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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = y(z) + ȳ(z̄) ⇠ Y (z, z̄) + 2⇡R (0.2)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The
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The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.9) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the
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1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = y(z) + ȳ(z̄) ⇠ Y (z, z̄) + 2⇡R (0.2)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.

1

= ✏2

=
p
✏

M±±,M±⌥

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = y(z) + ȳ(z̄) ⇠ Y (z, z̄) + 2⇡R (0.2)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = y(z) + ȳ(z̄) ⇠ Y (z, z̄) + 2⇡R (0.2)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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p̃.
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The metric and B-field with one leg along the circle give rise to two massless KK U(1)
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = y(z) + ȳ(z̄) ⇠ Y (z, z̄) + 2⇡R (0.2)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = y(z) + ȳ(z̄) ⇠ Y (z, z̄) + 2⇡R (0.2)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.
1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.9) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.5)

and the level matching constraint

N̄ �N = pp̃ , (0.6)

where N = Nx+Ny ( N̄ = N̄x+ N̄y) is the left (right) moving number operator, involving

the sum of the number operator along the circle Ny (N̄y) and the number operator for

the non-compact space-time directions Nx ( N̄x).
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, k̄ =

p

R
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(0.7)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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@y
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yL

yR

y

ỹ
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Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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2 DFT and enhanced gauge symmetries
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4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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2 DFT and enhanced gauge symmetries
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4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.

20

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become
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@yR = @y � @ỹ
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At special points in the torus moduli space there are extra 
massless states with momentum or winding.  
We will not include them here

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries

TS1 � T ⇤S1

�T S̃1

@
y

+ dy

< @
y

+ dy, @
y

+ dy >= 2◆
@ydy = 2

< @
y

, @
ỹ
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ỹ
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J i(z) ! J̄ i(z̄)

J i(z) ! J̄ i(z̄)

SU(2)⇥ SU(2)

N = N̄ = 0

Nx = N̄x = 0

p = ±2

p = 0

M = Md ⇥ S1

Md ⇥ S1 ⇥ S̃1

M ij

V ij ⇠ J iJ j eikX

3

Ny = 1

Ny = 0

p = p̃ = ±1

N̄x = 1

Nx = 1

N̄y = 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

@y

@ỹ
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@y@ỹ( ) = 0

⌘MN@M@N( ) = 0

EA =

0

@ea � ◆eaB

ea

1

A . (2.3)

H = �ABEA ⌦ EB , (2.4)

H =

0

@ g�1 �g�1B

Bg�1 g � Bg�1B

1

A . (2.5)

23

< V, V >= ⌘MNV MV N

⌘MN =

0

@0 1

1 0

1

A , (2.1)

⌘LR =

0

@1 0

0 �1

1

A , (2.2)

⌘

' @ỹ
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ỹ

R

R̃

= y + ỹ
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At special points in the torus moduli space there are extra 
massless states with momentum or winding.  
We will not include them here

Include winding modes here

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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At special points in the torus moduli space there are extra 
massless states with momentum or winding.  
We will not include them here

Include winding modes here

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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2 DFT and enhanced gauge symmetries
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4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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Double field theory

Field theory incorporating T-duality
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However, it requires constraints
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ỹ

R

R̃

= y + ỹ
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, violating weak constraint

(though satisfying level matching condition)

At special points in the torus moduli space there are extra 
massless states with momentum or winding.  
We will not include them here

Include winding modes here

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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•Necessary and sufficient conditions for closure of algebra

Interpretation in a generic context obscure...

But in the context of “Generalized Sherk-Schwarz reductions” (leading to gauged maximal or 
                                                                                              half-maximal sugra) 

⇔Closure of algebra quadratic constraints of gauged sugra

weaker than strong constraint ( also weak ⇔ strong in GSS)

Strong constraint sufficient but not necessary 

Efforts in trying to get consistency while relaxing strong constraint

M.G., Marques 12
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.9) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:
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and the level matching constraint

N̄ �N = pp̃ , (0.6)

where N = Nx+Ny ( N̄ = N̄x+ N̄y) is the left (right) moving number operator, involving

the sum of the number operator along the circle Ny (N̄y) and the number operator for

the non-compact space-time directions Nx ( N̄x).
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1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.9) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:
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+
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, (0.5)

and the level matching constraint

N̄ �N = pp̃ , (0.6)

where N = Nx+Ny ( N̄ = N̄x+ N̄y) is the left (right) moving number operator, involving

the sum of the number operator along the circle Ny (N̄y) and the number operator for

the non-compact space-time directions Nx ( N̄x).
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1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from
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1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.9) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:
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2
, (0.5)

and the level matching constraint

N̄ �N = pp̃ , (0.6)

where N = Nx+Ny ( N̄ = N̄x+ N̄y) is the left (right) moving number operator, involving

the sum of the number operator along the circle Ny (N̄y) and the number operator for

the non-compact space-time directions Nx ( N̄x).

k =
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R
+
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, k̄ =

p

R
� p̃
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(0.7)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Hµ⌫⇢ = @µB⌫⇢ + Aa
[µF

a
⌫⇢] + fabcAa

µA
b
⌫A

c
µ + Aã
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µA
b̃
⌫A

c̃
µ

F a
µ⌫ = 2@[µA

a
⌫] + fabcAb

µA
c
⌫ , F ã
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⌫] + f ãb̃c̃Ab̃

µA
c̃
⌫ ,

(0.4)

H = dB + Ai ^ F i � Āi ^ F̄ i
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has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times
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p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.9) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:
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and the level matching constraint

N̄ �N = pp̃ , (0.6)

where N = Nx+Ny ( N̄ = N̄x+ N̄y) is the left (right) moving number operator, involving

the sum of the number operator along the circle Ny (N̄y) and the number operator for

the non-compact space-time directions Nx ( N̄x).
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1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.
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and the level matching constraint
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where N = Nx+Ny ( N̄ = N̄x+ N̄y) is the left (right) moving number operator, involving

the sum of the number operator along the circle Ny (N̄y) and the number operator for

the non-compact space-time directions Nx ( N̄x).
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1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.

5

Level-matching

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
F i
µ⌫F

iµ⌫ +
1

4
F̄ i
µ⌫F̄

iµ⌫ +
1

4
M ijF i

µ⌫F̄
jµ⌫ +DµM

ijDµM ij

�detM

where [Mariana: ser consistentes en H con la definicion en 2.100 (que debe-

riamos sacar quizas si ya aparece aca?)]

Hµ⌫⇢ = @µB⌫⇢ + Aa
[µF

a
⌫⇢] + fabcAa

µA
b
⌫A

c
µ + Aã
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⌫] + f ãb̃c̃Ab̃

µA
c̃
⌫ ,

(0.4)

H = dB + Ai ^ F i � Āi ^ F̄ i
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µM

ik

M ij ! ✏ �ij33 +M 0ij

: A±
µ

Ā±
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Jk(0) (0.5)

= ✏2

=
p
✏

M±±,M±⌥

g11, g22, g12

B12

5

Mass

: Aµ

: A3
µ

: A±
µ

V ⇠ J3(z) · (RM)

V ⇠ J3(z) · (@̄XµeikX)

: A3
µ

: Aµ

V ⇠ J3(z) · (@̄XµeikX)

V ⇠ J±(z) · (@̄XµeikX)

V ⇠ J3(z) · (@̄xReikX)

J3(z) = @Y L(z)

J±(z) = e±2iY L(z)

J i(z) =
P

J i
m z�(m+1)

[J i
m, J

j
n] =

m
2 �

ij�m,�n + ✏ijkJk
m+n

Ny = 1

Ny = 0

p = p̃ = ±1

N̄x = 1

Nx = 1

N̄y = 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

@y

@ỹ

3

@y@ỹ( ) = 0

N = 1

p = �p̃ = ±1

(kL = ±2)

N̄ = 0

Ai ! Āi

J i(z) ! J̄ i(z̄)

J i(z) ! J̄ i(z̄)

Y L(z) ! Y R(z̄)

SU(2)⇥ SU(2)

N = N̄ = 0

Nx = N̄x = 0

p = ±2

p = 0

M = Md ⇥ S1

Md ⇥ S1 ⇥ S̃1

M ij

V ij ⇠ J iJ j eikX

p̃ = ±2

d2

6d

32

(d+ 3)2

dim
⇥ O(d+ 3, d+ 3)

O(d+ 3)⇥O(d+ 3)

⇤
= (d+ 3)2

4

Bosonic string on S1 



Massless states at 

g, B,�

y

g
mn

B
mn

g
µ⌫

B
µ⌫

g
µy

g
yy

B
µy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.1)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.2)

R̃ = ↵

0

R

R̃ = ↵0/R

=
p
↵0

N̄ = 1

p = p̃ = ±1

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

N̄ = 0

1

g, B,�

y

g
mn

B
mn

g
µ⌫

B
µ⌫

g
µy

g
yy

B
µy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.1)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.2)

R = R̃ = 1

R̃ = ↵

0

R

R̃ = ↵0/R

=
p
↵0

N̄ = 1

p = p̃ = ±1

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

1

Vectors

g, B,�

y

g
mn

B
mn

g
µ⌫

B
µ⌫

g
µy

g
yy

B
µy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.1)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.2)

R = R̃ = 1

R̃ = ↵

0

R

R̃ = ↵0/R

=
p
↵0

N̄ = 1

p = p̃ = ±1

N̄
x

= 1

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

1

• SU(2)L

g, B,�

y

g
mn

B
mn

g
µ⌫

B
µ⌫

g
µy

g
yy

B
µy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.1)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.2)

R = R̃ = 1

R̃ = ↵

0

R

R̃ = ↵0/R

=
p
↵0

N̄ = 1

N
y

= 1

p = p̃ = ±1

N̄
x

= 1

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

1

-

-

N
y

= 1

N
y

= 0

p = p̃ = ±1

N̄
x

= 1

N̄
y

= 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

N̄ = 0

SU(2)⇥ SU(2)

N = Ñ = 0

p = ±2

p = 0

M = M
d

⇥ S1

M
d

⇥ S1 ⇥ S̃1

p̃ = ±2

d2

6d

32

(d+ 3)2

dim
⇥ O(d+ 3, d+ 3)

O(d+ 3)⇥O(d+ 3)

⇤
= (d+ 3)2

eik(x
L(z)+x

R(z̄))

2

N
y

= 1

N
y

= 0

p = p̃ = ±1

N̄
x

= 1

N̄
y

= 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

N̄ = 0

SU(2)⇥ SU(2)

N = Ñ = 0

p = ±2

p = 0

M = M
d

⇥ S1

M
d

⇥ S1 ⇥ S̃1

p̃ = ±2

d2

6d

32

(d+ 3)2

dim
⇥ O(d+ 3, d+ 3)

O(d+ 3)⇥O(d+ 3)

⇤
= (d+ 3)2

eik(x
L(z)+x

R(z̄))

2

N
y

= 1

N
y

= 0

p = p̃ = ±1

N̄
x

= 1

N̄
y

= 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

(k
L

= ±2)

N̄ = 0

SU(2)⇥ SU(2)

N = Ñ = 0

p = ±2

p = 0

M = M
d

⇥ S1

M
d

⇥ S1 ⇥ S̃1

p̃ = ±2

d2

6d

32

(d+ 3)2

dim
⇥ O(d+ 3, d+ 3)

O(d+ 3)⇥O(d+ 3)

⇤
= (d+ 3)2

2

Vectors• SU(2)R

V ⇠ J±(z) · (@̄XµeikX)

V ⇠ J3(z) · (@̄xReikX)

J3(z) = @yL(z)

J±(z) = e±2iyL(z)

J i(z) =
P

J i

m

z�(m+1)

[J i

m

, J j

n

] = m

2 �
ij�

m,�n

+ ✏ijkJk

m+n

N
y

= 1

N
y

= 0

p = p̃ = ±1

N̄
x

= 1

N
x

= 1

N̄
y

= 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

(k
L

= ±2)

N̄ = 0

SU(2)⇥ SU(2)

N = Ñ = 0

p = ±2

p = 0

M = M
d

⇥ S1

M
d

⇥ S1 ⇥ S̃1

2

V ⇠ J±(z) · (@̄XµeikX)

V ⇠ J3(z) · (@̄xReikX)

J3(z) = @yL(z)

J±(z) = e±2iyL(z)

J i(z) =
P

J i

m

z�(m+1)
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m

, J j

n
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2 �
ij�

m,�n

+ ✏ijkJk
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y
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N
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x
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x
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y
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N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

(k
L

= ±2)

N̄ = 0

Ai ! Āi

J i(z) ! J̄ i(z̄)

SU(2)⇥ SU(2)

N = Ñ = 0

p = ±2

p = 0

2

• Scalars

V ⇠ J±(z) · (@̄XµeikX)

V ⇠ J3(z) · (@̄xReikX)

J3(z) = @yL(z)

J±(z) = e±2iyL(z)

J i(z) =
P

J i

m

z�(m+1)

[J i

m

, J j

n

] = m

2 �
ij�

m,�n

+ ✏ijkJk

m+n

N
y

= 1

N
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= 0

p = p̃ = ±1
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x

= 1

N
x

= 1

N̄
y
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N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1
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L
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N̄ = 0

Ai ! Āi

J i(z) ! J̄ i(z̄)

SU(2)⇥ SU(2)

N = N̄ = 0

N
x

= N̄
x

= 0

p = ±2

2

V ⇠ J3(z) · (@̄XµeikX)

V ⇠ J±(z) · (@̄XµeikX)

V ⇠ J3(z) · (@̄xReikX)

J3(z) = @yL(z)

J±(z) = e±2iyL(z)

J i(z) =
P

J i

m

z�(m+1)
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m

, J j

n

] = m

2 �
ij�

m,�n

+ ✏ijkJk

m+n

N
y

= 1

N
y

= 0

p = p̃ = ±1

N̄
x

= 1

N
x

= 1

N̄
y
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N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1
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L

= ±2)

N̄ = 0

Ai ! Āi

J i(z) ! J̄ i(z̄)

SU(2)⇥ SU(2)

N = N̄ = 0

N
x

= N̄
x

= 0

2

A3
µ

V ⇠ J3(z) · (@̄XµeikX)

V ⇠ J±(z) · (@̄XµeikX)

V ⇠ J3(z) · (@̄xReikX)

J3(z) = @yL(z)

J±(z) = e±2iyL(z)

J i(z) =
P

J i

m

z�(m+1)

[J i

m

, J j

n

] = m

2 �
ij�

m,�n

+ ✏ijkJk

m+n

N
y

= 1

N
y

= 0

p = p̃ = ±1

N̄
x

= 1

N
x

= 1

N̄
y

= 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

(k
L

= ±2)

N̄ = 0

Ai ! Āi

J i(z) ! J̄ i(z̄)

SU(2)⇥ SU(2)

N = N̄ = 0

2

A3
µ

V ⇠ J3(z) · (@̄XµeikX)

V ⇠ J±(z) · (@̄XµeikX)

V ⇠ J3(z) · (@̄xReikX)

J3(z) = @yL(z)

J±(z) = e±2iyL(z)

J i(z) =
P

J i

m

z�(m+1)

[J i

m

, J j

n

] = m

2 �
ij�

m,�n

+ ✏ijkJk

m+n

N
y

= 1

N
y

= 0

p = p̃ = ±1

N̄
x

= 1

N
x

= 1

N̄
y

= 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

(k
L

= ±2)

N̄ = 0

Ai ! Āi

J i(z) ! J̄ i(z̄)

J i(z) ! J̄ i(z̄)

SU(2)⇥ SU(2)

2

: A3
µ

: A
µ

V ⇠ J3(z) · (@̄XµeikX)

V ⇠ J±(z) · (@̄XµeikX)

V ⇠ J3(z) · (@̄xReikX)

J3(z) = @yL(z)

J±(z) = e±2iyL(z)

J i(z) =
P

J i

m

z�(m+1)

[J i

m

, J j

n

] = m

2 �
ij�

m,�n

+ ✏ijkJk

m+n

N
y

= 1

N
y

= 0

p = p̃ = ±1

N̄
x

= 1

N
x

= 1

N̄
y

= 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

(k
L

= ±2)

N̄ = 0

Ai ! Āi

J i(z) ! J̄ i(z̄)

J i(z) ! J̄ i(z̄)

2

: A3
µ

: A
µ

V ⇠ J3(z) · (@̄XµeikX)

V ⇠ J±(z) · (@̄XµeikX)

V ⇠ J3(z) · (@̄xReikX)

J3(z) = @yL(z)

J±(z) = e±2iyL(z)

J i(z) =
P

J i

m

z�(m+1)

[J i

m

, J j

n

] = m

2 �
ij�

m,�n

+ ✏ijkJk

m+n

N
y

= 1

N
y

= 0

p = p̃ = ±1

N̄
x

= 1

N
x

= 1

N̄
y

= 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

(k
L

= ±2)

N̄ = 0

Ai ! Āi

J i(z) ! J̄ i(z̄)

J i(z) ! J̄ i(z̄)

2

g, B,�

y

g
mn

B
mn

g
µ⌫

B
µ⌫

g
µy

g
yy

B
µy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.1)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.2)

R = R̃ = 1

R̃ = ↵

0

R

R̃ = ↵0/R

=
p
↵0

N̄ = 1

(g
µy

+B
µy

)

: A
µ

: A3
µ

: A±
µ

V ⇠ J3(z) · (RM)

V ⇠ J3(z) · (@̄XµeikX)

1

= ✏2

=
p
✏

M±±,M±⌥

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.9) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.5)

and the level matching constraint

N̄ �N = pp̃ , (0.6)

where N = Nx+Ny ( N̄ = N̄x+ N̄y) is the left (right) moving number operator, involving

the sum of the number operator along the circle Ny (N̄y) and the number operator for

the non-compact space-time directions Nx ( N̄x).

k =
p

R
+

p̃

R̃
, k̄ =

p

R
� p̃

R̃
(0.7)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Level-matching

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
F i
µ⌫F

iµ⌫ +
1

4
F̄ i
µ⌫F̄

iµ⌫ +
1

4
M ijF i

µ⌫F̄
jµ⌫ +DµM

ijDµM ij

�detM

where [Mariana: ser consistentes en H con la definicion en 2.100 (que debe-

riamos sacar quizas si ya aparece aca?)]

Hµ⌫⇢ = @µB⌫⇢ + Aa
[µF

a
⌫⇢] + fabcAa

µA
b
⌫A

c
µ + Aã

[µF
ã
⌫⇢] + f ãb̃c̃Aã

µA
b̃
⌫A

c̃
µ

F a
µ⌫ = 2@[µA

a
⌫] + fabcAb

µA
c
⌫ , F ã

µ⌫ = 2@[µA
ã
⌫] + f ãb̃c̃Ab̃

µA
c̃
⌫ ,

(0.4)

H = dB + Ai ^ F i � Āi ^ F̄ i

H = dB + Ai ^ F i + Āi ^ F̄ i

F i = dAi + ✏ijkAj ^ Ak

DµM ii = @µM ii + f ijkAj
µM

ki + f ijkĀj
µM

ik

M ij ! ✏ �ij33 +M 0ij

: A±
µ

Ā±

= ✏2

=
p
✏

M±±,M±⌥

g11, g22, g12

B12

⌧ = 1
g11

(g12 + i
p
g)

⇢ = B12 + i
p
g
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L = R� 1
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Hµ⌫⇢H

µ⌫⇢ +
1

4
F i
µ⌫F

iµ⌫ +
1

4
F̄ i
µ⌫F̄

iµ⌫ +
1

4
M ijF i

µ⌫F̄
jµ⌫ +DµM

ijDµM ij

�detM

where [Mariana: ser consistentes en H con la definicion en 2.100 (que debe-

riamos sacar quizas si ya aparece aca?)]

Hµ⌫⇢ = @µB⌫⇢ + Aa
[µF

a
⌫⇢] + fabcAa

µA
b
⌫A

c
µ + Aã

[µF
ã
⌫⇢] + f ãb̃c̃Aã

µA
b̃
⌫A

c̃
µ

F a
µ⌫ = 2@[µA

a
⌫] + fabcAb

µA
c
⌫ , F ã

µ⌫ = 2@[µA
ã
⌫] + f ãb̃c̃Ab̃

µA
c̃
⌫ ,

(0.4)

H = dB + Ai ^ F i � Āi ^ F̄ i

H = dB + Ai ^ F i + Āi ^ F̄ i

F i = dAi + ✏ijkAj ^ Ak

DµM ii = @µM ii + f ijkAj
µM

ki + f ijkĀj
µM

ik

M ij ! ✏ �ij33 +M 0ij

: A±
µ

Ā±

J i(z)J j(0) ⇠ �ij
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+

i ✏ijk

z
Jk(0) (0.5)

= ✏2

=
p
✏

M±±,M±⌥

g11, g22, g12

B12

5

Mass

: Aµ

: A3
µ

: A±
µ

V ⇠ J3(z) · (RM)

V ⇠ J3(z) · (@̄XµeikX)

: A3
µ

: Aµ

V ⇠ J3(z) · (@̄XµeikX)

V ⇠ J±(z) · (@̄XµeikX)

V ⇠ J3(z) · (@̄xReikX)

J3(z) = @Y L(z)

J±(z) = e±2iY L(z)

J i(z) =
P

J i
m z�(m+1)

[J i
m, J

j
n] =

m
2 �

ij�m,�n + ✏ijkJk
m+n

Ny = 1

Ny = 0

p = p̃ = ±1

N̄x = 1

Nx = 1

N̄y = 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

@y

@ỹ

3

@y@ỹ( ) = 0

N = 1

p = �p̃ = ±1

(kL = ±2)

N̄ = 0

Ai ! Āi

J i(z) ! J̄ i(z̄)

J i(z) ! J̄ i(z̄)

Y L(z) ! Y R(z̄)

SU(2)⇥ SU(2)

N = N̄ = 0

Nx = N̄x = 0

p = ±2

p = 0

M = Md ⇥ S1

Md ⇥ S1 ⇥ S̃1

M ij

V ij ⇠ J iJ j eikX

p̃ = ±2

d2

6d

32

(d+ 3)2

dim
⇥ O(d+ 3, d+ 3)

O(d+ 3)⇥O(d+ 3)

⇤
= (d+ 3)2

4

Bosonic string on S1 



Massless states at 

g, B,�

y

g
mn

B
mn

g
µ⌫

B
µ⌫

g
µy

g
yy

B
µy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.1)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.2)

R̃ = ↵

0

R

R̃ = ↵0/R

=
p
↵0

N̄ = 1

p = p̃ = ±1

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

N̄ = 0

1

g, B,�

y

g
mn

B
mn

g
µ⌫

B
µ⌫

g
µy

g
yy

B
µy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.1)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.2)

R = R̃ = 1

R̃ = ↵

0

R

R̃ = ↵0/R

=
p
↵0

N̄ = 1

p = p̃ = ±1

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

1

Vectors

g, B,�

y

g
mn

B
mn

g
µ⌫

B
µ⌫

g
µy

g
yy

B
µy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.1)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.2)

R = R̃ = 1

R̃ = ↵

0

R

R̃ = ↵0/R

=
p
↵0

N̄ = 1

p = p̃ = ±1

N̄
x

= 1

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

1

• SU(2)L

g, B,�

y

g
mn

B
mn

g
µ⌫

B
µ⌫

g
µy

g
yy

B
µy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.1)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.2)

R = R̃ = 1

R̃ = ↵

0

R

R̃ = ↵0/R

=
p
↵0

N̄ = 1

N
y

= 1

p = p̃ = ±1

N̄
x

= 1

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

1

-

-

N
y

= 1

N
y

= 0

p = p̃ = ±1

N̄
x

= 1

N̄
y

= 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

N̄ = 0

SU(2)⇥ SU(2)

N = Ñ = 0

p = ±2

p = 0

M = M
d

⇥ S1

M
d

⇥ S1 ⇥ S̃1

p̃ = ±2

d2

6d

32

(d+ 3)2

dim
⇥ O(d+ 3, d+ 3)

O(d+ 3)⇥O(d+ 3)

⇤
= (d+ 3)2

eik(x
L(z)+x

R(z̄))

2

N
y

= 1

N
y

= 0

p = p̃ = ±1

N̄
x

= 1

N̄
y

= 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

N̄ = 0

SU(2)⇥ SU(2)

N = Ñ = 0

p = ±2

p = 0

M = M
d

⇥ S1

M
d

⇥ S1 ⇥ S̃1

p̃ = ±2

d2

6d

32

(d+ 3)2

dim
⇥ O(d+ 3, d+ 3)

O(d+ 3)⇥O(d+ 3)

⇤
= (d+ 3)2

eik(x
L(z)+x

R(z̄))

2

N
y

= 1

N
y

= 0

p = p̃ = ±1

N̄
x

= 1

N̄
y

= 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

(k
L

= ±2)

N̄ = 0

SU(2)⇥ SU(2)

N = Ñ = 0

p = ±2

p = 0

M = M
d

⇥ S1

M
d

⇥ S1 ⇥ S̃1

p̃ = ±2

d2

6d

32

(d+ 3)2

dim
⇥ O(d+ 3, d+ 3)

O(d+ 3)⇥O(d+ 3)

⇤
= (d+ 3)2

2

Vectors• SU(2)R

V ⇠ J±(z) · (@̄XµeikX)

V ⇠ J3(z) · (@̄xReikX)

J3(z) = @yL(z)

J±(z) = e±2iyL(z)

J i(z) =
P

J i

m

z�(m+1)

[J i

m

, J j

n

] = m

2 �
ij�

m,�n

+ ✏ijkJk

m+n

N
y

= 1

N
y

= 0

p = p̃ = ±1

N̄
x

= 1

N
x

= 1

N̄
y

= 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

(k
L

= ±2)

N̄ = 0

SU(2)⇥ SU(2)

N = Ñ = 0

p = ±2

p = 0

M = M
d

⇥ S1

M
d

⇥ S1 ⇥ S̃1

2

V ⇠ J±(z) · (@̄XµeikX)

V ⇠ J3(z) · (@̄xReikX)

J3(z) = @yL(z)

J±(z) = e±2iyL(z)

J i(z) =
P

J i

m

z�(m+1)

[J i

m

, J j

n

] = m

2 �
ij�

m,�n

+ ✏ijkJk

m+n

N
y

= 1

N
y

= 0

p = p̃ = ±1

N̄
x

= 1

N
x

= 1

N̄
y

= 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

(k
L

= ±2)

N̄ = 0

Ai ! Āi

J i(z) ! J̄ i(z̄)

SU(2)⇥ SU(2)

N = Ñ = 0

p = ±2

p = 0

2

• Scalars

V ⇠ J±(z) · (@̄XµeikX)

V ⇠ J3(z) · (@̄xReikX)

J3(z) = @yL(z)

J±(z) = e±2iyL(z)

J i(z) =
P

J i

m

z�(m+1)

[J i

m

, J j

n

] = m

2 �
ij�

m,�n

+ ✏ijkJk

m+n

N
y

= 1

N
y

= 0

p = p̃ = ±1

N̄
x

= 1

N
x

= 1

N̄
y

= 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

(k
L

= ±2)

N̄ = 0

Ai ! Āi

J i(z) ! J̄ i(z̄)

SU(2)⇥ SU(2)

N = N̄ = 0

N
x

= N̄
x

= 0

p = ±2

2

(a) N
y

= 1, N̄
y

= 1 : M33

(b) N
y

= 1, p = �p̃ = ±1 (k̄ = ±2) : M3±

(c) N̄
y

= 1, p = p̃ = ±1 (k = ±2) : M±3

(d) p = ±2, p̃ = 0 (k = k̄ = ±2) : M±±

(e) p = 0, p̃ = ±2 (k = �k̄ = ±2) : M±⌥

with corresponding vertex operators

V i,j

S

(z, z̄) = g0
c

✏ij : J i(z)J̄ j(z̄)eiK·X : (0.13)

[Gerardo: revisar el M33, parece tener un
p
2 extra..]

