c} M^{a a} M^{b b} M^{c c}
$$

Exactly string theory action!
Reproduces string theory masses of states at a point close to

$$
H=d B+F^{I} \wedge A_{I}
$$ maximal enhancement point

$$
\begin{gathered}
F^{I}=d A^{I}+f^{I}{ }_{J K} A^{J} \wedge A^{K} \\
\left.\begin{array}{|cc}
{\left[E_{J}^{\prime}, E_{K}^{\prime}\right]}
\end{array}\right]=f_{J K}^{I} E_{I}^{\prime} \\
J, \bar{J}
\end{gathered} \quad\left(\begin{array}{c}
E_{a} \\
E^{L} \\
E^{R} \\
E^{a}
\end{array}\right)=\left(\begin{array}{cccc}
e_{a} & \iota_{e_{a}} A & \iota_{e_{a}} \bar{A} & \iota_{e_{a}} B \\
0 & 1 & \frac{1}{2} M \\
0 & M \\
\frac{1}{2} M^{t} & 1 & M^{t} A \\
0 & 0 & 0 & e^{a}
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & J & 0 & 0 \\
0 & 0 & \bar{J} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
E_{A}(x, y, \tilde{y})=\quad U_{A}^{A^{\prime}}(x) \quad E_{A^{\prime}}^{\prime}(y, \tilde{y})
$$

Effective action (for T^{d})

Generalized Sherk-Schwarz compactification of DFT action

$$
I=a, a
$$

$$
\mathcal{L}=R-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\frac{1}{4} \bar{F}_{\mu \nu}^{a} \bar{F}^{a, i \nu}+\frac{1}{4} M^{a b} F_{\mu \nu}^{a} \bar{F}^{b \mu \nu}+D_{\mu} M^{a b} D^{\mu} M^{a b}
$$

$+f_{a b c} f_{a b c} M^{a a} M^{b b} M^{c c}$
$H=d B+F^{I} \wedge A_{I}$
$F^{I}=d A^{I}+f_{J K}^{I} A^{J} \wedge A^{K}$
$\left[\begin{array}{c}{\left[E_{J}^{\prime}, E_{K}^{\prime}\right]=f_{J K}^{I} E_{I}^{\prime}} \\ \vdots, \bar{J}\end{array}\right.$ $M^{m n}=\underbrace{v^{m n}}+M^{\prime m n}$ deviation from
point of enhancement $\delta(g+B)_{m n}$

Exactly string theory action!
Reproduces string theory masses of states at a point close to maximal enhancement point

$$
\left(\begin{array}{l}
E_{a} \\
E^{L} \\
E^{R} \\
E^{a}
\end{array}\right)=\left(\begin{array}{cccc}
e_{a} & \iota_{e_{a}} A & \iota_{e_{a}} \bar{A} & \iota_{e_{a}} B \\
0 & 1 & \frac{1}{2} M & M \bar{A} \\
0 & \frac{1}{2} M^{t} & 1 & M^{t} A \\
0 & 0 & 0 & e^{a}
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & J & 0 & 0 \\
0 & 0 & \bar{J} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
E_{A}(x, y, \tilde{y})=
$$

$$
U_{A} A^{A^{\prime}}(x)
$$

$E_{A^{\prime}}^{\prime}(y, \tilde{y})$

$G \times G$ algebra

C-bracket

$$
\left[V_{1}, V_{2}\right]_{C}=\frac{1}{2}\left(\mathcal{L}_{V_{1}} V_{2}-\mathcal{L}_{V_{2}} V_{1}\right)
$$

$$
\left(\mathcal{L}_{V_{1}} V_{2}\right)^{I}=V_{1}^{J} \partial_{J} V_{2}^{I}+\left(\partial^{I} V_{1 J}-\partial_{J} V_{1}^{I}\right) V_{2}^{J}
$$

$$
\frac{\left[E_{J}^{\prime}, E_{K}^{\prime}\right]_{C}=f_{J K}^{I} E_{K}^{\prime}}{\vdots, \bar{J}}
$$