In these expressions, µ = 0, ..., d � 1 denotes an index along the non-compactified

(external) space [Mariana: si?]; J i, i = 1, 2, 3 are the SU(2)
L

currents in the Cartan-

Weyl basis

J3(z) =
ip
↵0
@
z

y(z)

J±(z) = : exp(±2i↵0�1/2y(z)) : (0.14)

where J± = J1 ± iJ2. (The SU(2)
R

current algebra can be read from above just by

replacing J i ! J̄ i, y(z) ! ȳ(z̄).) They satisfy the OPE

J i(z̄)J j(0) ⇠ ✏ij
k

z
Jk(0) + . . . (0.15)

with antisymmetric structure constants ✏123 = 1 (which implies ✏+�
3 = 2, ✏3±⌥ = ±1).

The factor

g0
c

= g
c

/(2⇡R)�1/2 (0.16)

is the standard d-dimensional closed string coupling written in terms of the original D =

d + 1 coupling g
c

with the factor (2⇡R)�1/2 coming from the normalization of the zero

mode wave function. Recall that vector polarizations must satisfy the gauge condition

[Mariana: k o K?]

k · ✏i(k) = k · ✏̄i(k) = 0 (0.17)

in order for the operators to have the correct conformal weight (1, 1).
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V ⇠ J3(z) · (@̄XµeikX)

V ⇠ J±(z) · (@̄XµeikX)

V ⇠ J3(z) · (@̄xReikX)

J3(z) = @yL(z)

J±(z) = e±2iyL(z)

J i(z) =
P

J i

m

z�(m+1)

[J i

m

, J j

n

] = m

2 �
ij�

m,�n

+ ✏ijkJk

m+n

N
y

= 1

N
y

= 0

p = p̃ = ±1

N̄
x

= 1

N
x

= 1

N̄
y

= 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

(k
L

= ±2)

N̄ = 0

Ai ! Āi

J i(z) ! J̄ i(z̄)

SU(2)⇥ SU(2)

N = N̄ = 0

N
x

= N̄
x

= 0

2

A3
µ

V ⇠ J3(z) · (@̄XµeikX)

V ⇠ J±(z) · (@̄XµeikX)

V ⇠ J3(z) · (@̄xReikX)

J3(z) = @yL(z)

J±(z) = e±2iyL(z)

J i(z) =
P

J i

m

z�(m+1)

[J i

m

, J j

n

] = m

2 �
ij�

m,�n

+ ✏ijkJk

m+n

N
y

= 1

N
y

= 0

p = p̃ = ±1

N̄
x

= 1

N
x

= 1

N̄
y

= 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

(k
L

= ±2)

N̄ = 0

Ai ! Āi

J i(z) ! J̄ i(z̄)

SU(2)⇥ SU(2)

N = N̄ = 0

2

A3
µ

V ⇠ J3(z) · (@̄XµeikX)

V ⇠ J±(z) · (@̄XµeikX)

V ⇠ J3(z) · (@̄xReikX)

J3(z) = @yL(z)

J±(z) = e±2iyL(z)

J i(z) =
P

J i

m

z�(m+1)

[J i

m

, J j

n

] = m

2 �
ij�

m,�n

+ ✏ijkJk

m+n

N
y

= 1

N
y

= 0

p = p̃ = ±1

N̄
x

= 1

N
x

= 1

N̄
y

= 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

(k
L

= ±2)

N̄ = 0

Ai ! Āi

J i(z) ! J̄ i(z̄)

J i(z) ! J̄ i(z̄)

SU(2)⇥ SU(2)

2

: A3
µ

: A
µ

V ⇠ J3(z) · (@̄XµeikX)

V ⇠ J±(z) · (@̄XµeikX)

V ⇠ J3(z) · (@̄xReikX)

J3(z) = @yL(z)

J±(z) = e±2iyL(z)

J i(z) =
P

J i

m

z�(m+1)

[J i

m

, J j

n

] = m

2 �
ij�

m,�n

+ ✏ijkJk

m+n

N
y

= 1

N
y

= 0

p = p̃ = ±1

N̄
x

= 1

N
x

= 1

N̄
y

= 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

(k
L

= ±2)

N̄ = 0

Ai ! Āi

J i(z) ! J̄ i(z̄)

J i(z) ! J̄ i(z̄)

2

: A3
µ

: A
µ

V ⇠ J3(z) · (@̄XµeikX)

V ⇠ J±(z) · (@̄XµeikX)

V ⇠ J3(z) · (@̄xReikX)

J3(z) = @yL(z)

J±(z) = e±2iyL(z)

J i(z) =
P

J i

m

z�(m+1)

[J i

m

, J j

n

] = m

2 �
ij�

m,�n

+ ✏ijkJk

m+n

N
y

= 1

N
y

= 0

p = p̃ = ±1

N̄
x

= 1

N
x

= 1

N̄
y

= 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

(k
L

= ±2)

N̄ = 0

Ai ! Āi

J i(z) ! J̄ i(z̄)

J i(z) ! J̄ i(z̄)

2

g, B,�

y

g
mn

B
mn

g
µ⌫

B
µ⌫

g
µy

g
yy

B
µy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.1)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.2)

R = R̃ = 1

R̃ = ↵

0

R

R̃ = ↵0/R

=
p
↵0

N̄ = 1

(g
µy

+B
µy

)

: A
µ

: A3
µ

: A±
µ

V ⇠ J3(z) · (RM)

V ⇠ J3(z) · (@̄XµeikX)

1

g, B,�

y

g
mn

B
mn

g
µ⌫

B
µ⌫

g
µy

g
yy

B
µy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.1)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.2)

R = R̃ = 1

R̃ = ↵

0

R

R̃ = ↵0/R

=
p
↵0

N̄ = 1

(g
µy

+B
µy

)

(g
yy

)

: A
µ

: A3
µ

: A±
µ

V ⇠ J3(z) · (RM)

1

= ✏2

=
p
✏

M±±,M±⌥

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.9) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.5)

and the level matching constraint

N̄ �N = pp̃ , (0.6)

where N = Nx+Ny ( N̄ = N̄x+ N̄y) is the left (right) moving number operator, involving

the sum of the number operator along the circle Ny (N̄y) and the number operator for

the non-compact space-time directions Nx ( N̄x).

k =
p

R
+

p̃

R̃
, k̄ =

p

R
� p̃

R̃
(0.7)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Level-matching

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
F i
µ⌫F

iµ⌫ +
1

4
F̄ i
µ⌫F̄

iµ⌫ +
1

4
M ijF i

µ⌫F̄
jµ⌫ +DµM

ijDµM ij

�detM

where [Mariana: ser consistentes en H con la definicion en 2.100 (que debe-

riamos sacar quizas si ya aparece aca?)]

Hµ⌫⇢ = @µB⌫⇢ + Aa
[µF

a
⌫⇢] + fabcAa

µA
b
⌫A

c
µ + Aã

[µF
ã
⌫⇢] + f ãb̃c̃Aã

µA
b̃
⌫A

c̃
µ

F a
µ⌫ = 2@[µA

a
⌫] + fabcAb

µA
c
⌫ , F ã

µ⌫ = 2@[µA
ã
⌫] + f ãb̃c̃Ab̃

µA
c̃
⌫ ,

(0.4)

H = dB + Ai ^ F i � Āi ^ F̄ i

H = dB + Ai ^ F i + Āi ^ F̄ i

F i = dAi + ✏ijkAj ^ Ak

DµM ii = @µM ii + f ijkAj
µM

ki + f ijkĀj
µM

ik

M ij ! ✏ �ij33 +M 0ij

: A±
µ

Ā±

= ✏2

=
p
✏

M±±,M±⌥

g11, g22, g12

B12

⌧ = 1
g11

(g12 + i
p
g)

⇢ = B12 + i
p
g

5

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
F i
µ⌫F

iµ⌫ +
1

4
F̄ i
µ⌫F̄

iµ⌫ +
1

4
M ijF i

µ⌫F̄
jµ⌫ +DµM

ijDµM ij

�detM

where [Mariana: ser consistentes en H con la definicion en 2.100 (que debe-

riamos sacar quizas si ya aparece aca?)]

Hµ⌫⇢ = @µB⌫⇢ + Aa
[µF

a
⌫⇢] + fabcAa

µA
b
⌫A

c
µ + Aã

[µF
ã
⌫⇢] + f ãb̃c̃Aã

µA
b̃
⌫A

c̃
µ

F a
µ⌫ = 2@[µA

a
⌫] + fabcAb

µA
c
⌫ , F ã

µ⌫ = 2@[µA
ã
⌫] + f ãb̃c̃Ab̃

µA
c̃
⌫ ,

(0.4)

H = dB + Ai ^ F i � Āi ^ F̄ i

H = dB + Ai ^ F i + Āi ^ F̄ i

F i = dAi + ✏ijkAj ^ Ak

DµM ii = @µM ii + f ijkAj
µM

ki + f ijkĀj
µM

ik

M ij ! ✏ �ij33 +M 0ij

: A±
µ

Ā±

J i(z)J j(0) ⇠ �ij

z2
+

i ✏ijk

z
Jk(0) (0.5)

= ✏2

=
p
✏

M±±,M±⌥

g11, g22, g12

B12

5
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J i(z) ! J̄ i(z̄)

J i(z) ! J̄ i(z̄)

Y L(z) ! Y R(z̄)

SU(2)⇥ SU(2)

N = N̄ = 0

Nx = N̄x = 0

p = ±2

p = 0

M = Md ⇥ S1

Md ⇥ S1 ⇥ S̃1

M ij

V ij ⇠ J iJ j eikX

p̃ = ±2

d2

6d

32

(d+ 3)2

dim
⇥ O(d+ 3, d+ 3)

O(d+ 3)⇥O(d+ 3)

⇤
= (d+ 3)2

4

Bosonic string on S1 



Massless states at 

g, B,�

y

g
mn

B
mn

g
µ⌫

B
µ⌫

g
µy

g
yy

B
µy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.1)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.2)

R̃ = ↵

0

R

R̃ = ↵0/R

=
p
↵0

N̄ = 1

p = p̃ = ±1

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

N̄ = 0

1

g, B,�

y

g
mn

B
mn

g
µ⌫

B
µ⌫

g
µy

g
yy

B
µy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.1)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.2)

R = R̃ = 1

R̃ = ↵

0

R

R̃ = ↵0/R

=
p
↵0

N̄ = 1

p = p̃ = ±1

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

1

Vectors

g, B,�

y

g
mn

B
mn

g
µ⌫

B
µ⌫

g
µy

g
yy

B
µy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.1)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.2)

R = R̃ = 1

R̃ = ↵

0

R

R̃ = ↵0/R

=
p
↵0

N̄ = 1

p = p̃ = ±1

N̄
x

= 1

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

1

• SU(2)L

g, B,�

y

g
mn

B
mn

g
µ⌫

B
µ⌫

g
µy

g
yy

B
µy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.1)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.2)

R = R̃ = 1

R̃ = ↵

0

R

R̃ = ↵0/R

=
p
↵0

N̄ = 1

N
y

= 1

p = p̃ = ±1

N̄
x

= 1

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

1

-

-

N
y

= 1

N
y

= 0

p = p̃ = ±1

N̄
x

= 1

N̄
y

= 0

N = 0

N̄ �N = pp̃

N = 0, N̄ = 1, p = p̃ = ±1

N = 1

p = �p̃ = ±1

N̄ = 0

SU(2)⇥ SU(2)

N = Ñ = 0
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[Gerardo: revisar el M33, parece tener un
p
2 extra..]

In these expressions, µ = 0, ..., d � 1 denotes an index along the non-compactified

(external) space [Mariana: si?]; J i, i = 1, 2, 3 are the SU(2)
L

currents in the Cartan-

Weyl basis

J3(z) =
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J±(z) = : exp(±2i↵0�1/2y(z)) : (0.14)

where J± = J1 ± iJ2. (The SU(2)
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current algebra can be read from above just by

replacing J i ! J̄ i, y(z) ! ȳ(z̄).) They satisfy the OPE

J i(z̄)J j(0) ⇠ ✏ij
k
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Jk(0) + . . . (0.15)

with antisymmetric structure constants ✏123 = 1 (which implies ✏+�
3 = 2, ✏3±⌥ = ±1).

The factor
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= g
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is the standard d-dimensional closed string coupling written in terms of the original D =

d + 1 coupling g
c

with the factor (2⇡R)�1/2 coming from the normalization of the zero

mode wave function. Recall that vector polarizations must satisfy the gauge condition

[Mariana: k o K?]

k · ✏i(k) = k · ✏̄i(k) = 0 (0.17)

in order for the operators to have the correct conformal weight (1, 1).
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J i(z̄)J j(0) ⇠ ✏ij
k

z
Jk(0) + . . . (0.15)

with antisymmetric structure constants ✏123 = 1 (which implies ✏+�
3 = 2, ✏3±⌥ = ±1).

The factor

g0
c

= g
c

/(2⇡R)�1/2 (0.16)

is the standard d-dimensional closed string coupling written in terms of the original D =

d + 1 coupling g
c

with the factor (2⇡R)�1/2 coming from the normalization of the zero

mode wave function. Recall that vector polarizations must satisfy the gauge condition

[Mariana: k o K?]

k · ✏i(k) = k · ✏̄i(k) = 0 (0.17)

in order for the operators to have the correct conformal weight (1, 1).

6

(a) N
y

= 1, N̄
y

= 1 : M33

(b) N
y

= 1, p = �p̃ = ±1 (k̄ = ±2) : M3±

(c) N̄
y

= 1, p = p̃ = ±1 (k = ±2) : M±3

(d) p = ±2, p̃ = 0 (k = k̄ = ±2) : M±±

(e) p = 0, p̃ = ±2 (k = �k̄ = ±2) : M±⌥

with corresponding vertex operators

V i,j

S

(z, z̄) = g0
c

✏ij : J i(z)J̄ j(z̄)eiK·X : (0.13)

[Gerardo: revisar el M33, parece tener un
p
2 extra..]

In these expressions, µ = 0, ..., d � 1 denotes an index along the non-compactified

(external) space [Mariana: si?]; J i, i = 1, 2, 3 are the SU(2)
L

currents in the Cartan-

Weyl basis

J3(z) =
ip
↵0
@
z

y(z)

J±(z) = : exp(±2i↵0�1/2y(z)) : (0.14)

where J± = J1 ± iJ2. (The SU(2)
R

current algebra can be read from above just by

replacing J i ! J̄ i, y(z) ! ȳ(z̄).) They satisfy the OPE
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.9) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:
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2
, (0.5)

and the level matching constraint

N̄ �N = pp̃ , (0.6)

where N = Nx+Ny ( N̄ = N̄x+ N̄y) is the left (right) moving number operator, involving

the sum of the number operator along the circle Ny (N̄y) and the number operator for

the non-compact space-time directions Nx ( N̄x).

k =
p

R
+

p̃

R̃
, k̄ =

p

R
� p̃

R̃
(0.7)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Bosonic string on S1 
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Ā±

J i(z)J j(0) ⇠ �ij

z2
+

i ✏ijk

z
Jk(0) (0.5)

= ✏2

=
p
✏

M±±,M±⌥

g11, g22, g12

B12

⌧ = 1
g11

(g12 + i
p
g)

⇢ = B12 + i
p
g

⌧ = ⇢

⌧, ⇢

i

1

6

(0.4)

H = dB + Ai ^ F i � Āi ^ F̄ i
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Ā±

J i(z)J j(0) ⇠ �ij

z2
+

i ✏ijk

z
Jk(0) (0.5)

= ✏2

=
p
✏

M±±,M±⌥

6

Symmetry enhancement (recap)

(0.4)

H = dB + Ai ^ F i � Āi ^ F̄ i
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F i = dAi + ✏ijkAj ^ Ak

DµM ii = @µM ii + f ijkAj
µM

ki + f ijkĀj
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Āi

Ā
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F i = dAi + ✏ijkAj ^ Ak

DµM ii = @µM ii + f ijkAj
µM

ki + f ijkĀj
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Ā±

J i(z)J j(0) ⇠ �ij

z2
+

i ✏ijk

z
Jk(0) (0.5)

= ✏2

=
p
✏

M±±,M±⌥

6

Symmetry enhancement (recap)

(0.4)

H = dB + Ai ^ F i � Āi ^ F̄ i
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Āi

Ā
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H = dB + Ai ^ F i + Āi ^ F̄ i
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µM

ik

M ij ! ✏ �ij33 +M 0ij

Ai

i = ±, 3

i = ±, 3

A

Āi
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Ā

M

M33

M ij

: A±
µ

Ā±
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F i = dAi + ✏ijkAj ^ Ak

DµM ii = @µM ii + f ijkAj
µM

ki + f ijkĀj
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Āi

Ā
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Āi

Ā

M

M33

M ij

: A±
µ

Ā±
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Ā

M

M33

M ij

: A±
µ

Ā±
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Ā±

J i(z)J j(0) ⇠ �ij

z2
+

i ✏ijk

z
Jk(0) (0.5)

= ✏2

=
p
✏

6



Effective action from string theory

Computing 3-point functions  <V V V> we read off

k 2 R

kL,R = p
R

± p̃

R̃

↵0 = 1

L = R� 1

12
Hµ⌫⇢H
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1

4
F i
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4
F̄ i
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iµ⌫

+
1

4
M ijF i

µ⌫F̄
jµ⌫ +DµM

ijD⌫M
ijgµ⌫ + detM
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.
1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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µ

Ab̃

⌫

Ac̃

µ

F a

µ⌫

= 2@[µA
a

⌫] + fabcAb

µ

Ac

⌫

, F ã
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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has two e↵ects. On the one hand, univaluedness of the wave function requires discrete
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.
1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.

4

± p̃

R̃

↵0 = 1

L = R +
1

4
(@

µ

�)2 � 1

12
H

µ⌫⇢

Hµ⌫⇢ +
1

4
F i

µ⌫

F iµ⌫ +
1

4
F̄ i

µ⌫

F̄ iµ⌫

+
1

4
M ijF i

µ⌫

F̄ jµ⌫ +D
µ

M ijD
⌫

M ijgµ⌫ + detM

where [Mariana: ser consistentes en H con la definicion en ?? (que deberiamos

sacar quizas si ya aparece aca?)]

H
µ⌫⇢

= @
µ

B
⌫⇢

+ Aa

[µF
a

⌫⇢] + fabcAa

µ

Ab

⌫

Ac

µ

+ Aã
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F i = dAi + ✏ijkAj ^ Ak

D
µ

M ii = @
µ

M ii + f ijkAj

µ

Mki + f ijkĀj
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1
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has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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µA
b̃
⌫A

c̃
µ

F a
µ⌫ = 2@[µA

a
⌫] + fabcAb

µA
c
⌫ , F ã

µ⌫ = 2@[µA
ã
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Consider the closed bosonic string theory compactified on a circle of radius R. The
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Effective action from string theory

Computing 3-point functions  <V V V> we read off
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where [Mariana: ser consistentes en H con la definicion en 2.69 (que deberiamos
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H
µ⌫⇢

= @
µ

B
⌫⇢

+ Aa

[µF
a

⌫⇢] + fabcAa

µ

Ab

⌫

Ac

µ

+ Aã
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Maã + fabcAb

µ

M cã + f ãb̃c̃Ab̃

µ

Mac̃ (0.3)

H = dB + Ai ^ F i + Āi ^ F̄ i

H = dB + Ai ^ F i + Āi ^ F̄ i

F i = dAi + ✏ijkAj ^ Ak

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.
1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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where [Mariana: ser consistentes en H con la definicion en ?? (que deberiamos

sacar quizas si ya aparece aca?)]
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ã

⌫] + f ãb̃c̃Ab̃
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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where [Mariana: ser consistentes en H con la definicion en 2.93 (que debe-
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Consider the closed bosonic string theory compactified on a circle of radius R. The
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Higgs mechanism
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Consider the closed bosonic string theory compactified on a circle of radius R. The
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H = dB + Ai ^ F i + Āi ^ F̄ i

F i = dAi + ✏ijkAj ^ Ak

DµM ii = @µM ii + f ijkAj
µM

ki + f ijkĀj
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where [Mariana: ser consistentes en H con la definicion en 2.98 (que debe-

riamos sacar quizas si ya aparece aca?)]
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.9) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.5)

and the level matching constraint

N̄ �N = pp̃ , (0.6)

where N = Nx+Ny ( N̄ = N̄x+ N̄y) is the left (right) moving number operator, involving

the sum of the number operator along the circle Ny (N̄y) and the number operator for

the non-compact space-time directions Nx ( N̄x).

k =
p

R
+

p̃

R̃
, k̄ =

p

R
� p̃

R̃
(0.7)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Effective action from string theory

Computing 3-point functions  <V V V> we read off
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where [Mariana: ser consistentes en H con la definicion en 2.69 (que deberiamos

sacar quizas si ya aparece aca?)]
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.
1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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H = dB + Ai ^ F i + Āi ^ F̄ i
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.9) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:
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2
, (0.5)

and the level matching constraint

N̄ �N = pp̃ , (0.6)

where N = Nx+Ny ( N̄ = N̄x+ N̄y) is the left (right) moving number operator, involving

the sum of the number operator along the circle Ny (N̄y) and the number operator for

the non-compact space-time directions Nx ( N̄x).
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(0.7)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Effective action from string theory

Computing 3-point functions  <V V V> we read off
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µ

Ab̃

⌫

Ac̃

µ

F a

µ⌫

= 2@[µA
a

⌫] + fabcAb

µ

Ac

⌫

, F ã
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.
1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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µ

Ab̃

⌫

Ac̃

µ

F a

µ⌫

= 2@[µA
a

⌫] + fabcAb

µ

Ac

⌫

, F ã
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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⌫] + f ãb̃c̃Ab̃

µA
c̃
⌫ ,

(0.3)

H = dB + Ai ^ F i + Āi ^ F̄ i
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Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.
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[µF
ã
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⌫] + f ãb̃c̃Ab̃

µA
c̃
⌫ ,

(0.3)

H = dB + Ai ^ F i � Āi ^ F̄ i
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µM

ik

M ij ! ✏ �ij33 +M 0ij

Consider the closed bosonic string theory compactified on a circle of radius R. The

4

k 2 R

kL,R = p
R

± p̃

R̃

↵0 = 1

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
F i
µ⌫F

iµ⌫ +
1

4
F̄ i
µ⌫F̄

iµ⌫

+
1

4
M ijF i

µ⌫F̄
jµ⌫ +DµM

ijDµM ij � detM

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
F i
µ⌫F

iµ⌫ +
1

4
F̄ i
µ⌫F̄

iµ⌫ +
1

4
M ijF i

µ⌫F̄
jµ⌫ +DµM

ijDµM ij

�detM

where [Mariana: ser consistentes en H con la definicion en 2.98 (que debe-

riamos sacar quizas si ya aparece aca?)]

Hµ⌫⇢ = @µB⌫⇢ + Aa
[µF

a
⌫⇢] + fabcAa

µA
b
⌫A

c
µ + Aã
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µ⌫ = 2@[µA
ã
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acquire mass2

= ✏

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.9) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.5)

and the level matching constraint

N̄ �N = pp̃ , (0.6)

where N = Nx+Ny ( N̄ = N̄x+ N̄y) is the left (right) moving number operator, involving

the sum of the number operator along the circle Ny (N̄y) and the number operator for

the non-compact space-time directions Nx ( N̄x).

k =
p

R
+

p̃

R̃
, k̄ =

p

R
� p̃

R̃
(0.7)

where we have defined

R̃ =
↵0

R
. (0.8)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The
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has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.9) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:
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1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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F i = dAi + ✏ijkAj ^ Ak

DµM ii = @µM ii + f ijkAj
µM

ki + f ijkĀj
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H = dB + Ai ^ F i + Āi ^ F̄ i
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Ā±

J i(z)J j(0) ⇠ �ij

z2
+

i ✏ijk

z
Jk(0) (0.5)

= ✏2

=
p
✏

6



Massless states:    

Bosonic string on Td

0 = 2(N � N̄) + Zt⌘Z (0.6)
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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2d vectors: U(1)d x U(1)d 

d2 scalars 
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Massless states:    

+
lots of extra vectors & scalars 
with mom & winding at points of 
enhancement where

Bosonic string on Td

⌘
MN

=

0

@0 1

1 0

1

A , (2.1)

⌘LR =

0

@1 0

0 �1

1

A , (2.2)

⌘

' @
ỹ
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A . (2.5)

Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

21
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Z =

0

@pm

p̃m

1

A . (0.7)

M2 = 2(N + N̄ � 2) + ZtHZ (0.8)

H

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.9)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.14) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.10)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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2d vectors: U(1)d x U(1)d 

d2 scalars 
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1
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p
3
2
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as well as the “generalized metric” of the k-dimensional torus, given by the 2k ⇥ 2k
matrix in O(k, k,R)

H =

✓
g � Bg�1B �Bg�1

g�1B g�1

◆
. (2.15)

The mass formula (2.12a) and the level matching condition (2.12b) then read

M2 = 2(N + N̄ � 2) + ZtHZ , (2.16a)

0 = 2(N � N̄) + Zt⌘Z , (2.16b)

respectively.

Note that both the mass formula and the level matching condition are invariant under
the T-duality group O(k, k,Z) acting as

Z ! OZ , H ! OHOt , ⌘ ! O⌘Ot = ⌘ , O 2 O(k, k,Z) . (2.17)

O 2 O(d, d)

H ! ⌘H⌘t

O = ⌘

= H�1 =

✓
g � Bg�1B �Bg�1

g�1B g�1

◆
. (2.18)

The group O(k, k,Z) is generated by integer theta-parameter shifts, associated with
the addition of an antisymmetric integer matrix ⇥

mn

to the antisymmetric B-field, [Mar-
iana: signo de ⇥ cambiado, ver con Carmen]

O⇥ =

✓
1 ⇥
0 1

◆
, ⇥

mn

2 Z , (2.19)

lattice basis changes

O
M

=

✓
M 0
0 (M t)�1

◆
, M 2 GL(k,Z) , (2.20)

and factorized dualities, which are generalizations of the R ! 1/R circle duality, of the
form

O
Di =

✓
1�D

i

D
i

D
i

1�D
i

◆
, (2.21)

where D
i

is a k ⇥ k matrix with all zeros except at the ii component.

Notice the particular role played by the element ⌘ viewed as a sequence of factorized
dualities in all tori directions, i.e.

⌘ = O
D

⌘
kY

i=1

O
Di . (2.22)

Its action on the generalized metric is
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(3, 3) representation, do also appear. This can be seen from the mass formula:
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1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.