$\mathrm{SU}(2) \times \mathrm{SU}(2)$ algebra

C-bracket

$$
\left[V_{1}, V_{2}\right]_{C}=\frac{1}{2}\left(\mathcal{L}_{V_{1}} V_{2}-\mathcal{L}_{V_{2}} V_{1}\right)
$$

$$
\left(\mathcal{L}_{V_{1}} V_{2}\right)^{I}=V_{1}^{J} \partial_{J} V_{2}^{I}+\left(\partial^{I} V_{1 J}-\partial_{J} V_{1}^{I}\right) V_{2}^{J}
$$

$$
\begin{gathered}
{\left[E_{J}^{\prime}, E_{K}^{\prime}\right]_{C}=f_{J K}^{I} E_{K}^{\prime}} \\
J, \bar{J} \\
\vdots
\end{gathered}
$$

$S U(2) \times S U(2)$ algebra

$$
V_{2}+T S^{1}+T \tilde{S}^{1}+V_{2}^{*}
$$

C-bracket

$$
\left[V_{1}, V_{2}\right]_{C}=\frac{1}{2}\left(\mathcal{L}_{V_{1}} V_{2}-\mathcal{L}_{V_{2}} V_{1}\right)
$$

$\left(\mathcal{L}_{V_{1}} V_{2}\right)^{I}=V_{1}^{J} \partial_{J} V_{2}^{\boxed{I}}+\left(\partial^{I} V_{1 J}-\partial_{J} V_{1}^{I}\right) V_{2}^{J} \quad$ generalized Lie derivative

$$
\begin{array}{|c}
{\left[E_{J}^{\prime}, E_{K}^{\prime}\right]_{C}=f_{J K}^{I} E_{K}^{\prime}} \\
J, \bar{J}
\end{array}
$$

$S U(2) \times S U(2)$ algebra

$$
V_{2}+T S^{1}+T \tilde{S}^{1}+V_{2}^{*}
$$

C-bracket

$$
\left[V_{1}, V_{2}\right]_{C}=\frac{1}{2}\left(\mathcal{L}_{V_{1}} V_{2}-\mathcal{L}_{V_{2}} V_{1}\right)
$$

$\left(\mathcal{L}_{V_{1}} V_{2}\right)^{I}=V_{1}^{J} \partial_{j} V_{2}^{I I}+\left(\partial^{I} V_{1 J}-\partial_{J} V_{1}^{I}\right) V_{2}^{J} \quad$ generalized Lie derivative

$$
\begin{gathered}
{\left[E_{J}^{\prime}, E_{K}^{\prime}\right]_{C}=f_{J K}^{I} E_{K}^{\prime}} \\
J, \bar{J}
\end{gathered}
$$

$S U(2) \times S U(2)$ algebra

$$
V_{2}+T S^{1}+T S^{1}+V_{2}
$$

C-bracket

$$
\left[V_{1}, V_{2}\right]_{C}=\frac{1}{2}\left(\mathcal{L}_{V_{1}} V_{2}-\mathcal{L}_{V_{2}} V_{1}\right)
$$

$\left(\mathcal{L}_{V_{1}} V_{2}\right)^{I}=V_{1}^{J} \partial_{j} V_{2}^{I I}+\left(\partial^{I} V_{1 J}-\partial_{J} V_{1}^{I}\right) V_{2}^{J} \quad$ generalized Lie derivative

$$
\begin{array}{|c}
{\left[E_{J}^{\prime}, E_{K}^{\prime}\right]_{C}=f_{J K}^{I} E_{K}^{\prime}} \\
J J, \bar{J}
\end{array}
$$

$S U(2) \times S U(2)$ algebra

C-bracket

$\left[V_{1}, V_{2}\right]_{C}=\frac{1}{2}\left(\mathcal{L}_{V_{1}} V_{2}-\mathcal{L}_{V_{2}} V_{1}\right)$
$\left(\mathcal{L}_{V_{1}} V_{2}\right)^{I}=V_{1}^{J} \partial_{\jmath} V_{2}^{I}+\left(\partial^{I} V_{1 J}-\partial_{J} V_{1}^{I}\right) V_{2}^{J}$
generalized Lie derivative

The following J and \bar{J} do the job

$$
J=\left(\begin{array}{ccc}
\cos 2 y^{L} & \sin 2 y^{L} & 0 \\
-\sin 2 y^{L} & \cos 2 y^{L} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\partial_{y^{L}}
\end{array}\right)
$$

$$
J=\left(\begin{array}{ccc}
\cos 2 y^{R} & \sin 2 y^{R} & 0 \\
-\sin 2 y^{R} & \cos 2 y^{R} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\partial_{y^{R}}
\end{array}\right)
$$

$$
\begin{gathered}
{\left[E_{J}^{\prime}, E_{K}^{\prime}\right]_{C}=f_{J K}^{I} E_{K}^{\prime}} \\
J, \bar{J}^{\vdots} \epsilon^{a b c}, \epsilon^{a b c}
\end{gathered}
$$