7

2d vectors: U(1)d x U(1)d 

d2 scalars 

=
p
✏

M±±,M±⌥

EA(x, y, ỹ) =
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(up to SL(k,    ) and 
 B → B + n )

as well as the “generalized metric” of the k-dimensional torus, given by the 2k ⇥ 2k
matrix in O(k, k,R)

H =

✓
g � Bg�1B �Bg�1

g�1B g�1

◆
. (2.15)

The mass formula (2.12a) and the level matching condition (2.12b) then read

M2 = 2(N + N̄ � 2) + ZtHZ , (2.16a)

0 = 2(N � N̄) + Zt⌘Z , (2.16b)

respectively.

Note that both the mass formula and the level matching condition are invariant under
the T-duality group O(k, k,Z) acting as
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iana: signo de ⇥ cambiado, ver con Carmen]
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.9)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.14) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2
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2
+
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, (0.10)

and the level matching constraint
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1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.14) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:
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1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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E 0
A0(y, ỹ)
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(up to SL(k,    ) and 
 B → B + n )

as well as the “generalized metric” of the k-dimensional torus, given by the 2k ⇥ 2k
matrix in O(k, k,R)

H =

✓
g � Bg�1B �Bg�1

g�1B g�1

◆
. (2.15)

The mass formula (2.12a) and the level matching condition (2.12b) then read

M2 = 2(N + N̄ � 2) + ZtHZ , (2.16a)

0 = 2(N � N̄) + Zt⌘Z , (2.16b)

respectively.

Note that both the mass formula and the level matching condition are invariant under
the T-duality group O(k, k,Z) acting as

Z ! OZ , H ! OHOt , ⌘ ! O⌘Ot = ⌘ , O 2 O(k, k,Z) . (2.17)
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The group O(k, k,Z) is generated by integer theta-parameter shifts, associated with
the addition of an antisymmetric integer matrix ⇥

mn

to the antisymmetric B-field, [Mar-
iana: signo de ⇥ cambiado, ver con Carmen]
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form
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is a k ⇥ k matrix with all zeros except at the ii component.

Notice the particular role played by the element ⌘ viewed as a sequence of factorized
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.9)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.14) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.10)

and the level matching constraint

N̄ �N = pp̃ , (0.11)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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y � ỹ
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose
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1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-
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E 0
A0(y, ỹ)
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as well as the “generalized metric” of the k-dimensional torus, given by the 2k ⇥ 2k
matrix in O(k, k,R)

H =

✓
g � Bg�1B �Bg�1

g�1B g�1

◆
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The mass formula (2.12a) and the level matching condition (2.12b) then read

M2 = 2(N + N̄ � 2) + ZtHZ , (2.16a)

0 = 2(N � N̄) + Zt⌘Z , (2.16b)

respectively.

Note that both the mass formula and the level matching condition are invariant under
the T-duality group O(k, k,Z) acting as
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.9)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.14) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.10)

and the level matching constraint

N̄ �N = pp̃ , (0.11)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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 B → B + n )

as well as the “generalized metric” of the k-dimensional torus, given by the 2k ⇥ 2k
matrix in O(k, k,R)
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g�1B g�1

◆
. (2.15)

The mass formula (2.12a) and the level matching condition (2.12b) then read

M2 = 2(N + N̄ � 2) + ZtHZ , (2.16a)

0 = 2(N � N̄) + Zt⌘Z , (2.16b)

respectively.

Note that both the mass formula and the level matching condition are invariant under
the T-duality group O(k, k,Z) acting as

Z ! OZ , H ! OHOt , ⌘ ! O⌘Ot = ⌘ , O 2 O(k, k,Z) . (2.17)
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The group O(k, k,Z) is generated by integer theta-parameter shifts, associated with
the addition of an antisymmetric integer matrix ⇥

mn

to the antisymmetric B-field, [Mar-
iana: signo de ⇥ cambiado, ver con Carmen]
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0 1
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2 Z , (2.19)
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and factorized dualities, which are generalizations of the R ! 1/R circle duality, of the
form
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i

D
i

1�D
i

◆
, (2.21)

where D
i

is a k ⇥ k matrix with all zeros except at the ii component.

Notice the particular role played by the element ⌘ viewed as a sequence of factorized
dualities in all tori directions, i.e.
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Its action on the generalized metric is
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.9)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.14) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.10)

and the level matching constraint

N̄ �N = pp̃ , (0.11)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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ỹ

R

R̃

= y + ỹ
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose
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(up to SL(k,    ) and 
 B → B + n )

as well as the “generalized metric” of the k-dimensional torus, given by the 2k ⇥ 2k
matrix in O(k, k,R)

H =
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g � Bg�1B �Bg�1

g�1B g�1

◆
. (2.15)

The mass formula (2.12a) and the level matching condition (2.12b) then read

M2 = 2(N + N̄ � 2) + ZtHZ , (2.16a)

0 = 2(N � N̄) + Zt⌘Z , (2.16b)

respectively.

Note that both the mass formula and the level matching condition are invariant under
the T-duality group O(k, k,Z) acting as

Z ! OZ , H ! OHOt , ⌘ ! O⌘Ot = ⌘ , O 2 O(k, k,Z) . (2.17)

O 2 O(d, d)

H ! ⌘H⌘t

O = ⌘

= H�1 =

✓
g � Bg�1B �Bg�1
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The group O(k, k,Z) is generated by integer theta-parameter shifts, associated with
the addition of an antisymmetric integer matrix ⇥

mn

to the antisymmetric B-field, [Mar-
iana: signo de ⇥ cambiado, ver con Carmen]
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form
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D
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1�D
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, (2.21)

where D
i

is a k ⇥ k matrix with all zeros except at the ii component.

Notice the particular role played by the element ⌘ viewed as a sequence of factorized
dualities in all tori directions, i.e.
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Massless states:    

+
lots of extra vectors & scalars 
with mom & winding at points of 
enhancement where

Bosonic string on Td
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.9)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.14) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.10)

and the level matching constraint

N̄ �N = pp̃ , (0.11)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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ỹ

yL

yR

y

ỹ
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose
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1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.

7

0 = 2(N � N̄) + Zt⌘Z (0.6)

Z =

0

@nm

!m

1

A . (0.7)

M2 = 2(N + N̄ � 2) + ZtHZ (0.8)

H

ZLR =

0

@n+ !

n� !

1

A . (0.9)

ETE

ET⌘E

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor
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periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.
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periodicity of the string coordinate1
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has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.
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(up to SL(k,    ) and 
 B → B + n )

as well as the “generalized metric” of the k-dimensional torus, given by the 2k ⇥ 2k
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respectively.
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The group O(k, k,Z) is generated by integer theta-parameter shifts, associated with
the addition of an antisymmetric integer matrix ⇥

mn

to the antisymmetric B-field, [Mar-
iana: signo de ⇥ cambiado, ver con Carmen]
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where D
i

is a k ⇥ k matrix with all zeros except at the ii component.

Notice the particular role played by the element ⌘ viewed as a sequence of factorized
dualities in all tori directions, i.e.
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kY

i=1

O
Di . (2.22)

Its action on the generalized metric is
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0 M t 1 M tA

0 0 0 ea

1

CCCCCCA

0

BBBBBB@

@µ

J

J̄

dxµ

1

CCCCCCA
, (2.54)

M i|̄(x)

Am

Ām
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Symmetry enhancement, bosonic string on Td 

U(1)d ⇥ U(1)d

SU(3)⇥ SU(3)

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(2)⇥ SU(3)⇥ SU(2)⇥ SU(3)

SU(3)⇥ U(1)⇥ SU(3)⇥ U(1)

SU(2)⇥ SU(2)

SU(3)⇥U(1)⇥ SU(3)⇥U(1)

SU(2)⇥ SU(2)⇥U(1)⇥ SU(2)⇥ SU(2)⇥U(1)

SU(2)⇥ U(1)⇥U(1)⇥ SU(2)⇥ U(1)⇥U(1)

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.11)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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E 0
A0(y, ỹ)
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H = H�1

g11, g22, g12

B12

⌧ = 1
g11

(g12 + i
p
g)

⇢ = B12 + i
p
g

⌧ = ⇢

⌧, ⇢

i

1

R 6= 1( 6= R̃)

U(1)⇥ U(1)

SU(2)⇥ SU(2)

A1 ⇥ A1

A2 ⇥ A2

A3 ⇥ A3

A4 ⇥ A4

SO(8)⇥ SO(8)

SU(2)2 ⇥ SU(2)2

7

J i(z)J j(0) ⇠ �ij

z2
+

i ✏ijk

z
Jk(0) (0.5)

= ✏2

=
p
✏

M±±,M±⌥

EA(x, y, ỹ) =
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Fields of reduced theory

U(1)d ⇥ U(1)d

SU(3)⇥ SU(3)

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(2)⇥ SU(3)⇥ SU(2)⇥ SU(3)

SU(3)⇥ U(1)⇥ SU(3)⇥ U(1)

SU(2)⇥ SU(2)

SU(3)⇥U(1)⇥ SU(3)⇥U(1)

SU(2)⇥ SU(2)⇥U(1)⇥ SU(2)⇥ SU(2)⇥U(1)

SU(2)⇥ U(1)⇥U(1)⇥ SU(2)⇥ U(1)⇥U(1)

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.11)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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and similarly for M3± after exchanging left and right. The scalar masses come from the

potential

4 detM = m�(|M++|2 � |M+�|2) (1.29)

+M3+
�
M�3M+� �M��M+3

�
+M3� �

M+3M�+ �M++M�3
�

where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries

ea

ea

MD ⇥ S1

MD ⇥ T d

4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.11) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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2d vectors

Fields of reduced theory

U(1)d ⇥ U(1)d

SU(3)⇥ SU(3)

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(2)⇥ SU(3)⇥ SU(2)⇥ SU(3)

SU(3)⇥ U(1)⇥ SU(3)⇥ U(1)

SU(2)⇥ SU(2)

SU(3)⇥U(1)⇥ SU(3)⇥U(1)

SU(2)⇥ SU(2)⇥U(1)⇥ SU(2)⇥ SU(2)⇥U(1)

SU(2)⇥ U(1)⇥U(1)⇥ SU(2)⇥ U(1)⇥U(1)

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.11)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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and similarly for M3± after exchanging left and right. The scalar masses come from the

potential

4 detM = m�(|M++|2 � |M+�|2) (1.29)

+M3+
�
M�3M+� �M��M+3

�
+M3� �

M+3M�+ �M++M�3
�

where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries

ea

ea

MD ⇥ S1

MD ⇥ T d

4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.11) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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2d vectors

Fields of reduced theory

U(1)d ⇥ U(1)d

SU(3)⇥ SU(3)

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(2)⇥ SU(3)⇥ SU(2)⇥ SU(3)

SU(3)⇥ U(1)⇥ SU(3)⇥ U(1)
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SU(2)⇥ SU(2)⇥U(1)⇥ SU(2)⇥ SU(2)⇥U(1)

SU(2)⇥ U(1)⇥U(1)⇥ SU(2)⇥ U(1)⇥U(1)

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.11)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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and similarly for M3± after exchanging left and right. The scalar masses come from the

potential

4 detM = m�(|M++|2 � |M+�|2) (1.29)

+M3+
�
M�3M+� �M��M+3

�
+M3� �

M+3M�+ �M++M�3
�

where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries

ea

ea

MD ⇥ S1

MD ⇥ T d

4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.11) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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2d vectors 2n vectors

Fields of reduced theory

U(1)d ⇥ U(1)d

SU(3)⇥ SU(3)

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(2)⇥ SU(3)⇥ SU(2)⇥ SU(3)

SU(3)⇥ U(1)⇥ SU(3)⇥ U(1)

SU(2)⇥ SU(2)

SU(3)⇥U(1)⇥ SU(3)⇥U(1)

SU(2)⇥ SU(2)⇥U(1)⇥ SU(2)⇥ SU(2)⇥U(1)

SU(2)⇥ U(1)⇥U(1)⇥ SU(2)⇥ U(1)⇥U(1)

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.11)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.
1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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the unusual i factor is due to the use of Euclidean world-sheet metric. On the other
hand, (2.3) implies the quantisation condition

Y m(⌧, � + 2⇡)� Y m(⌧, �) = �(pm
L

� pm
R

)
2⇡p
2
= 2⇡!m . (2.7)

These give

p
aL

=
1p
2
ê
a

m [n
m

+ (g
mn

+B
mn

)!n] , (2.8a)

p
aR

=
1p
2
ê
a

m [n
m

� (g
mn

� B
mn

)!n] . (2.8b)

The vectors ê
a

constitute the canonical basis for the dual lattice ⇤k⇤, i.e. ê
a

mea
n

= �m
n

,
and thus they satisfy

êtê = g�1
�) ê

a

m�abê
b

n = gmn

�
. (2.9)

The pairs (p
aL

, p
aR

) transform as vectors under O(k, k,R) and they expand the 2k-
dimensional momentum lattice �(k,k) ⇢ R2k. From (2.8) one sees they satisfy

p2
L

� p2
R

= 2!mn
m

2 2Z (2.10)

and therefore they form an even (k, k) Lorentzian lattice. In addition, self-duality of �(k,k)

can be proven, namely, �(k,k) = �(k,k)⇤, after modular invariance is imposed [14, 15].

The space of inequivalent lattices and inequivalent backgrounds reduces to

O(k, k,R)
O(k,R)⇥O(k,R)⇥O(k, k,Z)⇥ Z2

. (2.11)

where O(k, k,Z) is the T-duality group (we give more details about it in the next section),
and the Z2 factor accounts for the world-sheet parity � ! ��, a symmetry acting on the
background by B

mn

! �B
mn

.

2.2 O(k,k)-covariant formulation

The mass of the states and the level matching conditions are

M2 = 2(N + N̄ � 2) +
�
p2
L

+ p2
R

�
, (2.12a)

0 = 2(N � N̄) +
�
p2
L

� p2
R

�
. (2.12b)

These can be written in terms of the momentum and winding numbers using an
O(k, k)-covariant language by introducing the vector Z and ⌘, the invariant metric of
O(k, k,R), as follows
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✓
!m

n
m

◆
, ⌘ =

✓
0 1

k

1
k

0

◆
, (2.13)
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⇡ 1 + 1
2 < M33 >

✏

U+ ⇡ 1

U� ⇡ 1
2M

33

0

@ 1 1
2M

33

1
2M

33 1

1

A (2.51)

cos 2yL

36

adjG

0 = 2(N � N̄) + Zt⌘Z (0.6)

Z =

0

@nm

!m

1

A . (0.7)

M2 = 2(N + N̄ � 2) + ZtHZ (0.8)

H

ZLR =

0

@n+ !

n� !

1

A . (0.9)

ETE

ET⌘E

p = EZ

pA = EA
MZM

gµm, Bµm

gmn, Bmn

0

@pL

pR

1

A =

0

@ema [nm + (gmn +Bmn)!n]

ema [nm � (gmn � Bmn)!n]

1

A

0

@pL

pR

1

A =

0

@ema [pm + (gmn +Bmn)p̃n]

ema [pm � (gmn � Bmn)p̃n]

1

A

G⇥G

d

d

8

U(1)d ⇥ U(1)d

Am, A↵, A�↵

SU(3)⇥ SU(3)

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(2)⇥ SU(3)⇥ SU(2)⇥ SU(3)

SU(3)⇥ U(1)⇥ SU(3)⇥ U(1)

SU(2)⇥ SU(2)

SU(3)⇥U(1)⇥ SU(3)⇥U(1)

SU(2)⇥ SU(2)⇥U(1)⇥ SU(2)⇥ SU(2)⇥U(1)

SU(2)⇥ U(1)⇥U(1)⇥ SU(2)⇥ U(1)⇥U(1)

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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and similarly for M3± after exchanging left and right. The scalar masses come from the

potential

4 detM = m�(|M++|2 � |M+�|2) (1.29)

+M3+
�
M�3M+� �M��M+3

�
+M3� �

M+3M�+ �M++M�3
�

where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries

ea

ea

MD ⇥ S1

MD ⇥ T d

4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.11) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.

25

rank d
dim n

rank d
dim n

0=



2d vectors 2n vectors

d2 scalars

Fields of reduced theory

U(1)d ⇥ U(1)d

SU(3)⇥ SU(3)

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(2)⇥ SU(3)⇥ SU(2)⇥ SU(3)

SU(3)⇥ U(1)⇥ SU(3)⇥ U(1)

SU(2)⇥ SU(2)

SU(3)⇥U(1)⇥ SU(3)⇥U(1)

SU(2)⇥ SU(2)⇥U(1)⇥ SU(2)⇥ SU(2)⇥U(1)

SU(2)⇥ U(1)⇥U(1)⇥ SU(2)⇥ U(1)⇥U(1)
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around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:
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moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Ām

gµm ± Bµm

Ai(x)
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.
1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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the unusual i factor is due to the use of Euclidean world-sheet metric. On the other
hand, (2.3) implies the quantisation condition
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dimensional momentum lattice �(k,k) ⇢ R2k. From (2.8) one sees they satisfy
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and therefore they form an even (k, k) Lorentzian lattice. In addition, self-duality of �(k,k)

can be proven, namely, �(k,k) = �(k,k)⇤, after modular invariance is imposed [14, 15].

The space of inequivalent lattices and inequivalent backgrounds reduces to

O(k, k,R)
O(k,R)⇥O(k,R)⇥O(k, k,Z)⇥ Z2

. (2.11)

where O(k, k,Z) is the T-duality group (we give more details about it in the next section),
and the Z2 factor accounts for the world-sheet parity � ! ��, a symmetry acting on the
background by B

mn

! �B
mn

.

2.2 O(k,k)-covariant formulation

The mass of the states and the level matching conditions are
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These can be written in terms of the momentum and winding numbers using an
O(k, k)-covariant language by introducing the vector Z and ⌘, the invariant metric of
O(k, k,R), as follows
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Scalars

and similarly for M3± after exchanging left and right. The scalar masses come from the

potential

4 detM = m�(|M++|2 � |M+�|2) (1.29)

+M3+
�
M�3M+� �M��M+3

�
+M3� �

M+3M�+ �M++M�3
�

where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries

ea

ea

MD ⇥ S1

MD ⇥ T d

4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.11) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the
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1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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0 M t 1 M tA

0 0 0 ea

1

CCCCCCA

0

BBBBBB@

@µ

J

J̄

dxµ

1

CCCCCCA
, (2.50)

M i|̄(x)

Am

Ām
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.
1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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the unusual i factor is due to the use of Euclidean world-sheet metric. On the other
hand, (2.3) implies the quantisation condition
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ê
a

m [n
m

+ (g
mn

+B
mn

)!n] , (2.8a)

p
aR

=
1p
2
ê
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a

m�abê
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The pairs (p
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) transform as vectors under O(k, k,R) and they expand the 2k-
dimensional momentum lattice �(k,k) ⇢ R2k. From (2.8) one sees they satisfy
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2 2Z (2.10)

and therefore they form an even (k, k) Lorentzian lattice. In addition, self-duality of �(k,k)

can be proven, namely, �(k,k) = �(k,k)⇤, after modular invariance is imposed [14, 15].

The space of inequivalent lattices and inequivalent backgrounds reduces to

O(k, k,R)
O(k,R)⇥O(k,R)⇥O(k, k,Z)⇥ Z2

. (2.11)

where O(k, k,Z) is the T-duality group (we give more details about it in the next section),
and the Z2 factor accounts for the world-sheet parity � ! ��, a symmetry acting on the
background by B

mn

! �B
mn

.

2.2 O(k,k)-covariant formulation

The mass of the states and the level matching conditions are
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These can be written in terms of the momentum and winding numbers using an
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O(k, k,R), as follows
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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J i(z) ! J̄ i(z̄)

J i(z) ! J̄ i(z̄)

Y L(z) ! Y R(z̄)

SU(2)⇥ SU(2)

N = N̄ = 0

Nx = N̄x = 0

p = ±2

p = 0

M = Md ⇥ S1

Md ⇥ S1 ⇥ S̃1

M ij

V ij ⇠ J iJ j eikX

p̃ = ±2

d2

6d

4

0

BBBBBB@

Ea

E
L

E
R

Ea

1

CCCCCCA
=

0

BBBBBB@

ea ◆eaA ◆eaĀ ◆eaB
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and similarly for M3± after exchanging left and right. The scalar masses come from the

potential

4 detM = m�(|M++|2 � |M+�|2) (1.29)

+M3+
�
M�3M+� �M��M+3

�
+M3� �

M+3M�+ �M++M�3
�

where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries

ea

ea

MD ⇥ S1

MD ⇥ T d

4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.11) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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E 0
A0(y, ỹ)
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2d vectors 2n vectors

d2 scalars

n2 scalars

Fields of reduced theory

U(1)d ⇥ U(1)d

SU(3)⇥ SU(3)

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(2)⇥ SU(3)⇥ SU(2)⇥ SU(3)

SU(3)⇥ U(1)⇥ SU(3)⇥ U(1)

SU(2)⇥ SU(2)

SU(3)⇥U(1)⇥ SU(3)⇥U(1)

SU(2)⇥ SU(2)⇥U(1)⇥ SU(2)⇥ SU(2)⇥U(1)

SU(2)⇥ U(1)⇥U(1)⇥ SU(2)⇥ U(1)⇥U(1)

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.11)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.

9

0

BBBBBB@

Ea

E
L

E
R

Ea

1

CCCCCCA
=

0

BBBBBB@

ea ◆eaA ◆eaĀ ◆eaB
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.
1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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the unusual i factor is due to the use of Euclidean world-sheet metric. On the other
hand, (2.3) implies the quantisation condition

Y m(⌧, � + 2⇡)� Y m(⌧, �) = �(pm
L

� pm
R

)
2⇡p
2
= 2⇡!m . (2.7)

These give

p
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ê
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m [n
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+ (g
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+B
mn

)!n] , (2.8a)

p
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=
1p
2
ê
a

m [n
m

� (g
mn

� B
mn

)!n] . (2.8b)

The vectors ê
a

constitute the canonical basis for the dual lattice ⇤k⇤, i.e. ê
a

mea
n

= �m
n

,
and thus they satisfy

êtê = g�1
�) ê

a

m�abê
b

n = gmn

�
. (2.9)

The pairs (p
aL

, p
aR
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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and similarly for M3± after exchanging left and right. The scalar masses come from the

potential

4 detM = m�(|M++|2 � |M+�|2) (1.29)

+M3+
�
M�3M+� �M��M+3

�
+M3� �

M+3M�+ �M++M�3
�

where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries

ea

ea

MD ⇥ S1

MD ⇥ T d

4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.11) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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2d vectors 2n vectors

d2 scalars

n2 scalars

Fields of reduced theory

U(1)d ⇥ U(1)d

SU(3)⇥ SU(3)

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(2)⇥ SU(3)⇥ SU(2)⇥ SU(3)

SU(3)⇥ U(1)⇥ SU(3)⇥ U(1)

SU(2)⇥ SU(2)

SU(3)⇥U(1)⇥ SU(3)⇥U(1)

SU(2)⇥ SU(2)⇥U(1)⇥ SU(2)⇥ SU(2)⇥U(1)

SU(2)⇥ U(1)⇥U(1)⇥ SU(2)⇥ U(1)⇥U(1)

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.11)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Āı̄(x)

J i(y, ỹ)

J̄ ı̄(y, ỹ)
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0 1 M �MĀ
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.
1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.

7

the unusual i factor is due to the use of Euclidean world-sheet metric. On the other
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a

constitute the canonical basis for the dual lattice ⇤k⇤, i.e. ê
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dimensional momentum lattice �(k,k) ⇢ R2k. From (2.8) one sees they satisfy
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and therefore they form an even (k, k) Lorentzian lattice. In addition, self-duality of �(k,k)

can be proven, namely, �(k,k) = �(k,k)⇤, after modular invariance is imposed [14, 15].

The space of inequivalent lattices and inequivalent backgrounds reduces to

O(k, k,R)
O(k,R)⇥O(k,R)⇥O(k, k,Z)⇥ Z2

. (2.11)

where O(k, k,Z) is the T-duality group (we give more details about it in the next section),
and the Z2 factor accounts for the world-sheet parity � ! ��, a symmetry acting on the
background by B

mn

! �B
mn

.

2.2 O(k,k)-covariant formulation

The mass of the states and the level matching conditions are
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Ām

gµm ± Bµm

gmn +Bmn

N = 0, N̄ = 1

Ai(x)
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Āı̄(x)

J i(y, ỹ)
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and similarly for M3± after exchanging left and right. The scalar masses come from the

potential

4 detM = m�(|M++|2 � |M+�|2) (1.29)

+M3+
�
M�3M+� �M��M+3

�
+M3� �

M+3M�+ �M++M�3
�

where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries

ea

ea

MD ⇥ S1

MD ⇥ T d

4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.11) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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E 0
A0(y, ỹ)
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2d vectors 2n vectors

d2 scalars
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Fields of reduced theory

U(1)d ⇥ U(1)d

SU(3)⇥ SU(3)
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.11)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.
1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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the unusual i factor is due to the use of Euclidean world-sheet metric. On the other
hand, (2.3) implies the quantisation condition
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a

mea
n

= �m
n

,
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The pairs (p
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) transform as vectors under O(k, k,R) and they expand the 2k-
dimensional momentum lattice �(k,k) ⇢ R2k. From (2.8) one sees they satisfy
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L

� p2
R

= 2!mn
m

2 2Z (2.10)

and therefore they form an even (k, k) Lorentzian lattice. In addition, self-duality of �(k,k)

can be proven, namely, �(k,k) = �(k,k)⇤, after modular invariance is imposed [14, 15].

The space of inequivalent lattices and inequivalent backgrounds reduces to

O(k, k,R)
O(k,R)⇥O(k,R)⇥O(k, k,Z)⇥ Z2

. (2.11)

where O(k, k,Z) is the T-duality group (we give more details about it in the next section),
and the Z2 factor accounts for the world-sheet parity � ! ��, a symmetry acting on the
background by B

mn

! �B
mn

.

2.2 O(k,k)-covariant formulation

The mass of the states and the level matching conditions are

M2 = 2(N + N̄ � 2) +
�
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+ p2
R

�
, (2.12a)

0 = 2(N � N̄) +
�
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. (2.12b)

These can be written in terms of the momentum and winding numbers using an
O(k, k)-covariant language by introducing the vector Z and ⌘, the invariant metric of
O(k, k,R), as follows
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0 1 M �MĀ
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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J i(z) ! J̄ i(z̄)

J i(z) ! J̄ i(z̄)

Y L(z) ! Y R(z̄)

SU(2)⇥ SU(2)

N = N̄ = 0

Nx = N̄x = 0

p = ±2

p = 0

M = Md ⇥ S1

Md ⇥ S1 ⇥ S̃1

M ij

V ij ⇠ J iJ j eikX

p̃ = ±2

d2

6d

4

0

BBBBBB@

Ea

E
L

E
R

Ea

1

CCCCCCA
=

0

BBBBBB@

ea ◆eaA ◆eaĀ ◆eaB
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0 M t 1 M tA

0 0 0 ea

1

CCCCCCA

0

BBBBBB@

@µ

J

J̄

dxµ

1

CCCCCCA
, (2.50)

M i|̄(x)

Am

Ām
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E 0
A0(y, ỹ)
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and similarly for M3± after exchanging left and right. The scalar masses come from the

potential

4 detM = m�(|M++|2 � |M+�|2) (1.29)

+M3+
�
M�3M+� �M��M+3

�
+M3� �

M+3M�+ �M++M�3
�

where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries

ea

ea

MD ⇥ S1

MD ⇥ T d

4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.11) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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E 0
A0(y, ỹ)
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2d vectors 2n vectors

d2 scalars

n2 scalars

Fields of reduced theory

U(1)d ⇥ U(1)d

SU(3)⇥ SU(3)

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(2)⇥ SU(3)⇥ SU(2)⇥ SU(3)
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.11)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Ām

Ai(x)
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0 1 M �MĀ
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.
1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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the unusual i factor is due to the use of Euclidean world-sheet metric. On the other
hand, (2.3) implies the quantisation condition
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dimensional momentum lattice �(k,k) ⇢ R2k. From (2.8) one sees they satisfy
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2 2Z (2.10)

and therefore they form an even (k, k) Lorentzian lattice. In addition, self-duality of �(k,k)

can be proven, namely, �(k,k) = �(k,k)⇤, after modular invariance is imposed [14, 15].