$S U(2) \times S U(2)$ algebra

C-bracket

$$
\frac{V_{2}+T S^{1}+T S^{1}}{V_{1}^{L}+V_{2}}
$$

$$
\left[V_{1}, V_{2}\right]_{C}=\frac{1}{2}\left(\mathcal{L}_{V_{1}} V_{2}-\mathcal{L}_{V_{2}} V_{1}\right) \quad v_{ \pm}=v_{1} \pm i v_{2} \quad v_{ \pm}=v_{1} \pm i v_{2}
$$

$$
\left(\mathcal{L}_{V_{1}} V_{2}\right)^{I}=V_{1}^{J} \partial_{j} V_{2}^{I I}+\left(\partial^{I} V_{1 J}-\partial_{J} V_{1}^{I}\right) V_{2}^{J} \quad \text { generalized Lie derivative }
$$

The following J and \bar{J} do the job

$$
J=\left(\begin{array}{ccc}
\cos 2 y^{L} & \sin 2 y^{L} & 0 \\
-\sin 2 y^{L} & \cos 2 y^{L} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\partial_{y^{L}}
\end{array}\right) \quad J=\left(\begin{array}{ccc}
\cos 2 y^{R} & \sin 2 y^{R} & 0 \\
-\sin 2 y^{R} & \cos 2 y^{R} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\partial_{y^{R}}
\end{array}\right)
$$

$$
\begin{gathered}
{\left[E_{J}^{\prime}, E_{K}^{\prime}\right]_{C}=f_{J K}^{I} E_{K}^{\prime}} \\
J, \bar{J}^{\vdots} \epsilon^{a b c}, \epsilon^{a b c}
\end{gathered}
$$

$S U(2) \times S U(2)$ algebra

C-bracket

$$
\left[V_{1}, V_{2}\right]_{C}=\frac{1}{2}\left(\mathcal{L}_{V_{1}} V_{2}-\mathcal{L}_{V_{2}} V_{1}\right)
$$

$$
v_{ \pm}=v_{1} \pm i v_{2} \quad v_{ \pm}=v_{1} \pm i v_{2}
$$

$$
\left(\mathcal{L}_{V_{1}} V_{2}\right)^{I}=V_{1}^{J} \partial_{\jmath} V_{2}^{I}+\left(\partial^{I} V_{1 J}-\partial_{J} V_{1}^{I}\right) V_{2}^{J}
$$

The following Jand \bar{J} do the job
$J=\left(\begin{array}{ccc}e^{2 i y^{L}} & 0 & 0 \\ 0 & e^{-2 i y^{L}} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}v_{+} \\ v_{-} \\ \partial_{y^{L}}\end{array}\right) \quad J=\left(\begin{array}{ccc}e^{2 i y^{R}} & 0 & 0 \\ 0 & e^{-2 i y^{R}} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}v_{+} \\ v_{-} \\ \partial_{y^{R}}\end{array}\right)$

$$
\begin{gathered}
{\left[E_{J}^{\prime}, E_{K}^{\prime}\right]_{C}=f_{J K}^{I} E_{K}^{\prime}} \\
J, \bar{J}
\end{gathered}
$$

$S U(2) \times S U(2)$ algebra

$$
\left[V_{1}, V_{2}\right]_{C}=\frac{1}{2}\left(\mathcal{L}_{V_{1}} V_{2}-\mathcal{L}_{V_{2}} V_{1}\right)
$$

$$
\begin{gathered}
V_{2}+T S^{1}+T S^{1}+V_{2} \\
v_{1}^{L}, v_{2}^{L} \\
v_{ \pm}=v_{1} \pm i v_{2} \quad v_{1}^{R}, v_{2}^{R} \\
v_{ \pm}=v_{1} \pm i v_{2}
\end{gathered}
$$

$\left(\mathcal{L}_{V_{1}} V_{2}\right)^{I}=V_{1}^{J} \partial_{\jmath} V_{2}^{I I}+\left(\partial^{I} V_{1 J}-\partial_{J} V_{1}^{I}\right) V_{2}^{J}$