The space of inequivalent lattices and inequivalent backgrounds reduces to

O(k, k,R)
O(k,R)⇥O(k,R)⇥O(k, k,Z)⇥ Z2

. (2.11)

where O(k, k,Z) is the T-duality group (we give more details about it in the next section),
and the Z2 factor accounts for the world-sheet parity � ! ��, a symmetry acting on the
background by B

mn

! �B
mn

.

2.2 O(k,k)-covariant formulation

The mass of the states and the level matching conditions are
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These can be written in terms of the momentum and winding numbers using an
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O(k, k,R), as follows
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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E 0
A0(y, ỹ)
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and similarly for M3± after exchanging left and right. The scalar masses come from the

potential

4 detM = m�(|M++|2 � |M+�|2) (1.29)

+M3+
�
M�3M+� �M��M+3

�
+M3� �

M+3M�+ �M++M�3
�

where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries

ea

ea

MD ⇥ S1

MD ⇥ T d

4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.11) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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2d vectors 2n vectors

d2 scalars

n2 scalars

Fields of reduced theory

U(1)d ⇥ U(1)d

SU(3)⇥ SU(3)

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(2)⇥ SU(3)⇥ SU(2)⇥ SU(3)

SU(3)⇥ U(1)⇥ SU(3)⇥ U(1)

SU(2)⇥ SU(2)

SU(3)⇥U(1)⇥ SU(3)⇥U(1)

SU(2)⇥ SU(2)⇥U(1)⇥ SU(2)⇥ SU(2)⇥U(1)

SU(2)⇥ U(1)⇥U(1)⇥ SU(2)⇥ U(1)⇥U(1)

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.11)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.
1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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the unusual i factor is due to the use of Euclidean world-sheet metric. On the other
hand, (2.3) implies the quantisation condition

Y m(⌧, � + 2⇡)� Y m(⌧, �) = �(pm
L

� pm
R

)
2⇡p
2
= 2⇡!m . (2.7)

These give

p
aL

=
1p
2
ê
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m [n
m
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0 1 M �MĀ
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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E 0
A0(y, ỹ)
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and similarly for M3± after exchanging left and right. The scalar masses come from the

potential

4 detM = m�(|M++|2 � |M+�|2) (1.29)

+M3+
�
M�3M+� �M��M+3

�
+M3� �

M+3M�+ �M++M�3
�

where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries

ea

ea

MD ⇥ S1

MD ⇥ T d

4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.11) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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2d vectors 2n vectors

d2 scalars

n2 scalars

Fields of reduced theory

U(1)d ⇥ U(1)d

SU(3)⇥ SU(3)

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(2)⇥ SU(3)⇥ SU(2)⇥ SU(3)

SU(3)⇥ U(1)⇥ SU(3)⇥ U(1)

SU(2)⇥ SU(2)

SU(3)⇥U(1)⇥ SU(3)⇥U(1)

SU(2)⇥ SU(2)⇥U(1)⇥ SU(2)⇥ SU(2)⇥U(1)

SU(2)⇥ U(1)⇥U(1)⇥ SU(2)⇥ U(1)⇥U(1)

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.11)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.
1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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the unusual i factor is due to the use of Euclidean world-sheet metric. On the other
hand, (2.3) implies the quantisation condition
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2
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� (g
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� B
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)!n] . (2.8b)
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constitute the canonical basis for the dual lattice ⇤k⇤, i.e. ê
a

mea
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n

,
and thus they satisfy

êtê = g�1
�) ê

a

m�abê
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n = gmn

�
. (2.9)

The pairs (p
aL

, p
aR

) transform as vectors under O(k, k,R) and they expand the 2k-
dimensional momentum lattice �(k,k) ⇢ R2k. From (2.8) one sees they satisfy

p2
L

� p2
R

= 2!mn
m

2 2Z (2.10)

and therefore they form an even (k, k) Lorentzian lattice. In addition, self-duality of �(k,k)

can be proven, namely, �(k,k) = �(k,k)⇤, after modular invariance is imposed [14, 15].

The space of inequivalent lattices and inequivalent backgrounds reduces to

O(k, k,R)
O(k,R)⇥O(k,R)⇥O(k, k,Z)⇥ Z2

. (2.11)

where O(k, k,Z) is the T-duality group (we give more details about it in the next section),
and the Z2 factor accounts for the world-sheet parity � ! ��, a symmetry acting on the
background by B

mn

! �B
mn

.

2.2 O(k,k)-covariant formulation

The mass of the states and the level matching conditions are
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�
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�
, (2.12a)
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�
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�
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These can be written in terms of the momentum and winding numbers using an
O(k, k)-covariant language by introducing the vector Z and ⌘, the invariant metric of
O(k, k,R), as follows
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ê
a

m [n
m

� (g
mn

� B
mn

)!n] . (2.8b)

The vectors ê
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where O(k, k,Z) is the T-duality group (we give more details about it in the next section),
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J̄ ı̄(y, ỹ)
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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@y@ỹ( ) = 0

N = 1

p = �p̃ = ±1

(kL = ±2)

N̄ = 0

Ai ! Āi
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0 M t 1 M tA

0 0 0 ea

1

CCCCCCA

0

BBBBBB@

1

J

J̄

1

1

CCCCCCA
, (2.49)

0

BBBBBB@

Ea

E
L

E
R

Ea

1

CCCCCCA
=

0

BBBBBB@

ea ◆eaA ◆eaĀ ◆eaB
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H = H�1

g11, g22, g12

B12

⌧ = 1
g11

(g12 + i
p
g)

⇢ = B12 + i
p
g

⌧ = ⇢

⌧, ⇢

i

1

R 6= 1( 6= R̃)

U(1)⇥ U(1)

SU(2)⇥ SU(2)

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(3)⇥ SU(3)

SU(4)⇥ SU(2)⇥ SU(4)⇥ SU(2)

M ij

Mmn

M↵�

7

J i(z)J j(0) ⇠ �ij

z2
+

i ✏ijk

z
Jk(0) (0.5)

= ✏2

=
p
✏

M±±,M±⌥

EA(x, y, ỹ) =
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and similarly for M3± after exchanging left and right. The scalar masses come from the

potential

4 detM = m�(|M++|2 � |M+�|2) (1.29)

+M3+
�
M�3M+� �M��M+3

�
+M3� �

M+3M�+ �M++M�3
�

where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries

ea

ea

MD ⇥ S1

MD ⇥ T d

4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.11) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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H = dB + Aa ^ Fa + fabcAa ^ Ab ^ Ac � Āa ^ F̄a � f̄abcĀa ^ Āb ^ Āc
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µ⌫ = 2@[µA
ã
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µM

ik

M ij ! ✏ �ij33 +M 0ij

(gµy ± Bµy)

(gyy)

Ai

i = ±, 3

i = ±, 3

A

6

+
1

4
Maa0F

a
µ⌫F̄

a0µ⌫ +DµMaa0D
µMaa0 � 1

12
fabcf̄a0b0c0M

aa0M bb0M cc0

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
F i
µ⌫F

iµ⌫ +
1

4
F̄ i
µ⌫F̄

iµ⌫ +
1

4
M ijF i

µ⌫F̄
jµ⌫ +DµM

ijDµM ij

�detM

where [Mariana: ser consistentes en H con la definicion en 2.102 (que debe-

riamos sacar quizas si ya aparece aca?)]

Hµ⌫⇢ = @µB⌫⇢ + Aa
[µF

a
⌫⇢] + fabcAa

µA
b
⌫A

c
µ + Aã
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µA
b̃
⌫A

c̃
µ

F a
µ⌫ = 2@[µA

a
⌫] + fabcAb

µA
c
⌫ , F ã
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F i = dAi + ✏ijkAj ^ Ak

F a = dAa + fa
bc A

b ^ Ac

DµM ii = @µM ii + f ijkAj
µM

ki + f ijkĀj
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ã
⌫⇢] + f ãb̃c̃Aã
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µ⌫ = 2@[µA
ã
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H = dB + Ai ^ F i + Āi ^ F̄ i
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[µF
ã
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µ⌫ = 2@[µA
ã
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Effective action from string theory

Computing 3-point functions  <V V V> at a point of enhancement we read off

Higgs mechanism

acquire mass2
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µ⌫ = 2@[µA
ã
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⌫] + f ãb̃c̃Ab̃

µA
c̃
⌫ ,

(0.4)

H = dB + Ai ^ F i + ✏ijkAi ^ Aj ^ Ak � Āi ^ F̄ i � ✏ijkĀi ^ Āj ^ Āk
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F i = dAi + ✏ijkAj ^ Ak

F a = dAa + fa
bc A

b ^ Ac

DµM ii = @µM ii + f ijkAj
µM

ki + f ijkĀj
µM

ik

DµMaa0 = @µMaa0 + fa
bcA

b
µM

ca0 + fa0
b0c0Ā
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Ā

M

M33

M ij

: A±
µ

Ā±
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Effective action from string theory

Computing 3-point functions  <V V V> at a point of enhancement we read off

Higgs mechanism

acquire mass2

G x G → Ud(1) x Ud(1)
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H = dB + Ai ^ F i + Āi ^ F̄ i
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Āi

6

+
1

4
Maa0F

a
µ⌫F̄

a0µ⌫ +DµMaa0D
µMaa0 � 1

12
fabcf̄a0b0c0M

aa0M bb0M cc0

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
F i
µ⌫F

iµ⌫ +
1

4
F̄ i
µ⌫F̄

iµ⌫ +
1

4
M ijF i

µ⌫F̄
jµ⌫ +DµM

ijDµM ij

�detM

where [Mariana: ser consistentes en H con la definicion en 2.102 (que debe-

riamos sacar quizas si ya aparece aca?)]

Hµ⌫⇢ = @µB⌫⇢ + Aa
[µF

a
⌫⇢] + fabcAa

µA
b
⌫A

c
µ + Aã
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µ⌫ = 2@[µA
ã
⌫] + f ãb̃c̃Ab̃

µA
c̃
⌫ ,

(0.4)

H = dB + Ai ^ F i + ✏ijkAi ^ Aj ^ Ak � Āi ^ F̄ i � ✏ijkĀi ^ Āj ^ Āk
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H = dB + Aa ^ Fa + fabcAa ^ Ab ^ Ac � Āa ^ F̄a � f̄abcĀa ^ Āb ^ Āc
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ã
⌫⇢] + f ãb̃c̃Aã
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µM

ik

DµMaa0 = @µMaa0 + fa
bcA

b
µM

ca0 + fa0
b0c0Ā

b0
µM

ac0

M ij ! ✏ �ij33 +M 0ij

Mmn = vmn +M 0mn

�(g +B)

(gµy ± Bµy)

(gyy)

Ai

6

i = ±, 3

i = ±, 3

A

A↵

Āi
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H = H�1

g11, g22, g12

B12

⌧ = 1
g11

(g12 + i
p
g)

⇢ = B12 + i
p
g

⌧ = ⇢

7

i = ±, 3

i = ±, 3

A

A↵

Āi
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Ā

M

⇠ vvt

M33

M ij

: A±
µ

Ā±
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Effective action from string theory

Computing 3-point functions  <V V V> at a point of enhancement we read off

Higgs mechanism
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ã
⌫] + f ãb̃c̃Ab̃
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µ⌫ = 2@[µA
ã
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F i = dAi + ✏ijkAj ^ Ak

F a = dAa + fa
bc A

b ^ Ac

DµM ii = @µM ii + f ijkAj
µM

ki + f ijkĀj
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ã
⌫⇢] + f ãb̃c̃Aã
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µM

ik

DµMaa0 = @µMaa0 + fa
bcA

b
µM

ca0 + fa0
b0c0Ā
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Ā

M

M33

M ij

: A±
µ

Ā±
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Ā

M

M↵�

⇠ vvt

M33

M ij

: A±
µ

Ā±
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Effective action from string theory

Computing 3-point functions  <V V V> at a point of enhancement we read off

Higgs mechanism
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ã
⌫⇢] + f ãb̃c̃Aã

µA
b̃
⌫A

c̃
µ

F a
µ⌫ = 2@[µA

a
⌫] + fabcAb

µA
c
⌫ , F ã
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µA
b̃
⌫A

c̃
µ

F a
µ⌫ = 2@[µA

a
⌫] + fabcAb

µA
c
⌫ , F ã

µ⌫ = 2@[µA
ã
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Ā

M

M33

M ij

: A±
µ

Ā±
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Generalized Scherk-Schwarz reduction of DFT action

where M,N = 1, ..., 2D are double space-time indices. Therefore, the O(D,D) metric
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where 1D is the D ⇥ D identity matrix. Note that ⌘MN is invariant under ordinary

di↵emorphisms. Defining

⌘AB = ⌘(EA, EB), (2.12)

where A,B = 1, .., 2D are frame indices, it is easy to see that when the frame EA is of

the form (2.9), ⌘AB has also the o↵-diagonal form
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One can alternatively use a right-left basis C�, C+ by rotating the A,B frame indices with
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As in ordinary geometry, the generalized tangent bundle admits a generalized metric

defined as

H = SABEA ⌦ EB , (2.16)

where SAB = diag(sab, sab), sab being the Minkowski metric.

In Scherk-Schwarz compactifications [14] one splits the frame into a piece that depends

on the external coordinates x and a piece that involves the internal ones y. The same is

done in generalized Scherk-Schwarz compactifications [8], namely

EA(x, y) = UA
A0
(x)E 0

A0(y) . (2.17)

23

where M,N = 1, ..., 2D are double space-time indices. Therefore, the O(D,D) metric

⌘MN has the following o↵-diagonal form

⌘MN = ⌘MN =

0

@ 0 1D

1D 0

1

A , (2.11)

where 1D is the D ⇥ D identity matrix. Note that ⌘MN is invariant under ordinary

di↵emorphisms. Defining

⌘AB = ⌘(EA, EB), (2.12)

where A,B = 1, .., 2D are frame indices, it is easy to see that when the frame EA is of

the form (2.9), ⌘AB has also the o↵-diagonal form

⌘AB = ⌘AB =

0

@ 0 1D

1D 0

1

A . (2.13)

One can alternatively use a right-left basis C�, C+ by rotating the A,B frame indices with

RA
B =

1p
2

0

@1 �1

1 1

1

A , (2.14)

namely (EC)A = RA
BEB. In this basis ⌘AB has the diagonal form

(R⌘RT )AB = (R⌘RT )AB =

0

@�1D 0

0 1D

1

A . (2.15)

As in ordinary geometry, the generalized tangent bundle admits a generalized metric

defined as

H = SABEA ⌦ EB , (2.16)

where SAB = diag(sab, sab), sab being the Minkowski metric.

In Scherk-Schwarz compactifications [14] one splits the frame into a piece that depends

on the external coordinates x and a piece that involves the internal ones y. The same is

done in generalized Scherk-Schwarz compactifications [8], namely

EA(x, y) = UA
A0
(x)E 0

A0(y) . (2.17)

23

where M,N = 1, ..., 2D are double space-time indices. Therefore, the O(D,D) metric

⌘MN has the following o↵-diagonal form

⌘MN = ⌘MN =

0

@ 0 1D

1D 0

1

A , (2.11)

where 1D is the D ⇥ D identity matrix. Note that ⌘MN is invariant under ordinary

di↵emorphisms. Defining

⌘AB = ⌘(EA, EB), (2.12)

where A,B = 1, .., 2D are frame indices, it is easy to see that when the frame EA is of

the form (2.9), ⌘AB has also the o↵-diagonal form

⌘AB = ⌘AB =

0

@ 0 1D

1D 0

1

A . (2.13)

One can alternatively use a right-left basis C�, C+ by rotating the A,B frame indices with

RA
B =

1p
2

0

@1 �1

1 1

1

A , (2.14)

namely (EC)A = RA
BEB. In this basis ⌘AB has the diagonal form

(R⌘RT )AB = (R⌘RT )AB =

0

@�1D 0

0 1D

1

A . (2.15)

As in ordinary geometry, the generalized tangent bundle admits a generalized metric

defined as

H = SABEA ⌦ EB , (2.16)

where SAB = diag(sab, sab), sab being the Minkowski metric.

In Scherk-Schwarz compactifications [14] one splits the frame into a piece that depends

on the external coordinates x and a piece that involves the internal ones y. The same is

done in generalized Scherk-Schwarz compactifications [8], namely

EA(x, y) = UA
A0
(x)E 0

A0(y) . (2.17)

23

O(D,D)
O(D)⇥O(D)

(LV U)M = V P@PU
M + (@MVP � @PV

M)UP

(LV1V2)
I = V J

1 @JV
I
2 + (@IV1J � @JV

I
1 )V

J
2

[V1, V2]C =
1

2
(LV1V2 � LV2V1) (2.6)

LEAEB = FAB
CEC (2.7)

eâ
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sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.9)

A generalized frame EA on this bundle is a set of linearly independent generalized vectors
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where M,N = 1, ..., 2D are double space-time indices. Therefore, the O(D,D) metric

⌘MN has the following o↵-diagonal form

⌘MN = ⌘MN =

0

@ 0 1D

1D 0

1

A , (2.11)

where 1D is the D ⇥ D identity matrix. Note that ⌘MN is invariant under ordinary

di↵emorphisms. Defining

⌘AB = ⌘(EA, EB), (2.12)

where A,B = 1, .., 2D are frame indices, it is easy to see that when the frame EA is of

the form (2.9), ⌘AB has also the o↵-diagonal form

⌘AB = ⌘AB =

0

@ 0 1D

1D 0

1

A . (2.13)

One can alternatively use a right-left basis C�, C+ by rotating the A,B frame indices with

RA
B =

1p
2

0

@1 �1

1 1

1

A , (2.14)

namely (EC)A = RA
BEB. In this basis ⌘AB has the diagonal form

(R⌘RT )AB = (R⌘RT )AB =

0

@�1D 0

0 1D

1

A . (2.15)

As in ordinary geometry, the generalized tangent bundle admits a generalized metric

defined as
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where SAB = diag(sab, sab), sab being the Minkowski metric.
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on the external coordinates x and a piece that involves the internal ones y. The same is
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defined as
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where SAB = diag(sab, sab), sab being the Minkowski metric.

In Scherk-Schwarz compactifications [14] one splits the frame into a piece that depends

on the external coordinates x and a piece that involves the internal ones y. The same is
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.

2.4 E↵ective action from DFT
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]
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where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.20) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.

42

geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.

2.4 E↵ective action from DFT

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
HIJF

Iµ⌫F J
µ⌫ + (DµH)IJ(D

µH)IJ (2.88)

� 1

12
fIJKfLMN

�
HILHJMHKN � 3HIL⌘JM⌘KN + 2 ⌘IL⌘JM⌘KN

�

F I
µ⌫ = 2@[µA

I
⌫] � f I

JKA
J
µA

K
⌫ ,

H = dB + F I ^ AI (2.89)

and the covariant derivative of the scalars is

(DµH)IJ = (@µH)IJ + fK
LIA

L
µHKJ + fK

LJA
L
µHIK . (2.90)

I = i, ı̄

⇡

0

@ 1 M

M t 1

1

A (2.91)

Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.

42

geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.

2.4 E↵ective action from DFT

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
HIJF

Iµ⌫F J
µ⌫ + (DµH)IJ(D

µH)IJ (2.88)

� 1

12
fIJKfLMN

�
HILHJMHKN � 3HIL⌘JM⌘KN + 2 ⌘IL⌘JM⌘KN

�

F I = dAI + f I
JK AJ ^ AK

H = dB + F I ^ AI (2.89)

and the covariant derivative of the scalars is

(DµH)IJ = (@µH)IJ + fK
LIA

L
µHKJ + fK

LJA
L
µHIK . (2.90)

I = i, ı̄

⇡

0

@ 1 M

M t 1

1

A (2.91)

Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.

42

=
p
✏

M±±,M±⌥

EA(x, y, ỹ) =
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.94)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.22) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]

Seff =

Z
ddx

p
ge�2'

✓
⇤� 2(d� 26)

3↵0 +R+ 4@µ'@µ'� 1

12
Hµ⌫⇢H

µ⌫⇢

�1

4
HIJF

Iµ⌫F J
µ⌫ +

1

8
(DµH)IJ(D

µH)IJ (2.109)

� 1

12↵0fIJKfLMN

�
HILHJMHKN � 3HIL⌘JM⌘KN + 2 ⌘IL⌘JM⌘KN

�◆

where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.24) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

FA
µ⌫ and Hµ⌫⇢ are [Mariana: ya estan definidos antes en (0.29) (ser constsentes).

Repetir aca?]

F I
µ⌫ = 2@[µA

I
⌫] � f I

JKA
J
µA

K
⌫ ,

Hµ⌫⇢ = 3@[µB⌫⇢] � fIJKA
I
µA

J
⌫A

K
⇢ + 3@[µA

I
⌫A⇢]I , (2.110)

and the covariant derivative of the scalars is

(DµH)IJ = (@µH)IJ + fK
LIA

L
µHKJ + fK

LJA
L
µHIK . (2.111)

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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where M,N = 1, ..., 2D are double space-time indices. Therefore, the O(D,D) metric

⌘MN has the following o↵-diagonal form

⌘MN = ⌘MN =

0

@ 0 1D

1D 0

1

A , (2.11)

where 1D is the D ⇥ D identity matrix. Note that ⌘MN is invariant under ordinary

di↵emorphisms. Defining

⌘AB = ⌘(EA, EB), (2.12)

where A,B = 1, .., 2D are frame indices, it is easy to see that when the frame EA is of

the form (2.9), ⌘AB has also the o↵-diagonal form

⌘AB = ⌘AB =

0

@ 0 1D

1D 0

1

A . (2.13)

One can alternatively use a right-left basis C�, C+ by rotating the A,B frame indices with

RA
B =

1p
2

0

@1 �1

1 1

1

A , (2.14)

namely (EC)A = RA
BEB. In this basis ⌘AB has the diagonal form

(R⌘RT )AB = (R⌘RT )AB =

0

@�1D 0

0 1D

1

A . (2.15)

As in ordinary geometry, the generalized tangent bundle admits a generalized metric

defined as

H = SABEA ⌦ EB , (2.16)

where SAB = diag(sab, sab), sab being the Minkowski metric.

In Scherk-Schwarz compactifications [14] one splits the frame into a piece that depends

on the external coordinates x and a piece that involves the internal ones y. The same is

done in generalized Scherk-Schwarz compactifications [8], namely

EA(x, y) = UA
A0
(x)E 0

A0(y) . (2.17)
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.

2.4 E↵ective action from DFT

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
HIJF

Iµ⌫F J
µ⌫ + (DµH)IJ(D

µH)IJ (2.88)

� 1

12
fIJKfLMN
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HILHJMHKN � 3HIL⌘JM⌘KN + 2 ⌘IL⌘JM⌘KN

�◆

Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]

Seff =

Z
ddx
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� 1

12↵0fIJKfLMN

�
HILHJMHKN � 3HIL⌘JM⌘KN + 2 ⌘IL⌘JM⌘KN

�◆

where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.20) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.

2.4 E↵ective action from DFT
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]

Seff =

Z
ddx
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� 1
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where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.20) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.

2.4 E↵ective action from DFT

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
HIJF

Iµ⌫F J
µ⌫ + (DµH)IJ(D

µH)IJ (2.88)

� 1

12
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�
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I
⌫] � f I

JKA
J
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K
⌫ ,

H = dB + F I ^ AI (2.89)

and the covariant derivative of the scalars is

(DµH)IJ = (@µH)IJ + fK
LIA

L
µHKJ + fK

LJA
L
µHIK . (2.90)

I = i, ı̄
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0

@ 1 M

M t 1

1

A (2.91)

Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.

2.4 E↵ective action from DFT

L = R� 1
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H = dB + F I ^ AI (2.89)

and the covariant derivative of the scalars is

(DµH)IJ = (@µH)IJ + fK
LIA

L
µHKJ + fK

LJA
L
µHIK . (2.90)

I = i, ı̄

⇡

0
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M t 1
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A (2.91)

Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.94)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.22) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]
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Z
ddx
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where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.24) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

FA
µ⌫ and Hµ⌫⇢ are [Mariana: ya estan definidos antes en (0.29) (ser constsentes).

Repetir aca?]