The following Jand \bar{J} do the job
$J=\left(\begin{array}{ccc}e^{2 i y^{L}} & 0 & 0 \\ 0 & e^{-2 i y^{L}} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}v_{+} \\ v_{-} \\ \partial_{y^{L}}\end{array}\right) \quad J=\left(\begin{array}{ccc}e^{2 i y^{R}} & 0 & 0 \\ 0 & e^{-2 i y^{R}} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}v_{+} \\ v_{-} \\ \partial_{y^{R}}\end{array}\right)$

Straightforward generalization to $\mathrm{SU}(2)^{\mathrm{d}} \times \mathrm{SU}(2)^{\mathrm{d}}$
$\left[E_{J}^{\prime}, E_{K}^{\prime}\right]_{C}=f^{I}{ }_{J K} E_{K}^{\prime}$
$J, \bar{J}^{!} \epsilon^{a b c}, \epsilon^{a b c}$

What about other enhancement groups?
T^{2}

$$
\begin{gathered}
S U(2)^{2} \times S U(2)^{2} \\
S U(3) \times S U(3)
\end{gathered}
$$

What about other enhancement groups?

T^{2}

$$
\begin{aligned}
& S U(2)^{2} \times S U(2)^{2} \\
& S U(3) \times S U(3) \quad 3 \text { positive roots :2 simple, I non-simple }
\end{aligned}
$$

$$
\left[J^{\alpha}, J^{\beta}\right]=J^{\alpha+\beta} \quad \begin{gathered}
\text { does not arise from any } \\
\text { obvious extension of the } \\
\text { previous construction }
\end{gathered}
$$

What about other enhancement groups?

$$
\begin{aligned}
& S U(2)^{2} \times S U(2)^{2} \\
& S U(3) \times S U(3) \quad 3 \text { positive roots } 2 \text { s simple, I non-simple }
\end{aligned}
$$

$$
\left[J^{\alpha}, J^{\beta}\right]=J^{\alpha+\beta} \quad \begin{gathered}
\text { does not arise from any } \\
\text { obvious extension of the } \\
\text { previous construction }
\end{gathered}
$$

Deformed generalized Lie derivative

What about other enhancement groups?

T^{2}

$$
\begin{aligned}
& S U(2)^{2} \times S U(2)^{2} \\
& S U(3) \times S U(3) \quad 3 \text { positive roots :2 simple, I non-simple }
\end{aligned}
$$

$$
\left[J^{\alpha}, J^{\beta}\right]=J^{\alpha+\beta} \quad \begin{gathered}
\text { does not arise from any } \\
\text { obvious extension of the } \\
\text { previous construction }
\end{gathered}
$$

Deformed generalized Lie derivative
$\tilde{\mathcal{L}}_{E_{I}} E_{J}=\mathcal{L}_{E_{I}} E_{J}+\Omega_{I J}{ }^{K} E_{K}$

What about other enhancement groups?

T^{2}	$\bullet \bullet$	$S U(2)^{2} \times S U(2)^{2}$
	$\bullet \bullet$	$S U(3) \times S U(3)$

$$
\left[J^{\alpha}, J^{\beta}\right]=J^{\alpha+\beta}
$$

does not arise from any obvious extension of the previous construction

Deformed generalized Lie derivative
$\tilde{\mathcal{L}}_{E_{I}} E_{J}=\mathcal{L}_{E_{I}} E_{J}+\Omega_{I J}{ }^{K} E_{K}$

Cocycle tensor
$\underset{\alpha \beta \gamma}{\Omega_{I J K}}=\left\{\begin{array}{cl}(-1)^{\alpha * \beta} \delta_{\alpha+\beta+\gamma} & \text { if two roots are positive } \\ -(-1)^{\alpha * \beta} \delta_{\alpha+\beta+\gamma} & \text { if two roots are negative }\end{array}\right.$

What about other enhancement groups?

T^{2}	$\bullet \bullet$	$S U(2)^{2} \times S U(2)^{2}$
	$\bullet \bullet$	$S U(3) \times S U(3)$

$$
\left[J^{\alpha}, J^{\beta}\right]=J^{\alpha+\beta}
$$

does not arise from any obvious extension of the previous construction

Deformed generalized Lie derivative
$\tilde{\mathcal{L}}_{E_{I}} E_{J}=\mathcal{L}_{E_{I}} E_{J}+\Omega_{I J}{ }^{K} E_{K}$

Cocycle tensor
$\underset{\alpha \beta \gamma}{\Omega_{I J K}}=\left\{\begin{array}{cl}(-1)^{\alpha * \beta} \delta_{\alpha+\beta+\gamma} & \text { if two roots are positive } \\ -(-1)^{\alpha * \beta} \delta_{\alpha+\beta+\gamma} & \text { if two roots are negative }\end{array}\right.$

This reproduces

$$
\left[E_{J}^{\prime}, E_{K}^{\prime}\right]_{\tilde{C}}=f^{I}{ }_{J K} E_{K}^{\prime}
$$

for any group

Effective action found is good close to enhancement point

Effective action found is good close to enhancement point
Can we find a description "good" for all moduli space ?

Effective action found is good close to enhancement point

$$
d=2
$$

Can we find a description "good" for all moduli space ?
$S U(2) \times U(1)$
\times
$S U(2) \times U(1)$

Effective action found is good close to enhancement point

$$
d=2
$$

Can we find a description "good" for all moduli space?

We can, but $S U(2) \times S U(2) \not \subset S U(3)$
$S U(2) \times U(1)$
\times
$S U(2) \times U(1)$

Effective action found is good close to enhancement point

$$
d=2
$$

Can we find a description "good" for all moduli space ?

We can, but $S U(2) \times S U(2) \not \subset S U(3)$

We need a larger group

Effective action found is good close to enhancement point

$$
d=2
$$

Can we find a description "good" for all moduli space ?

We can, but $S U(2) \times S U(2) \not \subset S U(3)$

We need a larger group
$S U(2) \times U(1)$
\times
$S U(2) \times U(1)$

- Shown that from $S U(2) \times S U(3) \times S U(2) \times S U(3)$

Effective action found is good close to enhancement point

$$
d=2
$$

Can we find a description "good" for all moduli space ?

We can, but $S U(2) \times S U(2) \not \subset S U(3)$

We need a larger group
$S U(2) \times U(1)$
\times
$S U(2) \times U(1)$
$S U(2)^{2} \times S U(2)^{2} \underbrace{}_{S U(3) \times S U(3)}$

- Shown that from $S U(2) \times S U(3) \times S U(2) \times S U(3) \rightarrow S U(3) \times \mathbf{U}(\mathbf{1}) \times S U(3) \times \mathbf{U}(\mathbf{1})$

Effective action found is good close to enhancement point

$$
d=2
$$

Can we find a description "good" for all moduli space ?

We can, but $S U(2) \times S U(2) \not \subset S U(3)$

We need a larger group

- Shown that from $S U(2) \times S U(3) \times S U(2) \times S U(3) \rightarrow S U(3) \times \mathbf{U}(\mathbf{1}) \times S U(3) \times \mathbf{U}(\mathbf{1})$
$\rightarrow S U(2) \times S U(2) \times \mathbf{U}(\mathbf{1}) \times S U(2) \times S U(2) \times \mathbf{U}(\mathbf{1})$
$\rightarrow S U(2) \times U(1) \times \mathbf{U}(\mathbf{1}) \times S U(2) \times U(1) \times \mathbf{U}(\mathbf{1})$

Effective action found is good close to enhancement point

$$
d=2
$$

Can we find a description "good" for all moduli space ?

We can, but $S U(2) \times S U(2) \not \subset S U(3)$
$S U(2)^{2} \times S U(2)^{2} \underbrace{}_{S U(3) \times S U(3)}$

We need a larger group coming from an enhancement in T^{3}

- Shown that from $S U(2) \times S U(3) \times S U(2) \times S U(3) \rightarrow S U(3) \times \mathbf{U}(\mathbf{1}) \times S U(3) \times \mathbf{U}(\mathbf{1})$
$\rightarrow S U(2) \times S U(2) \times \mathbf{U}(\mathbf{1}) \times S U(2) \times S U(2) \times \mathbf{U}(\mathbf{1})$
$\rightarrow S U(2) \times U(1) \times \mathbf{U}(\mathbf{1}) \times S U(2) \times U(1) \times \mathbf{U}(\mathbf{1})$
decompactify

Effective action found is good close to enhancement point

$$
d=2
$$

Can we find a description "good" for all moduli space ?