F I
µ⌫ = 2@[µA

I
⌫] � f I

JKA
J
µA

K
⌫ ,

Hµ⌫⇢ = 3@[µB⌫⇢] � fIJKA
I
µA

J
⌫A

K
⇢ + 3@[µA

I
⌫A⇢]I , (2.110)

and the covariant derivative of the scalars is

(DµH)IJ = (@µH)IJ + fK
LIA

L
µHKJ + fK

LJA
L
µHIK . (2.111)

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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Claim: this action reproduces the string theory action compactifications 
on Td close to enhancement point
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.4)
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[Mariana: unidades de vuelta] in (2.100), we can straightforwardly see the breaking

of SU(2)L ⇥ SU(2)R into U(1)L ⇥ U(1)R. We see here the same features discussed in

section 0.1: the A± bosons acquire a mass proportional to m� coming from the terms

(DµM
±3)2 = (@µM

±3 ± 2m�A
±
µ ⌥ 2A3M±3 ⌥ Ā±M±⌥ ± Ā⌥M±±)2 (1.28)

and similarly for M3± after exchanging left and right. The scalar masses come from the

potential

4 detM = m�(|M++|2 � |M+�|2) (1.29)

+M3+
�
M�3M+� �M��M+3

�
+M3� �

M+3M�+ �M++M�3
�

where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries

ea
4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.4)
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[Mariana: unidades de vuelta] in (2.100), we can straightforwardly see the breaking

of SU(2)L ⇥ SU(2)R into U(1)L ⇥ U(1)R. We see here the same features discussed in

section 0.1: the A± bosons acquire a mass proportional to m� coming from the terms

(DµM
±3)2 = (@µM

±3 ± 2m�A
±
µ ⌥ 2A3M±3 ⌥ Ā±M±⌥ ± Ā⌥M±±)2 (1.28)

and similarly for M3± after exchanging left and right. The scalar masses come from the

potential

4 detM = m�(|M++|2 � |M+�|2) (1.29)

+M3+
�
M�3M+� �M��M+3

�
+M3� �

M+3M�+ �M++M�3
�

where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
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↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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coordinates is of the form (2.17). In this case [Mariana: confuso esto? ademas

verifiquen que no haya hecho lio entre E e E 0]

fABC = fMNP E 0
A
ME 0

B
NE 0

C
P = (LE0

A
E 0

B)
ME 0

CM , (2.34)

and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡ . (2.35)

y ⇠ y + 2⇡Rsd . (2.36)

The form frame along the circle is

ey = � (dy + V1) , (2.37)
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.4)
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(LV U)M = V P@PU
M + (@MVP � @PV

M)UP

LEAEB = FAB
CEC (2.6)

eâ

Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.7)

A generalized frame EA on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame ea for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆eae
b = �ab)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
0

@Ea

Ea

1

A = eB

0

@ea

ea

1

A . (2.8)

This gives

Ea = ea � ◆eaB , (2.9)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

There exists a natural pairing between generalized vectors, namely

V1 · V2 = ◆v1⇠2 + ◆v2⇠1 = ⌘(V1, V2) = V M
1 ⌘MNV

N
2 , (2.10)

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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coordinates is of the form (2.17). In this case [Mariana: confuso esto? ademas

verifiquen que no haya hecho lio entre E e E 0]

fABC = fMNP E 0
A
ME 0

B
NE 0

C
P = (LE0

A
E 0

B)
ME 0

CM , (2.34)

and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡Rsd . (2.35)

The form frame along the circle is

ey = � (dy + V1) , (2.36)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a
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coordinates is of the form (2.17). In this case [Mariana: confuso esto? ademas

verifiquen que no haya hecho lio entre E e E 0]

fABC = fMNP E 0
A
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B
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C
P = (LE0

A
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and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡ . (2.35)

p
gyy = R

y ⇠ y + 2⇡Rsd . (2.36)
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coordinates is of the form (2.17). In this case [Mariana: confuso esto? ademas

verifiquen que no haya hecho lio entre E e E 0]

fABC = fMNP E 0
A
ME 0

B
NE 0

C
P = (LE0

A
E 0

B)
ME 0

CM , (2.34)

and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡ . (2.35)

p
gyy = R

gµy
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[Mariana: unidades de vuelta] in (2.100), we can straightforwardly see the breaking

of SU(2)L ⇥ SU(2)R into U(1)L ⇥ U(1)R. We see here the same features discussed in

section 0.1: the A± bosons acquire a mass proportional to m� coming from the terms

(DµM
±3)2 = (@µM

±3 ± 2m�A
±
µ ⌥ 2A3M±3 ⌥ Ā±M±⌥ ± Ā⌥M±±)2 (1.28)

and similarly for M3± after exchanging left and right. The scalar masses come from the

potential

4 detM = m�(|M++|2 � |M+�|2) (1.29)

+M3+
�
M�3M+� �M��M+3

�
+M3� �

M+3M�+ �M++M�3
�

where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries

ea
4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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coordinates is of the form (2.17). In this case [Mariana: confuso esto? ademas

verifiquen que no haya hecho lio entre E e E 0]

fABC = fMNP E 0
A
ME 0

B
NE 0

C
P = (LE0

A
E 0

B)
ME 0

CM , (2.34)

and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡ . (2.35)

y ⇠ y + 2⇡Rsd . (2.36)

The form frame along the circle is

ey = � (dy + V1) , (2.37)
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.4)
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eâ

Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.7)

A generalized frame EA on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame ea for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆eae
b = �ab)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
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A = eB
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@ea

ea

1

A . (2.8)

This gives

Ea = ea � ◆eaB , (2.9)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

There exists a natural pairing between generalized vectors, namely

V1 · V2 = ◆v1⇠2 + ◆v2⇠1 = ⌘(V1, V2) = V M
1 ⌘MNV

N
2 , (2.10)

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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coordinates is of the form (2.17). In this case [Mariana: confuso esto? ademas

verifiquen que no haya hecho lio entre E e E 0]

fABC = fMNP E 0
A
ME 0

B
NE 0

C
P = (LE0

A
E 0

B)
ME 0

CM , (2.34)

and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡Rsd . (2.35)

The form frame along the circle is

ey = � (dy + V1) , (2.36)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a
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where ed is defined in (2.37). The dual frame splits as

êâ =

0

@ea � ◆eaV1@y

��1@y

1

A . (2.44)

The 2-form field also splits into

B̂2 = B2 +B1 ^ (dy + V1) , (2.45)

where B2 has no legs along the circle (◆@yB2 = 0) and B1 is a one-form on the base

(B1 = Bµdxµ).

Collecting all the pieces together, the generalized frame (2.9) takes the form

Ea = ea � (◆eaV1) @y � (◆eaB1)dy � ◆0eaC
+

Ed = ��1(@y +B1) (2.46)

Ed = �(dy + V1)

Ea = ea

where ◆0 denotes the contraction in the first component, i.e (◆0eaC
+)⌫ = eaµC+

µ⌫ and

C+ = (B2 + V1 ^B1) + V1B1 . (2.47)

Let us concentrate now on the internal components. We have
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We can perform a rotation in order to write the expressions in terms of left and right

sectors, as they appear in section 1, where the O(1, 1) matrix ⌘ takes the form (2.15).

Using the rotation matrix defined in (2.14) we get
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[Mariana: unidades de vuelta] in (2.100), we can straightforwardly see the breaking

of SU(2)L ⇥ SU(2)R into U(1)L ⇥ U(1)R. We see here the same features discussed in

section 0.1: the A± bosons acquire a mass proportional to m� coming from the terms

(DµM
±3)2 = (@µM

±3 ± 2m�A
±
µ ⌥ 2A3M±3 ⌥ Ā±M±⌥ ± Ā⌥M±±)2 (1.28)

and similarly for M3± after exchanging left and right. The scalar masses come from the

potential

4 detM = m�(|M++|2 � |M+�|2) (1.29)

+M3+
�
M�3M+� �M��M+3

�
+M3� �

M+3M�+ �M++M�3
�

where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries

ea
4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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and fABC are the structure constants of the internal “double twisted torus”. In that
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(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
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mas...]
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and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡ . (2.35)

y ⇠ y + 2⇡Rsd . (2.36)

The form frame along the circle is

ey = � (dy + V1) , (2.37)
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ỹ

R

R̃

= y + ỹ
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.4)
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signature assumed on the D-dimensional space-time). Given a frame ea for the tangent
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Upper and lower indices distinguish vectors and forms, respectively.

There exists a natural pairing between generalized vectors, namely
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and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
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mas...]
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decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡ . (2.35)
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where ed is defined in (2.37). The dual frame splits as
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The 2-form field also splits into

B̂2 = B2 +B1 ^ (dy + V1) , (2.45)

where B2 has no legs along the circle (◆@yB2 = 0) and B1 is a one-form on the base

(B1 = Bµdxµ).

Collecting all the pieces together, the generalized frame (2.9) takes the form

Ea = ea � (◆eaV1) @y � (◆eaB1)dy � ◆0eaC
+

Ed = ��1(@y +B1) (2.46)

Ed = �(dy + V1)

Ea = ea

where ◆0 denotes the contraction in the first component, i.e (◆0eaC
+)⌫ = eaµC+

µ⌫ and

C+ = (B2 + V1 ^B1) + V1B1 . (2.47)
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We can perform a rotation in order to write the expressions in terms of left and right

sectors, as they appear in section 1, where the O(1, 1) matrix ⌘ takes the form (2.15).
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and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡ . (2.35)

p
gyy = R

gµy

Bµy

27



⌘
MN

=

0

@0 1

1 0

1

A , (2.1)

⌘LR =

0

@1 0

0 �1

1

A , (2.2)

⌘

' @
ỹ
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.4)
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.7)

A generalized frame EA on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame ea for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆eae
b = �ab)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
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This gives

Ea = ea � ◆eaB , (2.9)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

There exists a natural pairing between generalized vectors, namely

V1 · V2 = ◆v1⇠2 + ◆v2⇠1 = ⌘(V1, V2) = V M
1 ⌘MNV

N
2 , (2.10)

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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coordinates is of the form (2.17). In this case [Mariana: confuso esto? ademas
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fABC = fMNP E 0
A
ME 0

B
NE 0

C
P = (LE0

A
E 0

B)
ME 0

CM , (2.34)

and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡Rsd . (2.35)

The form frame along the circle is

ey = � (dy + V1) , (2.36)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a
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and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡ . (2.35)
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and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡ . (2.35)
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where ed is defined in (2.37). The dual frame splits as

êâ =

0

@ea � ◆eaV1@y

��1@y

1
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The 2-form field also splits into

B̂2 = B2 +B1 ^ (dy + V1) , (2.45)

where B2 has no legs along the circle (◆@yB2 = 0) and B1 is a one-form on the base

(B1 = Bµdxµ).

Collecting all the pieces together, the generalized frame (2.9) takes the form

Ea = ea � (◆eaV1) @y � (◆eaB1)dy � ◆0eaC
+

Ed = ��1(@y +B1) (2.46)

Ed = �(dy + V1)

Ea = ea

where ◆0 denotes the contraction in the first component, i.e (◆0eaC
+)⌫ = eaµC+

µ⌫ and

C+ = (B2 + V1 ^B1) + V1B1 . (2.47)

Let us concentrate now on the internal components. We have
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We can perform a rotation in order to write the expressions in terms of left and right

sectors, as they appear in section 1, where the O(1, 1) matrix ⌘ takes the form (2.15).

Using the rotation matrix defined in (2.14) we get
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and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡ . (2.35)
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The 2-form field also splits into

B̂2 = B2 +B1 ^ (dy + V1) , (2.45)

where B2 has no legs along the circle (◆@yB2 = 0) and B1 is a one-form on the base

(B1 = Bµdxµ).

Collecting all the pieces together, the generalized frame (2.9) takes the form
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+
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where ◆0 denotes the contraction in the first component, i.e (◆0eaC
+)⌫ = eaµC+

µ⌫ and

C+ = (B2 + V1 ^B1) + V1B1 . (2.47)
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We can perform a rotation in order to write the expressions in terms of left and right

sectors, as they appear in section 1, where the O(1, 1) matrix ⌘ takes the form (2.15).

Using the rotation matrix defined in (2.14) we get
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J +A

1

A , (2.49)

29



⌘
MN

=

0

@0 1

1 0

1

A , (2.1)

⌘LR =

0

@1 0

0 �1

1

A , (2.2)

⌘

' @
ỹ
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.4)
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.7)

A generalized frame EA on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame ea for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆eae
b = �ab)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
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This gives

Ea = ea � ◆eaB , (2.9)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

There exists a natural pairing between generalized vectors, namely

V1 · V2 = ◆v1⇠2 + ◆v2⇠1 = ⌘(V1, V2) = V M
1 ⌘MNV

N
2 , (2.10)

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡Rsd . (2.35)

The form frame along the circle is

ey = � (dy + V1) , (2.36)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a
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and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
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mas...]
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27

coordinates is of the form (2.17). In this case [Mariana: confuso esto? ademas

verifiquen que no haya hecho lio entre E e E 0]

fABC = fMNP E 0
A
ME 0

B
NE 0

C
P = (LE0

A
E 0

B)
ME 0

CM , (2.34)

and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
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where ed is defined in (2.37). The dual frame splits as
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The 2-form field also splits into

B̂2 = B2 +B1 ^ (dy + V1) , (2.45)

where B2 has no legs along the circle (◆@yB2 = 0) and B1 is a one-form on the base

(B1 = Bµdxµ).

Collecting all the pieces together, the generalized frame (2.9) takes the form

Ea = ea � (◆eaV1) @y � (◆eaB1)dy � ◆0eaC
+

Ed = ��1(@y +B1) (2.46)

Ed = �(dy + V1)

Ea = ea

where ◆0 denotes the contraction in the first component, i.e (◆0eaC
+)⌫ = eaµC+

µ⌫ and

C+ = (B2 + V1 ^B1) + V1B1 . (2.47)

Let us concentrate now on the internal components. We have
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We can perform a rotation in order to write the expressions in terms of left and right

sectors, as they appear in section 1, where the O(1, 1) matrix ⌘ takes the form (2.15).

Using the rotation matrix defined in (2.14) we get
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coordinates is of the form (2.17). In this case [Mariana: confuso esto? ademas

verifiquen que no haya hecho lio entre E e E 0]

fABC = fMNP E 0
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C
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and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡ . (2.35)

p
gyy = R

gµy

Bµy
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H = �ABEA ⌦ EB , (2.4)
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A . (2.5)

O(D,D)
O(D)⇥O(D)
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J +A
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A , (2.50)

where we have defined7

A =
1p
2
(V1 +B1) , J =

1p
2
(@y + dy) , (2.51)

Ā =
1p
2
(V1 � B1) , J̄ =

1p
2
(@y � dy) ,

and

U± =
1

2
(��1 ± �) . (2.52)

Using the relation between � and M33 given in (2.40), we get

U+ = cosh(12M
33) = 1 +O(M33)2 ,

U� = sinh(12M
33) =

1

2
M33 +O(M33)3 . (2.53)

Computing the generalized metric (2.19) in the C+, C� basis we get

HC =

0

@(U+)2 + (U�)2 �2U+U�

�2U+U� (U+)2 + (U�)2

1

A (2.54)

=

0

@ cosh(M33) � sinh(M33)

� sinh(M33) cosh(M33)

1

A ⇡

0

@ 1 �M33

�M33 1

1

A+O(M33)2 .

Note that this has precisely the form (2.21) if we identify

M33 = h0 (2.55)

where h0 is defined as the perturbation of h (in one dimension we have b = 0),

h ⇡ 1 + h0 . (2.56)

Having discussed the scalar fields, which depend on the external coordinates, let us

now go back to the frame (2.50), and concentrate only on the piece that depends on

the “internal coordinates”, encoded in J , J̄ . Following the standard procedure in DFT,

7As in section 1, a bar indicates a right-moving sector, not complex conjugate.
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y ⇠ y + 2⇡Rsd . (2.36)

The form frame along the circle is

ey = � (dy + V1) , (2.37)
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A = V1 +B1 , J = @y + dy , (2.39)

Ā = V1 � B1 , J̄ = @y � dy ,

and

U± =
1

2
(��1 ± �) . (2.40)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]

gyy =
R2

↵0 =< �2 > . (2.41)

On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.42)

Both in the circle reduction and in the SU(2)L ⇥ SU(2)R enhancement to be discussed

later, the only field that is allowed to take expectation value is M33. Shifting M33, as is

usually done [Mariana: unificat notacion, en la seccion 2 se llamo v33, despues

v]

M33 = ✏+M 033 (2.43)
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.4)
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(LV U)M = V P@PU
M + (@MVP � @PV

M)UP

LEAEB = FAB
CEC (2.6)

eâ

Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.7)

A generalized frame EA on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame ea for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆eae
b = �ab)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
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@Ea
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1

A = eB

0

@ea

ea

1

A . (2.8)

This gives

Ea = ea � ◆eaB , (2.9)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

There exists a natural pairing between generalized vectors, namely

V1 · V2 = ◆v1⇠2 + ◆v2⇠1 = ⌘(V1, V2) = V M
1 ⌘MNV

N
2 , (2.10)

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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coordinates is of the form (2.17). In this case [Mariana: confuso esto? ademas

verifiquen que no haya hecho lio entre E e E 0]

fABC = fMNP E 0
A
ME 0

B
NE 0

C
P = (LE0

A
E 0

B)
ME 0

CM , (2.34)

and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡Rsd . (2.35)

The form frame along the circle is

ey = � (dy + V1) , (2.36)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a
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gyy = R
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d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
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where ed is defined in (2.37). The dual frame splits as

êâ =

0

@ea � ◆eaV1@y

��1@y

1

A . (2.44)

The 2-form field also splits into

B̂2 = B2 +B1 ^ (dy + V1) , (2.45)

where B2 has no legs along the circle (◆@yB2 = 0) and B1 is a one-form on the base

(B1 = Bµdxµ).

Collecting all the pieces together, the generalized frame (2.9) takes the form

Ea = ea � (◆eaV1) @y � (◆eaB1)dy � ◆0eaC
+

Ed = ��1(@y +B1) (2.46)

Ed = �(dy + V1)

Ea = ea

where ◆0 denotes the contraction in the first component, i.e (◆0eaC
+)⌫ = eaµC+

µ⌫ and

C+ = (B2 + V1 ^B1) + V1B1 . (2.47)

Let us concentrate now on the internal components. We have
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We can perform a rotation in order to write the expressions in terms of left and right

sectors, as they appear in section 1, where the O(1, 1) matrix ⌘ takes the form (2.15).

Using the rotation matrix defined in (2.14) we get
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coordinates is of the form (2.17). In this case [Mariana: confuso esto? ademas

verifiquen que no haya hecho lio entre E e E 0]

fABC = fMNP E 0
A
ME 0

B
NE 0

C
P = (LE0

A
E 0

B)
ME 0

CM , (2.34)

and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡ . (2.35)

p
gyy = R

gµy

Bµy
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where ed is defined in (2.37). The dual frame splits as

êâ =

0

@ea � ◆eaV1@y

��1@y

1

A . (2.44)

The 2-form field also splits into

B̂2 = B2 +B1 ^ (dy + V1) , (2.45)

where B2 has no legs along the circle (◆@yB2 = 0) and B1 is a one-form on the base

(B1 = Bµdxµ).

Collecting all the pieces together, the generalized frame (2.9) takes the form

Ea = ea � (◆eaV1) @y � (◆eaB1)dy � ◆0eaC
+

Ed = ��1(@y +B1) (2.46)

Ed = �(dy + V1)

Ea = ea

where ◆0 denotes the contraction in the first component, i.e (◆0eaC
+)⌫ = eaµC+

µ⌫ and

C+ = (B2 + V1 ^B1) + V1B1 . (2.47)

Let us concentrate now on the internal components. We have
0

@Ed

Ed

1

A =

0

@��1 0

0 �

1

A

0

@@y +B1

dy + V1

1

A . (2.48)

We can perform a rotation in order to write the expressions in terms of left and right

sectors, as they appear in section 1, where the O(1, 1) matrix ⌘ takes the form (2.15).

Using the rotation matrix defined in (2.14) we get
0

@E
R

E
L

1

A = R

0

@��1 0

0 �

1

ARTR

0

@@y +B1

dy + V1

1

A

=

0

@ U+ �U�

�U� U+

1

A

0

@J̄ � Ā
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ỹ

R

R̃

= y + ỹ
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@y
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H = �ABEA ⌦ EB , (2.4)

H =

0

@ g�1 �g�1B

Bg�1 g � Bg�1B

1

A . (2.5)

O(D,D)
O(D)⇥O(D)
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=

0

@ U+ �U�

�U� U+

1

A

0

@J̄ � Ā

J +A

1

A , (2.50)

where we have defined7

A =
1p
2
(V1 +B1) , J =

1p
2
(@y + dy) , (2.51)

Ā =
1p
2
(V1 � B1) , J̄ =

1p
2
(@y � dy) ,

and

U± =
1

2
(��1 ± �) . (2.52)

Using the relation between � and M33 given in (2.40), we get

U+ = cosh(12M
33) = 1 +O(M33)2 ,

U� = sinh(12M
33) =

1

2
M33 +O(M33)3 . (2.53)

Computing the generalized metric (2.19) in the C+, C� basis we get

HC =

0

@(U+)2 + (U�)2 �2U+U�

�2U+U� (U+)2 + (U�)2

1

A (2.54)

=

0

@ cosh(M33) � sinh(M33)

� sinh(M33) cosh(M33)

1

A ⇡

0

@ 1 �M33

�M33 1

1

A+O(M33)2 .

Note that this has precisely the form (2.21) if we identify

M33 = h0 (2.55)

where h0 is defined as the perturbation of h (in one dimension we have b = 0),

h ⇡ 1 + h0 . (2.56)

Having discussed the scalar fields, which depend on the external coordinates, let us

now go back to the frame (2.50), and concentrate only on the piece that depends on

the “internal coordinates”, encoded in J , J̄ . Following the standard procedure in DFT,

7As in section 1, a bar indicates a right-moving sector, not complex conjugate.
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y ⇠ y + 2⇡Rsd . (2.36)

The form frame along the circle is

ey = � (dy + V1) , (2.37)
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1

A , (2.38)

A = V1 +B1 , J = @y + dy , (2.39)

Ā = V1 � B1 , J̄ = @y � dy ,

and

U± =
1

2
(��1 ± �) . (2.40)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]

gyy =
R2

↵0 =< �2 > . (2.41)

On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.42)

Both in the circle reduction and in the SU(2)L ⇥ SU(2)R enhancement to be discussed

later, the only field that is allowed to take expectation value is M33. Shifting M33, as is

usually done [Mariana: unificat notacion, en la seccion 2 se llamo v33, despues

v]

M33 = ✏+M 033 (2.43)
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Ā = V1 � B1 , J̄ = @y � dy ,

and

U± =
1

2
(��1 ± �) . (2.40)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]

gyy =
R2

↵0 =< �2 > . (2.41)

On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.42)

Both in the circle reduction and in the SU(2)L ⇥ SU(2)R enhancement to be discussed

later, the only field that is allowed to take expectation value is M33. Shifting M33, as is

usually done [Mariana: unificat notacion, en la seccion 2 se llamo v33, despues

v]

M33 = ✏+M 033 (2.43)

28

y ⇠ y + 2⇡Rsd . (2.36)

The form frame along the circle is

ey = � (dy + V1) , (2.37)

0

@E
L

E
R

1

A =

0

@U+ U�

U� U+

1

A

0

@J + A

J̄ � Ā
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Ā = V1 � B1 , J̄ = @y � dy ,

and

U± =
1

2
(��1 ± �) . (2.40)

= e
1
2M

33

= eM
33/2

<

>

⇡ 1 + 1
2 < M33 >

✏

U+ ⇡ 1

U� ⇡ 1
2M

33

0

@ 1 1
2M

33

1
2M

33 1

1

A (2.41)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

28

y ⇠ y + 2⇡Rsd . (2.36)

The form frame along the circle is

ey = � (dy + V1) , (2.37)

0

@E
L

E
R

1

A =

0

@U+ U�

U� U+

1

A

0

@J + A

J̄ � Ā
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K ]C = f I

JKE 0
K

J, J̄

✏ijk, ✏ı|k

1 + 1
2v + ...

Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.94)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.22) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]

Seff =

Z
ddx

p
ge�2'

✓
⇤� 2(d� 26)

3↵0 +R+ 4@µ'@µ'� 1

12
Hµ⌫⇢H

µ⌫⇢

�1

4
HIJF

Iµ⌫F J
µ⌫ +

1

8
(DµH)IJ(D

µH)IJ (2.109)

� 1

12↵0fIJKfLMN

�
HILHJMHKN � 3HIL⌘JM⌘KN + 2 ⌘IL⌘JM⌘KN

�◆

where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.24) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

FA
µ⌫ and Hµ⌫⇢ are [Mariana: ya estan definidos antes en (0.29) (ser constsentes).

Repetir aca?]

F I
µ⌫ = 2@[µA

I
⌫] � f I

JKA
J
µA

K
⌫ ,

Hµ⌫⇢ = 3@[µB⌫⇢] � fIJKA
I
µA

J
⌫A

K
⇢ + 3@[µA

I
⌫A⇢]I , (2.110)

and the covariant derivative of the scalars is

(DµH)IJ = (@µH)IJ + fK
LIA

L
µHKJ + fK

LJA
L
µHIK . (2.111)

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.

56

[E 0
J , E

0
K ]C = f I

JKE 0
K

J, J̄

✏ijk, ✏ı|k

1 + 1
2v + ...

v ⇠ ✏

Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.94)10, the e↵ective action
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where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.24) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

FA
µ⌫ and Hµ⌫⇢ are [Mariana: ya estan definidos antes en (0.29) (ser constsentes).
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10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.4)
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(LV U)M = V P@PU
M + (@MVP � @PV

M)UP

LEAEB = FAB
CEC (2.6)

eâ

Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.7)

A generalized frame EA on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame ea for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆eae
b = �ab)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
0

@Ea

Ea

1

A = eB

0

@ea

ea

1

A . (2.8)

This gives

Ea = ea � ◆eaB , (2.9)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

There exists a natural pairing between generalized vectors, namely

V1 · V2 = ◆v1⇠2 + ◆v2⇠1 = ⌘(V1, V2) = V M
1 ⌘MNV

N
2 , (2.10)

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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coordinates is of the form (2.17). In this case [Mariana: confuso esto? ademas

verifiquen que no haya hecho lio entre E e E 0]

fABC = fMNP E 0
A
ME 0

B
NE 0

C
P = (LE0

A
E 0

B)
ME 0

CM , (2.34)

and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d
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where ed is defined in (2.37). The dual frame splits as

êâ =

0

@ea � ◆eaV1@y

��1@y

1

A . (2.44)

The 2-form field also splits into

B̂2 = B2 +B1 ^ (dy + V1) , (2.45)

where B2 has no legs along the circle (◆@yB2 = 0) and B1 is a one-form on the base

(B1 = Bµdxµ).

Collecting all the pieces together, the generalized frame (2.9) takes the form

Ea = ea � (◆eaV1) @y � (◆eaB1)dy � ◆0eaC
+

Ed = ��1(@y +B1) (2.46)

Ed = �(dy + V1)

Ea = ea

where ◆0 denotes the contraction in the first component, i.e (◆0eaC
+)⌫ = eaµC+

µ⌫ and

C+ = (B2 + V1 ^B1) + V1B1 . (2.47)

Let us concentrate now on the internal components. We have
0

@Ed

Ed

1

A =

0

@��1 0

0 �

1

A

0

@@y +B1

dy + V1

1

A . (2.48)

We can perform a rotation in order to write the expressions in terms of left and right

sectors, as they appear in section 1, where the O(1, 1) matrix ⌘ takes the form (2.15).

Using the rotation matrix defined in (2.14) we get
0

@E
R

E
L

1

A = R

0

@��1 0

0 �

1

ARTR

0

@@y +B1

dy + V1

1

A

=

0

@ U+ �U�

�U� U+

1

A

0

@J̄ � Ā

J +A

1

A , (2.49)
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⌘MN =

0

@0 1

1 0

1

A , (2.1)

⌘LR =

0

@1 0

0 �1

1

A , (2.2)

⌘

' @ỹ

yL

yR

y

ỹ

R

R̃

= y + ỹ

y � ỹ

@y

@y@ỹ( ) = 0

⌘MN@M@N( ) = 0

EA =

0

@ea � ◆eaB

ea

1

A . (2.3)

H = �ABEA ⌦ EB , (2.4)

H =

0

@ g�1 �g�1B

Bg�1 g � Bg�1B

1

A . (2.5)

O(D,D)
O(D)⇥O(D)
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=

0

@ U+ �U�

�U� U+

1

A

0

@J̄ � Ā

J +A

1

A , (2.50)

where we have defined7

A =
1p
2
(V1 +B1) , J =

1p
2
(@y + dy) , (2.51)

Ā =
1p
2
(V1 � B1) , J̄ =

1p
2
(@y � dy) ,

and

U± =
1

2
(��1 ± �) . (2.52)

Using the relation between � and M33 given in (2.40), we get

U+ = cosh(12M
33) = 1 +O(M33)2 ,

U� = sinh(12M
33) =

1

2
M33 +O(M33)3 . (2.53)

Computing the generalized metric (2.19) in the C+, C� basis we get

HC =

0

@(U+)2 + (U�)2 �2U+U�

�2U+U� (U+)2 + (U�)2

1

A (2.54)

=

0

@ cosh(M33) � sinh(M33)

� sinh(M33) cosh(M33)

1

A ⇡

0

@ 1 �M33

�M33 1

1

A+O(M33)2 .