We can, but $S U(2) \times S U(2) \not \subset S U(3)$

ace ?	 $S U(2) \times U(1)$ \times $S U(2) \times U(1)$
$S U(3) \times S U(3)$	

- Shown that from $S U(2) \times S U(3) \times S U(2) \times S U(3) \rightarrow S U(3) \times \mathbf{U}(\mathbf{1}) \times S U(3) \times \mathbf{U}(\mathbf{1})$
$\rightarrow S U(2) \times S U(2) \times \mathbf{U}(\mathbf{1}) \times S U(2) \times S U(2) \times \mathbf{U}(\mathbf{1})$
$\rightarrow S U(2) \times U(1) \times \mathbf{U}(\mathbf{1}) \times S U(2) \times U(1) \times \mathbf{U}(\mathbf{1})$
decompactify
We need a larger group coming from an enhancement in T^{3}

To describe all moduli space of \mathbf{T}^{3}, need $S U(4) \times S U(2) \times S U(4) \times S U(2)$ enhancement in T^{4}

Can we find a description "good" for all moduli space ?

We can, but $S U(2) \times S U(2) \not \subset S U(3)$

- Shown that from $S U(2) \times S U(3) \times S U(2) \times S U(3) \rightarrow S U(3) \times \mathbf{U}(\mathbf{1}) \times S U(3) \times \mathbf{U}(\mathbf{1})$
$\rightarrow S U(2) \times S U(2) \times \mathbf{U}(\mathbf{1}) \times S U(2) \times S U(2) \times \mathbf{U}(\mathbf{1})$
$\rightarrow S U(2) \times U(1) \times \mathbf{U}(\mathbf{1}) \times S U(2) \times U(1) \times \mathbf{U}(\mathbf{1})$
decompactify
We need a larger group coming from an enhancement in T^{3}

To describe all moduli space of T^{3}, need $S U(4) \times S U(2) \times S U(4) \times S U(2)$ coming from an enhancement in T^{4}

To describe all moduli space of T^{4}, need to consider enhancement groups on T^{7}

Can we find a description "good" for all moduli space ?

We can, but $S U(2) \times S U(2) \not \subset S U(3)$

We need a larger group coming from an enhancement in T^{3}

$\underbrace{|$| $S U(2) \times U(1)$ |
| ---: | :--- |
| $\times U(3) \times S U(3)$ |
| $S U(2) \times U(1)$ |}

- Shown that from $S U(2) \times S U(3) \times S U(2) \times S U(3) \rightarrow S U(3) \times \mathbf{U}(\mathbf{1}) \times S U(3) \times \mathbf{U}(\mathbf{1})$
$\rightarrow S U(2) \times S U(2) \times \mathbf{U}(\mathbf{1}) \times S U(2) \times S U(2) \times \mathbf{U}(\mathbf{1})$
$\rightarrow S U(2) \times U(1) \times \mathbf{U}(\mathbf{1}) \times S U(2) \times U(1) \times \mathbf{U}(\mathbf{1})$
decompactify

To describe all moduli space of T^{3}, need $S U(4) \times S U(2) \times S U(4) \times S U(2) \quad$ coming from an enhancement in T^{4}

To describe all moduli space of T^{4}, need to consider enhancement groups on T^{7}

But action not a good low energy action

Conclusions

Conclusions

- DFT description of compactification of bosonic string on stringy-size tori

Conclusions

- DFT description of compactification of bosonic string on stringy-size tori
- Enhancement of symmetry \rightarrow extend generalized tangent space $\mathrm{O}(\operatorname{adj} \mathrm{G}, \operatorname{adj} \mathrm{G})$

Conclusions

- DFT description of compactification of bosonic string on stringy-size tori
- Enhancement of symmetry \rightarrow extend generalized tangent space $\mathrm{O}(\operatorname{adj} \mathrm{G}, \operatorname{adj} \mathrm{G})$
- By appropriate generalized Scherk-Schwarz reduction of DFT action we fully recover string theory action

Conclusions

- DFT description of compactification of bosonic string on stringy-size tori
- Enhancement of symmetry \rightarrow extend generalized tangent space $\mathrm{O}(\operatorname{adj} \mathrm{G}, \operatorname{adj} \mathrm{G})$
- By appropriate generalized Scherk-Schwarz reduction of DFT action we fully recover string theory action
- Frame (determines truncation) depends on y^{m} and \tilde{y}^{m}

Conclusions

- DFT description of compactification of bosonic string on stringy-size tori
- Enhancement of symmetry \rightarrow extend generalized tangent space $\mathrm{O}(\operatorname{adj} \mathrm{G}$, adj G$)$
- By appropriate generalized Scherk-Schwarz reduction of DFT action we fully recover string theory action
- Frame (determines truncation) depends on y^{m} and \tilde{y}^{m}
violates weak constraint
satisfies level-matching

Conclusions

- DFT description of compactification of bosonic string on stringy-size tori
- Enhancement of symmetry \rightarrow extend generalized tangent space $\mathrm{O}(\operatorname{adj} \mathrm{G}, \operatorname{adj} \mathrm{G})$
- By appropriate generalized Scherk-Schwarz reduction of DFT action we fully recover string theory action
- Frame (determines truncation) depends on y^{m} and \tilde{y}^{m}
violates weak constraint
satisfies level-matching

$$
-\frac{1}{4}\left(\partial_{y_{L}^{m}}^{2}-\partial_{y_{R}^{m}}^{2}\right) E_{A}{ }^{M}=(N-\bar{N}) E_{A}{ }^{M}
$$

Conclusions

- DFT description of compactification of bosonic string on stringy-size tori
- Enhancement of symmetry \rightarrow extend generalized tangent space $\mathrm{O}(\operatorname{adj} \mathrm{G}, \operatorname{adj} \mathrm{G})$
- By appropriate generalized Scherk-Schwarz reduction of DFT action we fully recover string theory action
- Frame (determines truncation) depends on y^{m} and \tilde{y}^{m}
violates weak constraint
satisfies level-matching

$$
-\frac{1}{4}\left(\partial_{y_{L}^{m}}^{2}-\partial_{y_{R}^{m}}^{2}\right) E_{A}{ }^{M}=(N-\bar{N}) E_{A}{ }^{M}
$$

- For groups with non-simple roots we modified the bracket by cocyle tensor

Conclusions

- DFT description of compactification of bosonic string on stringy-size tori
- Enhancement of symmetry \rightarrow extend generalized tangent space $\mathrm{O}(\operatorname{adj} \mathrm{G}, \operatorname{adj} \mathrm{G})$
- By appropriate generalized Scherk-Schwarz reduction of DFT action we fully recover string theory action
- Frame (determines truncation) depends on y^{m} and \tilde{y}^{m}
violates weak constraint
satisfies level-matching

$$
-\frac{1}{4}\left(\partial_{y_{L}^{m}}^{2}-\partial_{y_{R}^{m}}^{2}\right) E_{A}{ }^{M}=(N-\bar{N}) E_{A}{ }^{M}
$$

- For groups with non-simple roots we modified the bracket by cocyle tensor
- For T^{d}, is there a vielbein depending on 2d coordinates that satisfies algebra under ordinary bracket?

Conclusions

- DFT description of compactification of bosonic string on stringy-size tori
- Enhancement of symmetry \rightarrow extend generalized tangent space $\mathrm{O}(\operatorname{adj} \mathrm{G}, \operatorname{adj} \mathrm{G})$
- By appropriate generalized Scherk-Schwarz reduction of DFT action we fully recover string theory action
- Frame (determines truncation) depends on y^{m} and \tilde{y}^{m}
violates weak constraint
satisfies level-matching

$$
-\frac{1}{4}\left(\partial_{y_{L}^{m}}^{2}-\partial_{y_{R}^{m}}^{2}\right) E_{A}{ }^{M}=(N-\bar{N}) E_{A}{ }^{M}
$$

- For groups with non-simple roots we modified the bracket by cocyle tensor
- For T^{d}, is there a vielbein depending on 2d coordinates that satisfies algebra under ordinary bracket?
- We can describe all moduli space. But...
- Systematics...?
- Is that truncation of any use?

[^0]: Hamiltonian

 $$
 M^{2}=\frac{2}{\alpha^{\prime}}(N+\bar{N}-2)+\frac{P^{2}}{R^{2}}+\frac{\tilde{p}^{2}}{\tilde{R}^{2}}
 $$

 Level-matching $\quad \bar{N}-N=p \tilde{p}$