Note that this has precisely the form (2.21) if we identify

M33 = h0 (2.55)

where h0 is defined as the perturbation of h (in one dimension we have b = 0),

h ⇡ 1 + h0 . (2.56)

Having discussed the scalar fields, which depend on the external coordinates, let us

now go back to the frame (2.50), and concentrate only on the piece that depends on

the “internal coordinates”, encoded in J , J̄ . Following the standard procedure in DFT,

7As in section 1, a bar indicates a right-moving sector, not complex conjugate.
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y ⇠ y + 2⇡Rsd . (2.36)

The form frame along the circle is

ey = � (dy + V1) , (2.37)
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U� U+
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@J + A

J̄ � Ā

1

A , (2.38)

A = V1 +B1 , J = @y + dy , (2.39)

Ā = V1 � B1 , J̄ = @y � dy ,

and

U± =
1

2
(��1 ± �) . (2.40)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]

gyy =
R2

↵0 =< �2 > . (2.41)

On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.42)

Both in the circle reduction and in the SU(2)L ⇥ SU(2)R enhancement to be discussed

later, the only field that is allowed to take expectation value is M33. Shifting M33, as is

usually done [Mariana: unificat notacion, en la seccion 2 se llamo v33, despues

v]

M33 = ✏+M 033 (2.43)
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1

A , (2.38)

A = V1 +B1 , J = @y + dy , (2.39)
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[E 0
J , E

0
K ]C = f I

JKE 0
K

J, J̄

✏ijk, ✏ı|k

1 + 1
2v + ...

Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.94)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.22) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]

Seff =

Z
ddx

p
ge�2'

✓
⇤� 2(d� 26)

3↵0 +R+ 4@µ'@µ'� 1

12
Hµ⌫⇢H

µ⌫⇢

�1

4
HIJF

Iµ⌫F J
µ⌫ +

1

8
(DµH)IJ(D

µH)IJ (2.109)

� 1

12↵0fIJKfLMN

�
HILHJMHKN � 3HIL⌘JM⌘KN + 2 ⌘IL⌘JM⌘KN

�◆

where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.24) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

FA
µ⌫ and Hµ⌫⇢ are [Mariana: ya estan definidos antes en (0.29) (ser constsentes).

Repetir aca?]

F I
µ⌫ = 2@[µA

I
⌫] � f I

JKA
J
µA

K
⌫ ,

Hµ⌫⇢ = 3@[µB⌫⇢] � fIJKA
I
µA

J
⌫A

K
⇢ + 3@[µA

I
⌫A⇢]I , (2.110)

and the covariant derivative of the scalars is

(DµH)IJ = (@µH)IJ + fK
LIA

L
µHKJ + fK

LJA
L
µHIK . (2.111)

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]
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ddx
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where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.24) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

FA
µ⌫ and Hµ⌫⇢ are [Mariana: ya estan definidos antes en (0.29) (ser constsentes).

Repetir aca?]

F I
µ⌫ = 2@[µA

I
⌫] � f I

JKA
J
µA

K
⌫ ,

Hµ⌫⇢ = 3@[µB⌫⇢] � fIJKA
I
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J
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K
⇢ + 3@[µA

I
⌫A⇢]I , (2.110)

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.4)
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LEAEB = FAB
CEC (2.6)

eâ

Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.7)

A generalized frame EA on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame ea for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆eae
b = �ab)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
0

@Ea

Ea

1

A = eB

0

@ea

ea

1

A . (2.8)

This gives

Ea = ea � ◆eaB , (2.9)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

There exists a natural pairing between generalized vectors, namely

V1 · V2 = ◆v1⇠2 + ◆v2⇠1 = ⌘(V1, V2) = V M
1 ⌘MNV

N
2 , (2.10)

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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coordinates is of the form (2.17). In this case [Mariana: confuso esto? ademas

verifiquen que no haya hecho lio entre E e E 0]

fABC = fMNP E 0
A
ME 0

B
NE 0

C
P = (LE0

A
E 0

B)
ME 0

CM , (2.34)

and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡Rsd . (2.35)

The form frame along the circle is

ey = � (dy + V1) , (2.36)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a
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Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡ . (2.35)

p
gyy = R

gµy

27

#

where ed is defined in (2.37). The dual frame splits as

êâ =

0

@ea � ◆eaV1@y

��1@y

1

A . (2.44)

The 2-form field also splits into

B̂2 = B2 +B1 ^ (dy + V1) , (2.45)

where B2 has no legs along the circle (◆@yB2 = 0) and B1 is a one-form on the base

(B1 = Bµdxµ).

Collecting all the pieces together, the generalized frame (2.9) takes the form

Ea = ea � (◆eaV1) @y � (◆eaB1)dy � ◆0eaC
+

Ed = ��1(@y +B1) (2.46)

Ed = �(dy + V1)

Ea = ea

where ◆0 denotes the contraction in the first component, i.e (◆0eaC
+)⌫ = eaµC+

µ⌫ and

C+ = (B2 + V1 ^B1) + V1B1 . (2.47)

Let us concentrate now on the internal components. We have
0

@Ed

Ed

1

A =

0

@��1 0
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1

A

0

@@y +B1

dy + V1

1

A . (2.48)

We can perform a rotation in order to write the expressions in terms of left and right

sectors, as they appear in section 1, where the O(1, 1) matrix ⌘ takes the form (2.15).

Using the rotation matrix defined in (2.14) we get
0
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A , (2.49)
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A , (2.50)

where we have defined7

A =
1p
2
(V1 +B1) , J =

1p
2
(@y + dy) , (2.51)

Ā =
1p
2
(V1 � B1) , J̄ =

1p
2
(@y � dy) ,

and

U± =
1

2
(��1 ± �) . (2.52)

Using the relation between � and M33 given in (2.40), we get

U+ = cosh(12M
33) = 1 +O(M33)2 ,

U� = sinh(12M
33) =

1

2
M33 +O(M33)3 . (2.53)

Computing the generalized metric (2.19) in the C+, C� basis we get
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@(U+)2 + (U�)2 �2U+U�

�2U+U� (U+)2 + (U�)2

1

A (2.54)

=

0

@ cosh(M33) � sinh(M33)

� sinh(M33) cosh(M33)

1

A ⇡

0

@ 1 �M33

�M33 1

1

A+O(M33)2 .

Note that this has precisely the form (2.21) if we identify

M33 = h0 (2.55)

where h0 is defined as the perturbation of h (in one dimension we have b = 0),

h ⇡ 1 + h0 . (2.56)

Having discussed the scalar fields, which depend on the external coordinates, let us

now go back to the frame (2.50), and concentrate only on the piece that depends on

the “internal coordinates”, encoded in J , J̄ . Following the standard procedure in DFT,

7As in section 1, a bar indicates a right-moving sector, not complex conjugate.

30

y ⇠ y + 2⇡Rsd . (2.36)

The form frame along the circle is

ey = � (dy + V1) , (2.37)
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1

A , (2.38)

A = V1 +B1 , J = @y + dy , (2.39)

Ā = V1 � B1 , J̄ = @y � dy ,

and

U± =
1

2
(��1 ± �) . (2.40)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]

gyy =
R2

↵0 =< �2 > . (2.41)

On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.42)

Both in the circle reduction and in the SU(2)L ⇥ SU(2)R enhancement to be discussed

later, the only field that is allowed to take expectation value is M33. Shifting M33, as is

usually done [Mariana: unificat notacion, en la seccion 2 se llamo v33, despues

v]

M33 = ✏+M 033 (2.43)
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1

A , (2.38)

A = V1 +B1 , J = @y + dy , (2.39)
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Ā = V1 � B1 , J̄ = @y � dy ,

and

U± =
1

2
(��1 ± �) . (2.40)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]

gyy =
R2

↵0 =< �2 > . (2.41)

On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.42)

Both in the circle reduction and in the SU(2)L ⇥ SU(2)R enhancement to be discussed

later, the only field that is allowed to take expectation value is M33. Shifting M33, as is

usually done [Mariana: unificat notacion, en la seccion 2 se llamo v33, despues

v]

M33 = ✏+M 033 (2.43)

28

y ⇠ y + 2⇡Rsd . (2.36)

The form frame along the circle is

ey = � (dy + V1) , (2.37)

0

@E
L

E
R

1

A =

0

@U+ U�

U� U+

1

A

0

@J + A

J̄ � Ā
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later, the only field that is allowed to take expectation value is M33. Shifting M33, as is

usually done [Mariana: unificat notacion, en la seccion 2 se llamo v33, despues

v]

M33 = ✏+M 033 (2.43)
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.94)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.22) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]
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where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.24) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

FA
µ⌫ and Hµ⌫⇢ are [Mariana: ya estan definidos antes en (0.29) (ser constsentes).

Repetir aca?]
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and the covariant derivative of the scalars is

(DµH)IJ = (@µH)IJ + fK
LIA

L
µHKJ + fK

LJA
L
µHIK . (2.111)

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.4)
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.7)

A generalized frame EA on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame ea for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆eae
b = �ab)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
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A = eB
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@ea

ea
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A . (2.8)

This gives

Ea = ea � ◆eaB , (2.9)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

There exists a natural pairing between generalized vectors, namely

V1 · V2 = ◆v1⇠2 + ◆v2⇠1 = ⌘(V1, V2) = V M
1 ⌘MNV

N
2 , (2.10)

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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coordinates is of the form (2.17). In this case [Mariana: confuso esto? ademas

verifiquen que no haya hecho lio entre E e E 0]

fABC = fMNP E 0
A
ME 0

B
NE 0

C
P = (LE0

A
E 0

B)
ME 0

CM , (2.34)

and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡Rsd . (2.35)

The form frame along the circle is

ey = � (dy + V1) , (2.36)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a
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where ed is defined in (2.37). The dual frame splits as

êâ =

0

@ea � ◆eaV1@y

��1@y

1

A . (2.44)

The 2-form field also splits into

B̂2 = B2 +B1 ^ (dy + V1) , (2.45)

where B2 has no legs along the circle (◆@yB2 = 0) and B1 is a one-form on the base

(B1 = Bµdxµ).

Collecting all the pieces together, the generalized frame (2.9) takes the form

Ea = ea � (◆eaV1) @y � (◆eaB1)dy � ◆0eaC
+

Ed = ��1(@y +B1) (2.46)

Ed = �(dy + V1)

Ea = ea

where ◆0 denotes the contraction in the first component, i.e (◆0eaC
+)⌫ = eaµC+

µ⌫ and

C+ = (B2 + V1 ^B1) + V1B1 . (2.47)

Let us concentrate now on the internal components. We have
0

@Ed

Ed

1

A =

0

@��1 0

0 �

1

A

0

@@y +B1

dy + V1

1

A . (2.48)

We can perform a rotation in order to write the expressions in terms of left and right

sectors, as they appear in section 1, where the O(1, 1) matrix ⌘ takes the form (2.15).

Using the rotation matrix defined in (2.14) we get
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We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡ . (2.35)

p
gyy = R

gµy

Bµy
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where ed is defined in (2.37). The dual frame splits as

êâ =

0

@ea � ◆eaV1@y

��1@y

1

A . (2.44)

The 2-form field also splits into

B̂2 = B2 +B1 ^ (dy + V1) , (2.45)

where B2 has no legs along the circle (◆@yB2 = 0) and B1 is a one-form on the base

(B1 = Bµdxµ).

Collecting all the pieces together, the generalized frame (2.9) takes the form

Ea = ea � (◆eaV1) @y � (◆eaB1)dy � ◆0eaC
+

Ed = ��1(@y +B1) (2.46)

Ed = �(dy + V1)

Ea = ea

where ◆0 denotes the contraction in the first component, i.e (◆0eaC
+)⌫ = eaµC+

µ⌫ and

C+ = (B2 + V1 ^B1) + V1B1 . (2.47)

Let us concentrate now on the internal components. We have
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A . (2.48)

We can perform a rotation in order to write the expressions in terms of left and right

sectors, as they appear in section 1, where the O(1, 1) matrix ⌘ takes the form (2.15).

Using the rotation matrix defined in (2.14) we get
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A , (2.49)
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H = �ABEA ⌦ EB , (2.4)
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A , (2.50)

where we have defined7

A =
1p
2
(V1 +B1) , J =

1p
2
(@y + dy) , (2.51)

Ā =
1p
2
(V1 � B1) , J̄ =

1p
2
(@y � dy) ,

and

U± =
1

2
(��1 ± �) . (2.52)

Using the relation between � and M33 given in (2.40), we get

U+ = cosh(12M
33) = 1 +O(M33)2 ,

U� = sinh(12M
33) =

1

2
M33 +O(M33)3 . (2.53)

Computing the generalized metric (2.19) in the C+, C� basis we get
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�2U+U� (U+)2 + (U�)2
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A (2.54)
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0

@ cosh(M33) � sinh(M33)

� sinh(M33) cosh(M33)

1

A ⇡

0

@ 1 �M33

�M33 1

1

A+O(M33)2 .

Note that this has precisely the form (2.21) if we identify

M33 = h0 (2.55)

where h0 is defined as the perturbation of h (in one dimension we have b = 0),

h ⇡ 1 + h0 . (2.56)

Having discussed the scalar fields, which depend on the external coordinates, let us

now go back to the frame (2.50), and concentrate only on the piece that depends on

the “internal coordinates”, encoded in J , J̄ . Following the standard procedure in DFT,

7As in section 1, a bar indicates a right-moving sector, not complex conjugate.
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y ⇠ y + 2⇡Rsd . (2.36)

The form frame along the circle is

ey = � (dy + V1) , (2.37)
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A = V1 +B1 , J = @y + dy , (2.39)

Ā = V1 � B1 , J̄ = @y � dy ,

and

U± =
1

2
(��1 ± �) . (2.40)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]

gyy =
R2

↵0 =< �2 > . (2.41)

On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.42)

Both in the circle reduction and in the SU(2)L ⇥ SU(2)R enhancement to be discussed

later, the only field that is allowed to take expectation value is M33. Shifting M33, as is

usually done [Mariana: unificat notacion, en la seccion 2 se llamo v33, despues

v]

M33 = ✏+M 033 (2.43)
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.94)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.22) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]

Seff =

Z
ddx

p
ge�2'

✓
⇤� 2(d� 26)

3↵0 +R+ 4@µ'@µ'� 1
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µH)IJ (2.109)

� 1

12↵0fIJKfLMN

�
HILHJMHKN � 3HIL⌘JM⌘KN + 2 ⌘IL⌘JM⌘KN

�◆

where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.24) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

FA
µ⌫ and Hµ⌫⇢ are [Mariana: ya estan definidos antes en (0.29) (ser constsentes).

Repetir aca?]

F I
µ⌫ = 2@[µA

I
⌫] � f I

JKA
J
µA

K
⌫ ,

Hµ⌫⇢ = 3@[µB⌫⇢] � fIJKA
I
µA

J
⌫A

K
⇢ + 3@[µA

I
⌫A⇢]I , (2.110)

and the covariant derivative of the scalars is

(DµH)IJ = (@µH)IJ + fK
LIA

L
µHKJ + fK

LJA
L
µHIK . (2.111)

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.4)
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sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.7)
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bundle TM , and its dual frame eb in T ⇤M (i.e. ◆eae
b = �ab)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
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This gives

Ea = ea � ◆eaB , (2.9)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

There exists a natural pairing between generalized vectors, namely

V1 · V2 = ◆v1⇠2 + ◆v2⇠1 = ⌘(V1, V2) = V M
1 ⌘MNV

N
2 , (2.10)

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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coordinates is of the form (2.17). In this case [Mariana: confuso esto? ademas

verifiquen que no haya hecho lio entre E e E 0]

fABC = fMNP E 0
A
ME 0

B
NE 0

C
P = (LE0

A
E 0

B)
ME 0

CM , (2.34)

and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡Rsd . (2.35)

The form frame along the circle is

ey = � (dy + V1) , (2.36)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a
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where ed is defined in (2.37). The dual frame splits as

êâ =

0

@ea � ◆eaV1@y

��1@y

1

A . (2.44)

The 2-form field also splits into

B̂2 = B2 +B1 ^ (dy + V1) , (2.45)

where B2 has no legs along the circle (◆@yB2 = 0) and B1 is a one-form on the base

(B1 = Bµdxµ).

Collecting all the pieces together, the generalized frame (2.9) takes the form

Ea = ea � (◆eaV1) @y � (◆eaB1)dy � ◆0eaC
+

Ed = ��1(@y +B1) (2.46)

Ed = �(dy + V1)

Ea = ea

where ◆0 denotes the contraction in the first component, i.e (◆0eaC
+)⌫ = eaµC+

µ⌫ and

C+ = (B2 + V1 ^B1) + V1B1 . (2.47)

Let us concentrate now on the internal components. We have
0

@Ed

Ed

1

A =

0

@��1 0

0 �

1

A

0

@@y +B1

dy + V1

1

A . (2.48)

We can perform a rotation in order to write the expressions in terms of left and right

sectors, as they appear in section 1, where the O(1, 1) matrix ⌘ takes the form (2.15).

Using the rotation matrix defined in (2.14) we get
0

@E
R

E
L

1

A = R

0

@��1 0

0 �

1

ARTR

0

@@y +B1

dy + V1

1

A

=

0

@ U+ �U�

�U� U+

1

A

0

@J̄ � Ā

J +A

1

A , (2.49)
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yL

yR

y

ỹ
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H = �ABEA ⌦ EB , (2.4)
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A . (2.5)

O(D,D)
O(D)⇥O(D)

21

=
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@ U+ �U�

�U� U+

1

A

0

@J̄ � Ā

J +A

1

A , (2.50)

where we have defined7

A =
1p
2
(V1 +B1) , J =

1p
2
(@y + dy) , (2.51)

Ā =
1p
2
(V1 � B1) , J̄ =

1p
2
(@y � dy) ,

and

U± =
1

2
(��1 ± �) . (2.52)

Using the relation between � and M33 given in (2.40), we get

U+ = cosh(12M
33) = 1 +O(M33)2 ,

U� = sinh(12M
33) =

1

2
M33 +O(M33)3 . (2.53)

Computing the generalized metric (2.19) in the C+, C� basis we get

HC =

0

@(U+)2 + (U�)2 �2U+U�

�2U+U� (U+)2 + (U�)2

1

A (2.54)

=

0

@ cosh(M33) � sinh(M33)

� sinh(M33) cosh(M33)

1

A ⇡

0

@ 1 �M33

�M33 1

1

A+O(M33)2 .

Note that this has precisely the form (2.21) if we identify

M33 = h0 (2.55)

where h0 is defined as the perturbation of h (in one dimension we have b = 0),

h ⇡ 1 + h0 . (2.56)

Having discussed the scalar fields, which depend on the external coordinates, let us

now go back to the frame (2.50), and concentrate only on the piece that depends on

the “internal coordinates”, encoded in J , J̄ . Following the standard procedure in DFT,

7As in section 1, a bar indicates a right-moving sector, not complex conjugate.
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y ⇠ y + 2⇡Rsd . (2.36)

The form frame along the circle is

ey = � (dy + V1) , (2.37)
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@J + A

J̄ � Ā

1

A , (2.38)

A = V1 +B1 , J = @y + dy , (2.39)

Ā = V1 � B1 , J̄ = @y � dy ,

and

U± =
1

2
(��1 ± �) . (2.40)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]

gyy =
R2

↵0 =< �2 > . (2.41)

On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.42)

Both in the circle reduction and in the SU(2)L ⇥ SU(2)R enhancement to be discussed

later, the only field that is allowed to take expectation value is M33. Shifting M33, as is

usually done [Mariana: unificat notacion, en la seccion 2 se llamo v33, despues

v]

M33 = ✏+M 033 (2.43)
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circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a
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So far, no enhancement of symmetry
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.94)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.22) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]
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where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.24) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

FA
µ⌫ and Hµ⌫⇢ are [Mariana: ya estan definidos antes en (0.29) (ser constsentes).
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and the covariant derivative of the scalars is
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µHKJ + fK

LJA
L
µHIK . (2.111)

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.4)
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.7)

A generalized frame EA on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame ea for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆eae
b = �ab)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
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This gives

Ea = ea � ◆eaB , (2.9)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

There exists a natural pairing between generalized vectors, namely

V1 · V2 = ◆v1⇠2 + ◆v2⇠1 = ⌘(V1, V2) = V M
1 ⌘MNV

N
2 , (2.10)

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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coordinates is of the form (2.17). In this case [Mariana: confuso esto? ademas

verifiquen que no haya hecho lio entre E e E 0]

fABC = fMNP E 0
A
ME 0

B
NE 0

C
P = (LE0

A
E 0

B)
ME 0

CM , (2.34)

and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡Rsd . (2.35)

The form frame along the circle is

ey = � (dy + V1) , (2.36)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a
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where ed is defined in (2.37). The dual frame splits as

êâ =

0

@ea � ◆eaV1@y

��1@y

1

A . (2.44)

The 2-form field also splits into

B̂2 = B2 +B1 ^ (dy + V1) , (2.45)

where B2 has no legs along the circle (◆@yB2 = 0) and B1 is a one-form on the base

(B1 = Bµdxµ).

Collecting all the pieces together, the generalized frame (2.9) takes the form

Ea = ea � (◆eaV1) @y � (◆eaB1)dy � ◆0eaC
+

Ed = ��1(@y +B1) (2.46)

Ed = �(dy + V1)

Ea = ea

where ◆0 denotes the contraction in the first component, i.e (◆0eaC
+)⌫ = eaµC+

µ⌫ and

C+ = (B2 + V1 ^B1) + V1B1 . (2.47)

Let us concentrate now on the internal components. We have
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We can perform a rotation in order to write the expressions in terms of left and right

sectors, as they appear in section 1, where the O(1, 1) matrix ⌘ takes the form (2.15).

Using the rotation matrix defined in (2.14) we get
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where we have defined7

A =
1p
2
(V1 +B1) , J =

1p
2
(@y + dy) , (2.51)

Ā =
1p
2
(V1 � B1) , J̄ =

1p
2
(@y � dy) ,

and

U± =
1

2
(��1 ± �) . (2.52)

Using the relation between � and M33 given in (2.40), we get

U+ = cosh(12M
33) = 1 +O(M33)2 ,

U� = sinh(12M
33) =

1

2
M33 +O(M33)3 . (2.53)

Computing the generalized metric (2.19) in the C+, C� basis we get
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�2U+U� (U+)2 + (U�)2

1

A (2.54)

=
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@ cosh(M33) � sinh(M33)

� sinh(M33) cosh(M33)

1

A ⇡

0

@ 1 �M33

�M33 1

1

A+O(M33)2 .

Note that this has precisely the form (2.21) if we identify

M33 = h0 (2.55)

where h0 is defined as the perturbation of h (in one dimension we have b = 0),

h ⇡ 1 + h0 . (2.56)

Having discussed the scalar fields, which depend on the external coordinates, let us

now go back to the frame (2.50), and concentrate only on the piece that depends on

the “internal coordinates”, encoded in J , J̄ . Following the standard procedure in DFT,

7As in section 1, a bar indicates a right-moving sector, not complex conjugate.
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The form frame along the circle is
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A = V1 +B1 , J = @y + dy , (2.39)

Ā = V1 � B1 , J̄ = @y � dy ,

and

U± =
1

2
(��1 ± �) . (2.40)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]

gyy =
R2

↵0 =< �2 > . (2.41)

On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.42)

Both in the circle reduction and in the SU(2)L ⇥ SU(2)R enhancement to be discussed

later, the only field that is allowed to take expectation value is M33. Shifting M33, as is

usually done [Mariana: unificat notacion, en la seccion 2 se llamo v33, despues

v]

M33 = ✏+M 033 (2.43)
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1

A , (2.38)

A = V1 +B1 , J = @y + dy , (2.39)
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1

A , (2.38)

A = V1 +B1 , J = @y + dy , (2.39)

Ā = V1 � B1 , J̄ = @y � dy ,

and

U± =
1

2
(��1 ± �) . (2.40)

= e
1
2M

33

= eM
33/2

<

>

⇡ 1 + 1
2 < M33 >

✏

U+ ⇡ 1

U� ⇡ 1
2M

33

0

@ 1 1
2M

33

1
2M

33 1

1

A (2.41)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

28

So far, no enhancement of symmetry , no double field theory

[E 0
J , E

0
K ]C = f I

JKE 0
K

J, J̄

✏ijk, ✏ı|k

1 + 1
2v + ...

Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.94)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.22) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]

Seff =

Z
ddx

p
ge�2'

✓
⇤� 2(d� 26)

3↵0 +R+ 4@µ'@µ'� 1

12
Hµ⌫⇢H

µ⌫⇢

�1

4
HIJF

Iµ⌫F J
µ⌫ +

1

8
(DµH)IJ(D

µH)IJ (2.109)

� 1

12↵0fIJKfLMN

�
HILHJMHKN � 3HIL⌘JM⌘KN + 2 ⌘IL⌘JM⌘KN

�◆

where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.24) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

FA
µ⌫ and Hµ⌫⇢ are [Mariana: ya estan definidos antes en (0.29) (ser constsentes).

Repetir aca?]

F I
µ⌫ = 2@[µA

I
⌫] � f I

JKA
J
µA

K
⌫ ,

Hµ⌫⇢ = 3@[µB⌫⇢] � fIJKA
I
µA

J
⌫A

K
⇢ + 3@[µA

I
⌫A⇢]I , (2.110)

and the covariant derivative of the scalars is

(DµH)IJ = (@µH)IJ + fK
LIA

L
µHKJ + fK

LJA
L
µHIK . (2.111)

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries
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4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries

ea

ea

TS1 � T ⇤S1

TM� T ⇤M

TM = TMd � TS1

�T ⇤S1 � T ⇤Md

�T S̃1

@y

4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.

20

+M3+
�
M�3M+� �M��M+3

�
+M3� �

M+3M�+ �M++M�3
�

where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become
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where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a
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On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.42)

Both in the circle reduction and in the SU(2)L ⇥ SU(2)R enhancement to be discussed

later, the only field that is allowed to take expectation value is M33. Shifting M33, as is

usually done [Mariana: unificat notacion, en la seccion 2 se llamo v33, despues

v]

M33 = ✏+M 033 (2.43)
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Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy
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positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a
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gyy =
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↵0 =< �2 > . (2.41)

On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.42)

Both in the circle reduction and in the SU(2)L ⇥ SU(2)R enhancement to be discussed

later, the only field that is allowed to take expectation value is M33. Shifting M33, as is

usually done [Mariana: unificat notacion, en la seccion 2 se llamo v33, despues

v]

M33 = ✏+M 033 (2.43)
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Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]

gyy =
R2

↵0 =< �2 > . (2.41)

On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.42)

Both in the circle reduction and in the SU(2)L ⇥ SU(2)R enhancement to be discussed

later, the only field that is allowed to take expectation value is M33. Shifting M33, as is

usually done [Mariana: unificat notacion, en la seccion 2 se llamo v33, despues

v]

M33 = ✏+M 033 (2.43)
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where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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ỹ

R

R̃

= y + ỹ
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Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]

gyy =
R2

↵0 =< �2 > . (2.41)

On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.42)

Both in the circle reduction and in the SU(2)L ⇥ SU(2)R enhancement to be discussed

later, the only field that is allowed to take expectation value is M33. Shifting M33, as is

usually done [Mariana: unificat notacion, en la seccion 2 se llamo v33, despues

v]

M33 = ✏+M 033 (2.43)
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Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]

gyy =
R2

↵0 =< �2 > . (2.41)

On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.42)

Both in the circle reduction and in the SU(2)L ⇥ SU(2)R enhancement to be discussed

later, the only field that is allowed to take expectation value is M33. Shifting M33, as is

usually done [Mariana: unificat notacion, en la seccion 2 se llamo v33, despues

v]

M33 = ✏+M 033 (2.43)
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of the tachyon. In the heterotic string, such problem does not arise, and all states have
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Still, this is formal. No dependence on 
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y � ỹ
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21

Of course, we have not included momentum/winding modes

To include winding modes we need dependence on 
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ỹ

21

DFT

N-1 N-1



DFT & Enhancement of symmetry 

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries

ea

ea

TS1 � T ⇤S1

TM� T ⇤M

TM = TMd � TS1

�T ⇤S1 � T ⇤Md

�T S̃1

@y

4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.

20

+M3+
�
M�3M+� �M��M+3

�
+M3� �

M+3M�+ �M++M�3
�

where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become
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massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries

TS1 � T ⇤S1

@
y

+ dy

< @
y

+ dy, @
y

+ dy >= 2◆
@ydy = 2

< V, V >= ⌘
MN

V MV N

⌘
MN

=

0

@0 1

1 0

1

A , (2.1)

' @
ỹ
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where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a
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On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely
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Both in the circle reduction and in the SU(2)L ⇥ SU(2)R enhancement to be discussed

later, the only field that is allowed to take expectation value is M33. Shifting M33, as is
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where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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yL

yR

y

ỹ
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yL

yR

y

ỹ
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= @yL

= @yR

dy

y

ỹ

+ dy

< @y + dy, @y + dy >= 2◆@ydy = 2

< @y, @ỹ >= 1
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21
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dy

y

ỹ
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ỹ

R

21

To account for the enhancement of symmetry, we need to enlarge the generalized tangent space
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where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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1

A , (2.49)

0

@EL

ER

1

A = UI
J(x)

0

@J(yL)

J̄(yR)

1

A , (2.50)

38

N-1 N-1



+M3+
�
M�3M+� �M��M+3

�
+M3� �

M+3M�+ �M++M�3
�

where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states
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where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]

gyy =
R2

↵0 =< �2 > . (2.45)

On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.46)

29

9 scalar fields

= e
1
2M

33

= eM
33/2

<

>

0

@E
L

E
R

1

A =

0

@ 1 1
2M

33

1
2M

33 1

1

A

0

@J + A

J̄ � Ā
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ỹ
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ỹ
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@yR = @y � @ỹ
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where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]

gyy =
R2

↵0 =< �2 > . (2.45)

On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.46)
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@yR = @y � @ỹ
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ỹ
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ỹ
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where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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2 DFT and enhanced gauge symmetries
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4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]

gyy =
R2

↵0 =< �2 > . (2.45)

On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.46)
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ỹ

gmn

Bmn

gµ⌫

Bµ⌫

gµy

gyy

Bµy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.2)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.3)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.4)

2

a

b

ab

ab

ab

a

b

ab

@yL = @y + @ỹ
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ỹ
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.

2.4 E↵ective action from DFT

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
HIJF

Iµ⌫F J
µ⌫ + (DµH)IJ(D
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]

Seff =

Z
ddx
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where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.20) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.20) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.

42

Generalized Sherk-Schwarz compactification of DFT action 



Effective action (for Td)

where M,N = 1, ..., 2D are double space-time indices. Therefore, the O(D,D) metric

⌘MN has the following o↵-diagonal form

⌘MN = ⌘MN =

0

@ 0 1D

1D 0

1

A , (2.11)

where 1D is the D ⇥ D identity matrix. Note that ⌘MN is invariant under ordinary

di↵emorphisms. Defining

⌘AB = ⌘(EA, EB), (2.12)

where A,B = 1, .., 2D are frame indices, it is easy to see that when the frame EA is of

the form (2.9), ⌘AB has also the o↵-diagonal form
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One can alternatively use a right-left basis C�, C+ by rotating the A,B frame indices with
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As in ordinary geometry, the generalized tangent bundle admits a generalized metric

defined as

H = SABEA ⌦ EB , (2.16)

where SAB = diag(sab, sab), sab being the Minkowski metric.

In Scherk-Schwarz compactifications [14] one splits the frame into a piece that depends

on the external coordinates x and a piece that involves the internal ones y. The same is

done in generalized Scherk-Schwarz compactifications [8], namely

EA(x, y) = UA
A0
(x)E 0

A0(y) . (2.17)
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the case at hand has a stringy size, and is therefore far from having large radius in string
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strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.20) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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0 M t 1 M tA

0 0 0 ea

1

CCCCCCA

0

BBBBBB@

@µ

J

J̄

dxµ

1

CCCCCCA
, (2.48)

M i|̄(x)

Ai(x)
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]
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where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.20) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.

2.4 E↵ective action from DFT

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
HIJF

Iµ⌫F J
µ⌫ + (DµH)IJ(D

µH)IJ (2.88)

� 1

12
fIJKfLMN

�
HILHJMHKN � 3HIL⌘JM⌘KN + 2 ⌘IL⌘JM⌘KN

�

I = i, ı̄

⇡

0

@ 1 M

M t 1

1

A (2.89)

Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification
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10Here we do not need to know the way in which the algebra is realized. It could be in either of the
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where M,N = 1, ..., 2D are double space-time indices. Therefore, the O(D,D) metric
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where 1D is the D ⇥ D identity matrix. Note that ⌘MN is invariant under ordinary

di↵emorphisms. Defining

⌘AB = ⌘(EA, EB), (2.12)
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As in ordinary geometry, the generalized tangent bundle admits a generalized metric

defined as

H = SABEA ⌦ EB , (2.16)

where SAB = diag(sab, sab), sab being the Minkowski metric.

In Scherk-Schwarz compactifications [14] one splits the frame into a piece that depends

on the external coordinates x and a piece that involves the internal ones y. The same is

done in generalized Scherk-Schwarz compactifications [8], namely
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]
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where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.20) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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0 1 M MĀ

0 M t 1 M tA

0 0 0 ea

1

CCCCCCA

0

BBBBBB@

1 0 0 0

0 J 0 0

0 0 J̄ 0

0 0 0 1

1

CCCCCCA
, (2.46)

1
2

0

BBBBBB@

Ea

E
L

E
R

Ea

1

CCCCCCA
=

0

BBBBBB@

ea ◆eaA ◆eaĀ ◆eaB
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0 1 M �MĀ
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.

2.4 E↵ective action from DFT

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
HIJF

Iµ⌫F J
µ⌫ + (DµH)IJ(D

µH)IJ (2.88)

� 1

12
fIJKfLMN

�
HILHJMHKN � 3HIL⌘JM⌘KN + 2 ⌘IL⌘JM⌘KN

�

Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]
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where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.20) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.

42

geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.

2.4 E↵ective action from DFT

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
HIJF

Iµ⌫F J
µ⌫ + (DµH)IJ(D

µH)IJ (2.88)

� 1

12
fIJKfLMN

�
HILHJMHKN � 3HIL⌘JM⌘KN + 2 ⌘IL⌘JM⌘KN

�

F I = dAI + f I
JK AJ ^ AK

H = dB + F I ^ AI (2.89)

and the covariant derivative of the scalars is

(DµH)IJ = (@µH)IJ + fK
LIA

L
µHKJ + fK

LJA
L
µHIK . (2.90)

I = i, ı̄

⇡

0

@ 1 M

M t 1

1

A (2.91)

Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.

42

geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.

2.4 E↵ective action from DFT

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
HIJF

Iµ⌫F J
µ⌫ + (DµH)IJ(D

µH)IJ (2.88)

� 1

12
fIJKfLMN

�
HILHJMHKN � 3HIL⌘JM⌘KN + 2 ⌘IL⌘JM⌘KN

�

F I = dAI + f I
JK AJ ^ AK

H = dB + F I ^ AI (2.89)

and the covariant derivative of the scalars is

(DµH)IJ = (@µH)IJ + fK
LIA

L
µHKJ + fK

LJA
L
µHIK . (2.90)

I = i, ı̄

⇡

0

@ 1 M

M t 1

1

A (2.91)

[E 0
J , E

0
K ] = f I

JKE 0
K

J, J̄

✏ijk, ✏ı|k

Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.10)

A generalized frame EA on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame ea for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆eae
b = �ab)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
0

@Ea

Ea

1

A = eB

0

@ea

ea

1

A . (2.11)

This gives

Ea = ea � ◆eaB , (2.12)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.
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10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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where M,N = 1, ..., 2D are double space-time indices. Therefore, the O(D,D) metric

⌘MN has the following o↵-diagonal form
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where 1D is the D ⇥ D identity matrix. Note that ⌘MN is invariant under ordinary

di↵emorphisms. Defining

⌘AB = ⌘(EA, EB), (2.12)
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namely (EC)A = RA
BEB. In this basis ⌘AB has the diagonal form
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As in ordinary geometry, the generalized tangent bundle admits a generalized metric

defined as

H = SABEA ⌦ EB , (2.16)

where SAB = diag(sab, sab), sab being the Minkowski metric.

In Scherk-Schwarz compactifications [14] one splits the frame into a piece that depends

on the external coordinates x and a piece that involves the internal ones y. The same is

done in generalized Scherk-Schwarz compactifications [8], namely
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A0(y) . (2.17)
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]
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where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.20) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]
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where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.20) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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S =

Z
dX R , (2.9)
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@M = (@µ, @i, @ı̄, @µ)

I

R
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0
K ] = f I

JKE
0
I

Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.10)

A generalized frame EA on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame ea for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆eae
b = �ab)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
0

@Ea

Ea

1

A = eB

0

@ea

ea

1

A . (2.11)

This gives

Ea = ea � ◆eaB , (2.12)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.
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10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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ỹ

gmn

Bmn

gµ⌫

Bµ⌫

gµy

gyy

Bµy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.2)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.3)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.4)

2



Effective action (for Td)

where M,N = 1, ..., 2D are double space-time indices. Therefore, the O(D,D) metric
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As in ordinary geometry, the generalized tangent bundle admits a generalized metric

defined as
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the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]
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where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.20) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]
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where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.20) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in
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ways presented in the previous section, or in whatever other way one may come up with.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification
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i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by
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ways presented in the previous section, or in whatever other way one may come up with.
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S =

Z
dX R , (2.9)

HMN = �ABEA
MEB

N

@M = (@µ, @i, @ı̄, @µ)

I

R

[E 0
J , E

0
K ] = f I

JKE
0
I

Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.10)

A generalized frame EA on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame ea for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆eae
b = �ab)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
0

@Ea

Ea

1

A = eB

0

@ea

ea

1

A . (2.11)

This gives

Ea = ea � ◆eaB , (2.12)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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the gauging described in section ??, or by a generalized Scherk-Schwarz compactification
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ỹ

gmn

Bmn

gµ⌫

Bµ⌫

gµy

gyy

Bµy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.2)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.3)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.4)

2

a

b

ab

ab

ab

a

b

ab

@yL = @y + @ỹ
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where M,N = 1, ..., 2D are double space-time indices. Therefore, the O(D,D) metric
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where 1D is the D ⇥ D identity matrix. Note that ⌘MN is invariant under ordinary
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As in ordinary geometry, the generalized tangent bundle admits a generalized metric

defined as

H = SABEA ⌦ EB , (2.16)

where SAB = diag(sab, sab), sab being the Minkowski metric.

In Scherk-Schwarz compactifications [14] one splits the frame into a piece that depends

on the external coordinates x and a piece that involves the internal ones y. The same is

done in generalized Scherk-Schwarz compactifications [8], namely

EA(x, y) = UA
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A0(y) . (2.17)
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.

2.4 E↵ective action from DFT
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]

Seff =

Z
ddx

p
ge�2'

✓
⇤� 2(d� 26)

3↵0 +R+ 4@µ'@µ'� 1

12
Hµ⌫⇢H

µ⌫⇢

�1

4
HIJF

Iµ⌫F J
µ⌫ +

1

8
(DµH)IJ(D

µH)IJ (2.89)

� 1

12↵0fIJKfLMN

�
HILHJMHKN � 3HIL⌘JM⌘KN + 2 ⌘IL⌘JM⌘KN

�◆

where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.20) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by
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S =

Z
dX R , (2.9)

HMN = �ABEA
MEB

N

@M = (@µ, @i, @ı̄, @µ)

I

R

[E 0
J , E

0
K ] = f I

JKE
0
I

Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.10)

A generalized frame EA on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame ea for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆eae
b = �ab)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
0

@Ea

Ea

1

A = eB

0

@ea

ea

1

A . (2.11)

This gives

Ea = ea � ◆eaB , (2.12)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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E 0
A0(y, ỹ)

g11, g22, g12

B12

⌧ = 1
g11

(g12 + i
p
g)

⇢ = B12 + i
p
g

⌧ = ⇢

⌧, ⇢

i

1

R 6= 1( 6= R̃)

U(1)⇥ U(1)

SU(2)⇥ SU(2)

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(3)⇥ SU(3)

M ij

1
2 + i

p
3
2

adjG

adjG

0 = 2(N � N̄) + Zt⌘Z (0.6)

7

=
p
✏

M±±,M±⌥

EA(x, y, ỹ) =
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where [Mariana: ser consistentes en H con la definicion en 2.93 (que debe-

riamos sacar quizas si ya aparece aca?)]
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ỹ

gmn

Bmn

gµ⌫

Bµ⌫

gµy

gyy

Bµy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.2)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.3)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.4)

2

a

b

ab

ab

ab

a

b

ab

@yL = @y + @ỹ
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@yR = @y � @ỹ
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Effective action (for Td)

where M,N = 1, ..., 2D are double space-time indices. Therefore, the O(D,D) metric

⌘MN has the following o↵-diagonal form

⌘MN = ⌘MN =

0

@ 0 1D

1D 0

1

A , (2.11)

where 1D is the D ⇥ D identity matrix. Note that ⌘MN is invariant under ordinary

di↵emorphisms. Defining

⌘AB = ⌘(EA, EB), (2.12)

where A,B = 1, .., 2D are frame indices, it is easy to see that when the frame EA is of

the form (2.9), ⌘AB has also the o↵-diagonal form

⌘AB = ⌘AB =

0

@ 0 1D

1D 0

1

A . (2.13)

One can alternatively use a right-left basis C�, C+ by rotating the A,B frame indices with

RA
B =

1p
2

0

@1 �1

1 1

1

A , (2.14)

namely (EC)A = RA
BEB. In this basis ⌘AB has the diagonal form

(R⌘RT )AB = (R⌘RT )AB =

0

@�1D 0

0 1D

1

A . (2.15)

As in ordinary geometry, the generalized tangent bundle admits a generalized metric

defined as

H = SABEA ⌦ EB , (2.16)

where SAB = diag(sab, sab), sab being the Minkowski metric.

In Scherk-Schwarz compactifications [14] one splits the frame into a piece that depends

on the external coordinates x and a piece that involves the internal ones y. The same is

done in generalized Scherk-Schwarz compactifications [8], namely

EA(x, y) = UA
A0
(x)E 0

A0(y) . (2.17)
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.

2.4 E↵ective action from DFT

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
HIJF

Iµ⌫F J
µ⌫ + (DµH)IJ(D

µH)IJ (2.88)
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�

F I
µ⌫ = 2@[µA

I
⌫] � f I

JKA
J
µA

K
⌫ ,

H = dB + F I ^ AI (2.89)

and the covariant derivative of the scalars is

(DµH)IJ = (@µH)IJ + fK
LIA

L
µHKJ + fK

LJA
L
µHIK . (2.90)

I = i, ı̄

⇡

0

@ 1 M

M t 1

1

A (2.91)

Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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K ] = f I

JKE 0
K

J, J̄

✏ijk, ✏ı|k

Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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S =

Z
dX R , (2.9)

HMN = �ABEA
MEB

N

@M = (@µ, @i, @ı̄, @µ)

I

R

[E 0
J , E

0
K ] = f I

JKE
0
I

Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.10)

A generalized frame EA on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame ea for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆eae
b = �ab)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
0

@Ea

Ea

1

A = eB

0

@ea

ea

1

A . (2.11)

This gives

Ea = ea � ◆eaB , (2.12)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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Generalized Sherk-Schwarz compactification of DFT action 
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [?]

Seff =

Z
ddx

p
ge�2'

✓
⇤� 2(d� 26)
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10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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J̄ ı̄(y, ỹ)
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ỹ
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Effective action (for Td)

where M,N = 1, ..., 2D are double space-time indices. Therefore, the O(D,D) metric

⌘MN has the following o↵-diagonal form

⌘MN = ⌘MN =

0

@ 0 1D

1D 0

1

A , (2.11)

where 1D is the D ⇥ D identity matrix. Note that ⌘MN is invariant under ordinary

di↵emorphisms. Defining

⌘AB = ⌘(EA, EB), (2.12)

where A,B = 1, .., 2D are frame indices, it is easy to see that when the frame EA is of

the form (2.9), ⌘AB has also the o↵-diagonal form

⌘AB = ⌘AB =

0

@ 0 1D

1D 0

1

A . (2.13)

One can alternatively use a right-left basis C�, C+ by rotating the A,B frame indices with

RA
B =

1p
2

0

@1 �1

1 1

1

A , (2.14)

namely (EC)A = RA
BEB. In this basis ⌘AB has the diagonal form

(R⌘RT )AB = (R⌘RT )AB =

0

@�1D 0

0 1D

1

A . (2.15)

As in ordinary geometry, the generalized tangent bundle admits a generalized metric

defined as

H = SABEA ⌦ EB , (2.16)

where SAB = diag(sab, sab), sab being the Minkowski metric.

In Scherk-Schwarz compactifications [14] one splits the frame into a piece that depends

on the external coordinates x and a piece that involves the internal ones y. The same is

done in generalized Scherk-Schwarz compactifications [8], namely

EA(x, y) = UA
A0
(x)E 0

A0(y) . (2.17)
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Āı̄(x)

J i(y, ỹ)
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.

2.4 E↵ective action from DFT

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
HIJF

Iµ⌫F J
µ⌫ + (DµH)IJ(D

µH)IJ (2.88)
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I
⌫] � f I

JKA
J
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K
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H = dB + F I ^ AI (2.89)

and the covariant derivative of the scalars is

(DµH)IJ = (@µH)IJ + fK
LIA

L
µHKJ + fK

LJA
L
µHIK . (2.90)

I = i, ı̄
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0

@ 1 M

M t 1

1

A (2.91)

Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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Exactly string theory action!

S =

Z
dX R , (2.9)

HMN = �ABEA
MEB

N

@M = (@µ, @i, @ı̄, @µ)

I

R

[E 0
J , E

0
K ] = f I

JKE
0
I

Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.10)

A generalized frame EA on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame ea for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆eae
b = �ab)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
0

@Ea

Ea

1

A = eB

0

@ea

ea

1

A . (2.11)

This gives

Ea = ea � ◆eaB , (2.12)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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B12
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SU(2)⇥ SU(2)

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(3)⇥ SU(3)

M ij

1
2 + i

p
3
2

adjG

adjG

0 = 2(N � N̄) + Zt⌘Z (0.6)
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p
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7

geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.

2.4 E↵ective action from DFT

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
HIJF

Iµ⌫F J
µ⌫ + (DµH)IJ(D

µH)IJ (2.88)

� 1

12
fIJKfLMN

�
HILHJMHKN � 3HIL⌘JM⌘KN + 2 ⌘IL⌘JM⌘KN

�

I = i, ı̄

⇡

0

@ 1 M

M t 1

1

A (2.89)

Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [?]

Seff =

Z
ddx

p
ge�2'

✓
⇤� 2(d� 26)

3↵0 +R+ 4@µ'@µ'� 1

12
Hµ⌫⇢H

µ⌫⇢

�1

4
HIJF

Iµ⌫F J
µ⌫ +

1

8
(DµH)IJ(D

µH)IJ (2.90)

� 1

12↵0fIJKfLMN

�
HILHJMHKN � 3HIL⌘JM⌘KN + 2 ⌘IL⌘JM⌘KN

�◆

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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where [Mariana: ser consistentes en H con la definicion en 2.93 (que debe-

riamos sacar quizas si ya aparece aca?)]
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H = dB + Ai ^ F i � Āi ^ F̄ i

H = dB + Ai ^ F i + Āi ^ F̄ i

F i = dAi + ✏ijkAj ^ Ak

DµM ii = @µM ii + f ijkAj
µM

ki + f ijkĀj
µM

ik

Consider the closed bosonic string theory compactified on a circle of radius R. The

4

a

b

ab

ab

ab

a

b

ab

@yL = @y + @ỹ
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@yR = @y � @ỹ
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Effective action (for Td)

where M,N = 1, ..., 2D are double space-time indices. Therefore, the O(D,D) metric

⌘MN has the following o↵-diagonal form

⌘MN = ⌘MN =

0

@ 0 1D

1D 0

1

A , (2.11)

where 1D is the D ⇥ D identity matrix. Note that ⌘MN is invariant under ordinary

di↵emorphisms. Defining

⌘AB = ⌘(EA, EB), (2.12)

where A,B = 1, .., 2D are frame indices, it is easy to see that when the frame EA is of

the form (2.9), ⌘AB has also the o↵-diagonal form

⌘AB = ⌘AB =

0

@ 0 1D

1D 0

1

A . (2.13)

One can alternatively use a right-left basis C�, C+ by rotating the A,B frame indices with

RA
B =

1p
2

0

@1 �1

1 1

1

A , (2.14)

namely (EC)A = RA
BEB. In this basis ⌘AB has the diagonal form

(R⌘RT )AB = (R⌘RT )AB =

0

@�1D 0

0 1D

1

A . (2.15)

As in ordinary geometry, the generalized tangent bundle admits a generalized metric

defined as

H = SABEA ⌦ EB , (2.16)

where SAB = diag(sab, sab), sab being the Minkowski metric.

In Scherk-Schwarz compactifications [14] one splits the frame into a piece that depends

on the external coordinates x and a piece that involves the internal ones y. The same is

done in generalized Scherk-Schwarz compactifications [8], namely

EA(x, y) = UA
A0
(x)E 0

A0(y) . (2.17)
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0 1 M �MĀ
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.

2.4 E↵ective action from DFT

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
HIJF

Iµ⌫F J
µ⌫ + (DµH)IJ(D

µH)IJ (2.88)

� 1

12
fIJKfLMN

�
HILHJMHKN � 3HIL⌘JM⌘KN + 2 ⌘IL⌘JM⌘KN

�

F I
µ⌫ = 2@[µA

I
⌫] � f I

JKA
J
µA

K
⌫ ,

H = dB + F I ^ AI (2.89)

and the covariant derivative of the scalars is
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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✏ijk, ✏ı|k

Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.

42

Exactly string theory action!

S =

Z
dX R , (2.9)

HMN = �ABEA
MEB

N

@M = (@µ, @i, @ı̄, @µ)

I

R

[E 0
J , E

0
K ] = f I

JKE
0
I

Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.10)

A generalized frame EA on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame ea for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆eae
b = �ab)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
0

@Ea

Ea

1

A = eB

0

@ea

ea

1

A . (2.11)

This gives

Ea = ea � ◆eaB , (2.12)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [?]

Seff =

Z
ddx

p
ge�2'

✓
⇤� 2(d� 26)
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10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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[µF
ã
⌫⇢] + f ãb̃c̃Aã
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ỹ
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@yR = @y � @ỹ
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ỹ

gmn

Bmn

gµ⌫

Bµ⌫

gµy

gyy

Bµy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.2)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.3)

M2 = 2(N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.4)

2

a

b

ab

ab

ab

a

b

ab

@yL = @y + @ỹ
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⇡ 1 + 1
2 < M33 >

✏

U+ ⇡ 1

U� ⇡ 1
2M

33

+fijk fı̄|̄k̄ M
īıM j|̄Mkk̄

0

@ 1 1
2M

33

1
2M

33 1

1

A (2.54)

cos 2yL

J =

0

BBB@

cos 2yL sin 2yL 0

� sin 2yL cos 2yL 0

0 0 1

1

CCCA

0

BBB@

vL1

vL2

dyL

1

CCCA
(2.55)

40

a

b

ab

ab

ab

a

b

abc

abc

@yL = @y + @ỹ
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@yR = @y � @ỹ

ỹ
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Effective action (for Td)

where M,N = 1, ..., 2D are double space-time indices. Therefore, the O(D,D) metric

⌘MN has the following o↵-diagonal form

⌘MN = ⌘MN =

0

@ 0 1D

1D 0

1

A , (2.11)

where 1D is the D ⇥ D identity matrix. Note that ⌘MN is invariant under ordinary

di↵emorphisms. Defining

⌘AB = ⌘(EA, EB), (2.12)

where A,B = 1, .., 2D are frame indices, it is easy to see that when the frame EA is of

the form (2.9), ⌘AB has also the o↵-diagonal form

⌘AB = ⌘AB =
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@ 0 1D
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One can alternatively use a right-left basis C�, C+ by rotating the A,B frame indices with
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1p
2
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@1 �1

1 1

1

A , (2.14)

namely (EC)A = RA
BEB. In this basis ⌘AB has the diagonal form

(R⌘RT )AB = (R⌘RT )AB =

0

@�1D 0

0 1D

1

A . (2.15)

As in ordinary geometry, the generalized tangent bundle admits a generalized metric

defined as

H = SABEA ⌦ EB , (2.16)

where SAB = diag(sab, sab), sab being the Minkowski metric.

In Scherk-Schwarz compactifications [14] one splits the frame into a piece that depends

on the external coordinates x and a piece that involves the internal ones y. The same is

done in generalized Scherk-Schwarz compactifications [8], namely

EA(x, y) = UA
A0
(x)E 0

A0(y) . (2.17)

23

0

BBBBBB@

Ea

E
L

E
R

Ea

1

CCCCCCA
=

0

BBBBBB@

ea ◆eaA ◆eaĀ ◆eaB
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J̄ ı̄(y, ỹ)
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.

2.4 E↵ective action from DFT

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
HIJF

Iµ⌫F J
µ⌫ + (DµH)IJ(D

µH)IJ (2.88)
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F I
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I
⌫] � f I

JKA
J
µA

K
⌫ ,

H = dB + F I ^ AI (2.89)

and the covariant derivative of the scalars is

(DµH)IJ = (@µH)IJ + fK
LIA

L
µHKJ + fK

LJA
L
µHIK . (2.90)

I = i, ı̄

⇡

0

@ 1 M

M t 1

1

A (2.91)

Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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[E 0
J , E

0
K ] = f I

JKE 0
K

J, J̄

✏ijk, ✏ı|k

Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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Exactly string theory action!

S =

Z
dX R , (2.9)

HMN = �ABEA
MEB

N

@M = (@µ, @i, @ı̄, @µ)

I

R

[E 0
J , E

0
K ] = f I

JKE
0
I

Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.10)

A generalized frame EA on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame ea for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆eae
b = �ab)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
0

@Ea

Ea

1

A = eB

0

@ea

ea

1

A . (2.11)

This gives

Ea = ea � ◆eaB , (2.12)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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Generalized Sherk-Schwarz compactification of DFT action 
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [?]

Seff =

Z
ddx

p
ge�2'

✓
⇤� 2(d� 26)
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10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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where [Mariana: ser consistentes en H con la definicion en 2.93 (que debe-

riamos sacar quizas si ya aparece aca?)]
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µ⌫ = 2@[µA
ã
⌫] + f ãb̃c̃Ab̃

µA
c̃
⌫ ,

(0.3)

H = dB + Ai ^ F i � Āi ^ F̄ i
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ỹ
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ỹ

gmn

Bmn

gµ⌫

Bµ⌫

gµy

gyy

Bµy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.2)

2

Reproduces string theory masses 
of states at a point close to
maximal enhancement point

+
1

4
Maa0F

a
µ⌫F̄

a0µ⌫ +DµMaa0D
µMaa0 � 1

12
fabcf̄a0b0c0M

aa0M bb0M cc0

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
F i
µ⌫F

iµ⌫ +
1

4
F̄ i
µ⌫F̄

iµ⌫ +
1

4
M ijF i

µ⌫F̄
jµ⌫ +DµM

ijDµM ij

�detM

where [Mariana: ser consistentes en H con la definicion en 2.102 (que debe-

riamos sacar quizas si ya aparece aca?)]

Hµ⌫⇢ = @µB⌫⇢ + Aa
[µF

a
⌫⇢] + fabcAa

µA
b
⌫A

c
µ + Aã
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H = dB + Ai ^ F i + Āi ^ F̄ i
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F i = dAi + ✏ijkAj ^ Ak

F a = dAa + fa
bc A

b ^ Ac

DµM ii = @µM ii + f ijkAj
µM

ki + f ijkĀj
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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on top of the d + 1 ones of the external space and the circle, and the frame depends on

on all of them. So in terms of “how many extra coordinates one needs to realize the

algebra”, this is more expensive than in the previous way. Also, from the point of view

of the string compactified on a circle, the role of the S3 is far less clear. Furthermore, S3

is simply connected and therefore there is no topological winding number. It is the fact

that the CFT is the same as that of the SU(2)-WZW at level 1 what allows to give some
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y � ỹ
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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on top of the d + 1 ones of the external space and the circle, and the frame depends on

on all of them. So in terms of “how many extra coordinates one needs to realize the

algebra”, this is more expensive than in the previous way. Also, from the point of view

of the string compactified on a circle, the role of the S3 is far less clear. Furthermore, S3

is simply connected and therefore there is no topological winding number. It is the fact

that the CFT is the same as that of the SU(2)-WZW at level 1 what allows to give some
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yL

yR

y

ỹ
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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on top of the d + 1 ones of the external space and the circle, and the frame depends on

on all of them. So in terms of “how many extra coordinates one needs to realize the

algebra”, this is more expensive than in the previous way. Also, from the point of view

of the string compactified on a circle, the role of the S3 is far less clear. Furthermore, S3

is simply connected and therefore there is no topological winding number. It is the fact

that the CFT is the same as that of the SU(2)-WZW at level 1 what allows to give some
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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@y@ỹ( ) = 0

⌘MN@M@N( ) = 0

EA =

0

@ea � ◆eaB

ea

1

A . (2.3)

H = �ABEA ⌦ EB , (2.4)

H =

0

@ g�1 �g�1B

Bg�1 g � Bg�1B

1

A . (2.5)

O(D,D)
O(D)⇥O(D)

(LV U)M = V P@PU
M + (@MVP � @PV

M)UP

(LV1V2)
M = V P

1 @PV
M
2 + (@MV1P � @PV

M
1 )V P

2

[V1, V2]C =
1

2
(LV1V2 � LV2V1) (2.6)

LEAEB = FAB
CEC (2.7)

22

⌘

' @ỹ
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ỹ

R

R̃

= y + ỹ
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Ā = V1 � B1 , J̄ = @y � dy ,

and

U± =
1

2
(��1 ± �) . (2.41)

= e
1
2M

33

= eM
33/2

<

>

0

@E
L

E
R

1

A =

0

@ 1 1
2M

33

1
2M

33 1

1

A

0

@J + A

J̄ � Ā
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1

A , (2.43)

0

@Ei

E ı̄

1

A =

0

@ 1 1
2M

i|̄

1
2M

ı̄j 1

1

A

0

@J j + Aj

J̄ |̄ � Ā|̄
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1

A , (2.44)

M i|̄(x)

29

ea

TS1 � T ⇤S1

TM� T ⇤M

TM = TMd � TS1

�T ⇤S1 � T ⇤Md

�T S̃1

TMd � T2 � TS1 � T S̃1 � T ⇤
2 � T ⇤Md

TMd + T2 + TS1 + T S̃1 + T ⇤
2 + T ⇤Md

TMd + R2 + TS1 + T S̃1 + R2 + T ⇤Md

TMd + V2 + TS1 + T S̃1 + V ⇤
2 + T ⇤Md

TMd � V2 � TS1 � T S̃1 � V ⇤
2 � T ⇤Md

R2 + TS1 + TS1 + R2

V2 + TS1 + TS1 + V2

= @y + @ỹ
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]
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↵0 =< �2 > . (2.65)

On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.66)
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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on top of the d + 1 ones of the external space and the circle, and the frame depends on

on all of them. So in terms of “how many extra coordinates one needs to realize the

algebra”, this is more expensive than in the previous way. Also, from the point of view

of the string compactified on a circle, the role of the S3 is far less clear. Furthermore, S3

is simply connected and therefore there is no topological winding number. It is the fact

that the CFT is the same as that of the SU(2)-WZW at level 1 what allows to give some
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y � ỹ
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ỹ

+ dy

21

geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]
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On the other hand, the scalar field � should be parameterized in terms of the fluctuation
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� = exp(12M
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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on top of the d + 1 ones of the external space and the circle, and the frame depends on

on all of them. So in terms of “how many extra coordinates one needs to realize the

algebra”, this is more expensive than in the previous way. Also, from the point of view

of the string compactified on a circle, the role of the S3 is far less clear. Furthermore, S3

is simply connected and therefore there is no topological winding number. It is the fact

that the CFT is the same as that of the SU(2)-WZW at level 1 what allows to give some
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ỹ

R

R̃

= y + ỹ
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where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a
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H(y, ỹ) = E 0t E 0
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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on top of the d + 1 ones of the external space and the circle, and the frame depends on

on all of them. So in terms of “how many extra coordinates one needs to realize the

algebra”, this is more expensive than in the previous way. Also, from the point of view

of the string compactified on a circle, the role of the S3 is far less clear. Furthermore, S3

is simply connected and therefore there is no topological winding number. It is the fact

that the CFT is the same as that of the SU(2)-WZW at level 1 what allows to give some
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ỹ

+ dy

21

geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.

42

a

b

ab

ab

ab

a

b

abc

abc

@yL = @y + @ỹ
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where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]
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On the other hand, the scalar field � should be parameterized in terms of the fluctuation
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� = exp(12M
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Straightforward generalization to SU(2)d x SU(2)d
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What about other enhancement groups?
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does not arise from any
obvious extension of the 

previous construction
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Deformed generalized Lie derivative
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Cocycle tensor

on top of the d + 1 ones of the external space and the circle, and the frame depends on

on all of them. So in terms of “how many extra coordinates one needs to realize the

algebra”, this is more expensive than in the previous way. Also, from the point of view

of the string compactified on a circle, the role of the S3 is far less clear. Furthermore, S3

is simply connected and therefore there is no topological winding number. It is the fact

that the CFT is the same as that of the SU(2)-WZW at level 1 what allows to give some

geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.

2.4 E↵ective action from DFT
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JK AJ ^ AK

H = dB + F I ^ AI (2.89)

and the covariant derivative of the scalars is
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L
µHKJ + fK
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K
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This reproduces 
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for any group



Effective action found is good close to enhancement point



Can we find a description “good” for all moduli space ?

Effective action found is good close to enhancement point



⌧ = ⇢

i

1

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(3)⇥ SU(3)

1
2 + i

p
3
2

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.5)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.10) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.6)

and the level matching constraint

N̄ �N = pp̃ , (0.7)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Can we find a description “good” for all moduli space ?

Effective action found is good close to enhancement point d=2



⌧ = ⇢

i

1

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(3)⇥ SU(3)

1
2 + i

p
3
2

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.5)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.10) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.6)

and the level matching constraint

N̄ �N = pp̃ , (0.7)
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Can we find a description “good” for all moduli space ?

☞ We can, but                           ⊄
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Effective action found is good close to enhancement point d=2
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and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.10) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.6)

and the level matching constraint

N̄ �N = pp̃ , (0.7)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.

6

0 = 2(N � N̄) + Zt⌘Z (0.6)

Z =

0

@nm

!m

1

A . (0.7)

M2 = 2(N + N̄ � 2) + ZtHZ (0.8)

H

ZLR =

0

@n+ !

n� !

1

A . (0.9)

ETE

ET⌘E

p = EZ

pA = EA
MZM

gµm, Bµm

gmn, Bmn

0

@pL

pR

1

A =

0

@ema [nm + (gmn +Bmn)!n]

ema [nm � (gmn � Bmn)!n]

1

A

SU(3)⇥ SU(3)

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(2)⇥ U(1)⇥ SU(2)⇥ U(1)

Consider the closed bosonic string theory compactified on a circle of radius R. The

7

0 = 2(N � N̄) + Zt⌘Z (0.6)

Z =

0

@nm

!m

1

A . (0.7)

M2 = 2(N + N̄ � 2) + ZtHZ (0.8)

H

ZLR =

0

@n+ !

n� !

1

A . (0.9)

ETE

ET⌘E

p = EZ

pA = EA
MZM

gµm, Bµm

gmn, Bmn

0

@pL

pR

1

A =

0

@ema [nm + (gmn +Bmn)!n]

ema [nm � (gmn � Bmn)!n]

1

A

SU(3)⇥ SU(3)

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(2)⇥ U(1)⇥ SU(2)⇥ U(1)

Consider the closed bosonic string theory compactified on a circle of radius R. The

7

0 = 2(N � N̄) + Zt⌘Z (0.6)

Z =

0

@nm

!m

1

A . (0.7)

M2 = 2(N + N̄ � 2) + ZtHZ (0.8)

H

ZLR =

0

@n+ !

n� !

1

A . (0.9)

ETE

ET⌘E

p = EZ

pA = EA
MZM

gµm, Bµm

gmn, Bmn

0

@pL

pR

1

A =

0

@ema [nm + (gmn +Bmn)!n]

ema [nm � (gmn � Bmn)!n]

1

A

SU(3)⇥ SU(3)

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(2)⇥ U(1)⇥ SU(2)⇥ U(1)

Consider the closed bosonic string theory compactified on a circle of radius R. The

7

mn

T2 � TS1 � TS1 � T2

R2 � TS1 � TS1 � R2

TM2 � TS1 � TS1 � TM2

Tp(T 2)� TpS1 � TpS1 � Tp(T 2)

SU(2)2 ⇥ SU(2)2

T 2

m

m

T 3

T 3

M3

T 2

M3

S1 ⇥ S̃1

S1 ⇥ S1

[J i, J j]C = ✏ijkJk

[J̄ ı̄, J̄ |̄]C = ✏ı̄|̄k̄J̄ k̄

[J i, J̄ |̄]C = 0

v1

, v2

v1, v2

v2

vL1 , v
L
2

dwL
1 , dw

L
2

43

Can we find a description “good” for all moduli space ?

☞ We can, but                           ⊄

0 = 2(N � N̄) + Zt⌘Z (0.6)

Z =

0

@nm

!m

1

A . (0.7)

M2 = 2(N + N̄ � 2) + ZtHZ (0.8)

H

ZLR =

0

@n+ !

n� !

1

A . (0.9)

ETE

ET⌘E

p = EZ

pA = EA
MZM

gµm, Bµm

gmn, Bmn

0

@pL

pR

1

A =

0

@ema [nm + (gmn +Bmn)!n]

ema [nm � (gmn � Bmn)!n]

1

A

SU(3)⇥ SU(3)

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(2)⇥ U(1)⇥ SU(2)⇥ U(1)

SU(2)⇥ SU(2)

Consider the closed bosonic string theory compactified on a circle of radius R. The

7

0 = 2(N � N̄) + Zt⌘Z (0.6)

Z =

0

@nm

!m

1

A . (0.7)

M2 = 2(N + N̄ � 2) + ZtHZ (0.8)

H

ZLR =

0

@n+ !

n� !

1

A . (0.9)

ETE

ET⌘E

p = EZ

pA = EA
MZM

gµm, Bµm

gmn, Bmn

0

@pL

pR

1

A =

0

@ema [nm + (gmn +Bmn)!n]

ema [nm � (gmn � Bmn)!n]

1

A

SU(3)⇥ SU(3)

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(2)⇥ U(1)⇥ SU(2)⇥ U(1)

SU(2)⇥ SU(2)

Consider the closed bosonic string theory compactified on a circle of radius R. The

7

☞ We need a larger group

Effective action found is good close to enhancement point d=2



⌧ = ⇢

i

1

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(3)⇥ SU(3)

1
2 + i

p
3
2

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.5)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.10) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
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2
+
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, (0.6)

and the level matching constraint

N̄ �N = pp̃ , (0.7)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.5)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.10) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
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2
+
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2
, (0.6)

and the level matching constraint

N̄ �N = pp̃ , (0.7)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.5)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.10) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:
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↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.6)

and the level matching constraint
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moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.11)

and the level matching constraint

N̄ �N = pp̃ , (0.12)

yL ! yR

(N̄y) and the number operator for the non-compact space-time directions Nx ( N̄x).

number operator, involving the sum of the number operator along the circle Ny where

N = Nx +Ny ( N̄ = N̄x + N̄y) is the left (right) moving

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.5)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.10) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.6)

and the level matching constraint

N̄ �N = pp̃ , (0.7)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:
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and the level matching constraint

N̄ �N = pp̃ , (0.12)

yL ! yR

(N̄y) and the number operator for the non-compact space-time directions Nx ( N̄x).

number operator, involving the sum of the number operator along the circle Ny where

N = Nx +Ny ( N̄ = N̄x + N̄y) is the left (right) moving

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.11)

and the level matching constraint

N̄ �N = pp̃ , (0.12)

yL ! yR

(N̄y) and the number operator for the non-compact space-time directions Nx ( N̄x).

number operator, involving the sum of the number operator along the circle Ny where

N = Nx +Ny ( N̄ = N̄x + N̄y) is the left (right) moving

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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H = H�1

g11, g22, g12

B12

⌧ = 1
g11

(g12 + i
p
g)

⇢ = B12 + i
p
g

⌧ = ⇢

⌧, ⇢

i

1

R 6= 1( 6= R̃)

U(1)⇥ U(1)

SU(2)⇥ SU(2)

SU(2)⇥ SU(2)⇥ SU(2)⇥ SU(2)

SU(3)⇥ SU(3)

SU(4)⇥ SU(2)⇥ SU(4)⇥ SU(2)

M ij

1
2 + i

p
3
2

adjG

adjG

0 = 2(N � N̄) + Zt⌘Z (0.6)

7
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☞ To describe all moduli space of  T4, need to consider enhancement groups on T7 

Effective action found is good close to enhancement point d=2
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Can we find a description “good” for all moduli space ?

☞ We can, but                           ⊄

☞ But action not a good low energy action
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.10)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.15) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.11)

and the level matching constraint

N̄ �N = pp̃ , (0.12)

yL ! yR

(N̄y) and the number operator for the non-compact space-time directions Nx ( N̄x).

number operator, involving the sum of the number operator along the circle Ny where

N = Nx +Ny ( N̄ = N̄x + N̄y) is the left (right) moving

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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where ⌦ABC vanishes if one or more indices correspond to Cartan generators and if
A,B,C are associated with roots, say ↵, �, �, respectively,

⌦ABC =

⇢

(�1)↵⇤� �↵+�+� if two roots are positive,
�(�1)↵⇤� �↵+�+� if two roots are negative.

This deformation accounts for the cocycle factors that were excluded from the CFT
current operators in (4.16) but, as discussed in section 2, they are necessary in order to
compensate for the minus sign in the OPE J↵(z)J�(w) when exchanging the two currents
and their insertion points z $ w (see Appendix B for more details). It was conjectured
in [18] that such factors would also appear in the gauge and duality transformations of
double field theory, and actually, they can be included without spoiling the local covari-
ance of the theory. Indeed, the cocycle tensor ⌦ABC satisfies the consistency constraints
of gauged DFT, namely [9, 10]

⌦ABC = ⌦[ABC] , ⌦[AB
D⌦C]D

E = 0 , ⌦ABC@
C · · · = 0 , (4.20)

and it breaks the O(n, n) global covariance to O(k, k). Then, all the structure constants
of G can be obtained from (4.19) using the expression (4.16) for the generalized vielbein.

To see how this works for SU(3), it is convenient to recall the non-vanishing structure
constants in the Cartan-Weyl basis

f111 = f133 =

r

3

2
, f211 = �f233 = � 1p

2
, f222 =

p
2 , f123 = �f123 = 1.

These can be obtained from (4.19) using the O(8, 8) matrix (4.16) where

J1 = J1⇤ = e�i(2y1L�y2L) , J2 = J2⇤ = e�i(y1L�2y2L) , J3 = J3⇤ = e�i(y1L+y2L) ,

and similarly for the right sector, where y1L, y
2
L, y

1
R, y

2
R are the coordinates associated to

the Cartan directions, and the only non-vanishing components of the cocycle tensor are

⌦123 = 1 , ⌦123 = �1 . (4.21)

Note that the generalized vielbeins (4.10) and (4.16) are eigenvectors of the operator
@M@M . Indeed in the LR basis, they verify

�1

4
(@2

ymL
� @2

ymR
)ELR =

=
i

2
p
2
diag(↵2

1J
↵1 , . . . ,↵2

n�kJ
↵n�k , 0, . . . , 0,↵2

1J̄
↵1 , . . . ,↵2

n�kJ̄
↵n�k , 0, . . . , 0) .

Interestingly, this can be written as
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M = (N � N̄)EA
M , (4.22)

where the eigenvalues are ↵2
i
2 (�↵2

i
2 ) in the left-moving (right-moving) sector corresponding

to the ladder currents, and zero in the Cartan sector. This means that the generalized
vielbein satisfies a modified version of the weak constraint, holding even when N 6= N̄ ,
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• For groups with non-simple roots we modified the bracket by cocyle tensor

where ⌦ABC vanishes if one or more indices correspond to Cartan generators and if
A,B,C are associated with roots, say ↵, �, �, respectively,

⌦ABC =

⇢

(�1)↵⇤� �↵+�+� if two roots are positive,
�(�1)↵⇤� �↵+�+� if two roots are negative.

This deformation accounts for the cocycle factors that were excluded from the CFT
current operators in (4.16) but, as discussed in section 2, they are necessary in order to
compensate for the minus sign in the OPE J↵(z)J�(w) when exchanging the two currents
and their insertion points z $ w (see Appendix B for more details). It was conjectured
in [18] that such factors would also appear in the gauge and duality transformations of
double field theory, and actually, they can be included without spoiling the local covari-
ance of the theory. Indeed, the cocycle tensor ⌦ABC satisfies the consistency constraints
of gauged DFT, namely [9, 10]

⌦ABC = ⌦[ABC] , ⌦[AB
D⌦C]D

E = 0 , ⌦ABC@
C · · · = 0 , (4.20)

and it breaks the O(n, n) global covariance to O(k, k). Then, all the structure constants
of G can be obtained from (4.19) using the expression (4.16) for the generalized vielbein.

To see how this works for SU(3), it is convenient to recall the non-vanishing structure
constants in the Cartan-Weyl basis

f111 = f133 =
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2
, f211 = �f233 = � 1p

2
, f222 =
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2 , f123 = �f123 = 1.

These can be obtained from (4.19) using the O(8, 8) matrix (4.16) where

J1 = J1⇤ = e�i(2y1L�y2L) , J2 = J2⇤ = e�i(y1L�2y2L) , J3 = J3⇤ = e�i(y1L+y2L) ,

and similarly for the right sector, where y1L, y
2
L, y

1
R, y

2
R are the coordinates associated to

the Cartan directions, and the only non-vanishing components of the cocycle tensor are

⌦123 = 1 , ⌦123 = �1 . (4.21)

Note that the generalized vielbeins (4.10) and (4.16) are eigenvectors of the operator
@M@M . Indeed in the LR basis, they verify
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2 ) in the left-moving (right-moving) sector corresponding

to the ladder currents, and zero in the Cartan sector. This means that the generalized
vielbein satisfies a modified version of the weak constraint, holding even when N 6= N̄ ,
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• For groups with non-simple roots we modified the bracket by cocyle tensor

where ⌦ABC vanishes if one or more indices correspond to Cartan generators and if
A,B,C are associated with roots, say ↵, �, �, respectively,

⌦ABC =

⇢

(�1)↵⇤� �↵+�+� if two roots are positive,
�(�1)↵⇤� �↵+�+� if two roots are negative.

This deformation accounts for the cocycle factors that were excluded from the CFT
current operators in (4.16) but, as discussed in section 2, they are necessary in order to
compensate for the minus sign in the OPE J↵(z)J�(w) when exchanging the two currents
and their insertion points z $ w (see Appendix B for more details). It was conjectured
in [18] that such factors would also appear in the gauge and duality transformations of
double field theory, and actually, they can be included without spoiling the local covari-
ance of the theory. Indeed, the cocycle tensor ⌦ABC satisfies the consistency constraints
of gauged DFT, namely [9, 10]

⌦ABC = ⌦[ABC] , ⌦[AB
D⌦C]D

E = 0 , ⌦ABC@
C · · · = 0 , (4.20)

and it breaks the O(n, n) global covariance to O(k, k). Then, all the structure constants
of G can be obtained from (4.19) using the expression (4.16) for the generalized vielbein.

To see how this works for SU(3), it is convenient to recall the non-vanishing structure
constants in the Cartan-Weyl basis

f111 = f133 =
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2
, f211 = �f233 = � 1p

2
, f222 =

p
2 , f123 = �f123 = 1.

These can be obtained from (4.19) using the O(8, 8) matrix (4.16) where

J1 = J1⇤ = e�i(2y1L�y2L) , J2 = J2⇤ = e�i(y1L�2y2L) , J3 = J3⇤ = e�i(y1L+y2L) ,

and similarly for the right sector, where y1L, y
2
L, y

1
R, y

2
R are the coordinates associated to

the Cartan directions, and the only non-vanishing components of the cocycle tensor are

⌦123 = 1 , ⌦123 = �1 . (4.21)

Note that the generalized vielbeins (4.10) and (4.16) are eigenvectors of the operator
@M@M . Indeed in the LR basis, they verify
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2 ) in the left-moving (right-moving) sector corresponding

to the ladder currents, and zero in the Cartan sector. This means that the generalized
vielbein satisfies a modified version of the weak constraint, holding even when N 6= N̄ ,
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[J↵, J�] = J↵+�

L̃EIEJ = LEIEJ + ⌦IJ
KEK

T2 � TS1 � T S̃1 � T ⇤
2

⌦IJK =

8
<

:
(�1)↵⇤� �↵+�+� if two roots are positive

�(�1)↵⇤� �↵+�+� if two roots are negative
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ỹm

42

• For Td, is there a vielbein depending on 2d coordinates that satisfies algebra
under ordinary bracket? 



• By appropriate generalized Scherk-Schwarz reduction of DFT action we 
fully recover string theory action

• DFT description of compactification of bosonic string on stringy-size tori

Conclusions

violates weak constraint

satisfies level-matching

• Enhancement of symmetry → extend generalized tangent space O(adj G , adj G)

• Frame (determines truncation) depends on  and

• For groups with non-simple roots we modified the bracket by cocyle tensor

• We can describe all moduli space. But... 

- Is that truncation of any use? 
 - Systematics...?

where ⌦ABC vanishes if one or more indices correspond to Cartan generators and if
A,B,C are associated with roots, say ↵, �, �, respectively,

⌦ABC =

⇢

(�1)↵⇤� �↵+�+� if two roots are positive,
�(�1)↵⇤� �↵+�+� if two roots are negative.

This deformation accounts for the cocycle factors that were excluded from the CFT
current operators in (4.16) but, as discussed in section 2, they are necessary in order to
compensate for the minus sign in the OPE J↵(z)J�(w) when exchanging the two currents
and their insertion points z $ w (see Appendix B for more details). It was conjectured
in [18] that such factors would also appear in the gauge and duality transformations of
double field theory, and actually, they can be included without spoiling the local covari-
ance of the theory. Indeed, the cocycle tensor ⌦ABC satisfies the consistency constraints
of gauged DFT, namely [9, 10]

⌦ABC = ⌦[ABC] , ⌦[AB
D⌦C]D

E = 0 , ⌦ABC@
C · · · = 0 , (4.20)

and it breaks the O(n, n) global covariance to O(k, k). Then, all the structure constants
of G can be obtained from (4.19) using the expression (4.16) for the generalized vielbein.

To see how this works for SU(3), it is convenient to recall the non-vanishing structure
constants in the Cartan-Weyl basis

f111 = f133 =

r

3

2
, f211 = �f233 = � 1p

2
, f222 =

p
2 , f123 = �f123 = 1.

These can be obtained from (4.19) using the O(8, 8) matrix (4.16) where

J1 = J1⇤ = e�i(2y1L�y2L) , J2 = J2⇤ = e�i(y1L�2y2L) , J3 = J3⇤ = e�i(y1L+y2L) ,

and similarly for the right sector, where y1L, y
2
L, y

1
R, y

2
R are the coordinates associated to

the Cartan directions, and the only non-vanishing components of the cocycle tensor are

⌦123 = 1 , ⌦123 = �1 . (4.21)

Note that the generalized vielbeins (4.10) and (4.16) are eigenvectors of the operator
@M@M . Indeed in the LR basis, they verify

�1

4
(@2

ymL
� @2

ymR
)ELR =

=
i

2
p
2
diag(↵2

1J
↵1 , . . . ,↵2

n�kJ
↵n�k , 0, . . . , 0,↵2

1J̄
↵1 , . . . ,↵2

n�kJ̄
↵n�k , 0, . . . , 0) .

Interestingly, this can be written as

�1

4
(@2

ymL
� @2

ymR
)EA

M = (N � N̄)EA
M , (4.22)

where the eigenvalues are ↵2
i
2 (�↵2

i
2 ) in the left-moving (right-moving) sector corresponding

to the ladder currents, and zero in the Cartan sector. This means that the generalized
vielbein satisfies a modified version of the weak constraint, holding even when N 6= N̄ ,
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[J↵, J�] = J↵+�

L̃EIEJ = LEIEJ + ⌦IJ
KEK

T2 � TS1 � T S̃1 � T ⇤
2

⌦IJK =

8
<

:
(�1)↵⇤� �↵+�+� if two roots are positive

�(�1)↵⇤� �↵+�+� if two roots are negative

C̃

↵��

ym

ỹm
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[J↵, J�] = J↵+�

L̃EIEJ = LEIEJ + ⌦IJ
KEK

T2 � TS1 � T S̃1 � T ⇤
2

⌦IJK =

8
<

:
(�1)↵⇤� �↵+�+� if two roots are positive

�(�1)↵⇤� �↵+�+� if two roots are negative
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• For Td, is there a vielbein depending on 2d coordinates that satisfies algebra
under ordinary bracket? 


