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Motivation

Shed light on dualities
» An applications of generalised T-dualities

» A regularisation of non-abelian duality

Connection to DFT
> Relation between PL and non-Abelian and SS reduced DFT
» Beyond sugra: 1 deformation modified supergravity

Harness the power of integrability
» 2d QFT’s as toys to probe non-perturbative physics
» Close interplay between T-duality and integrability
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Recap:

the Principal Chiral Model

S= %/ FoTr(g'orgg '0-g) , g:% — SUNN)
S

e.g. SU(2) is o-model into §* with SU(2); x SU(2)g symmetry
Integrable: Lax formulation and oo conserved charges

_#J+ z
T1-2 1-2z

L(z) xJ, dC—LAL=0, T(z):Pexp/daEU
Non-conformal proto-QCD model (but no instantons), factorised S-matrix
[Zamolodchikov,Zamolodchikov;Polyakov,Wiegmannl ond exact mass gOp [Neidermayer , P Hasenfratz

(1946-2016)1

m e
S[] =S S — = 2 —
0] su(2) @ dsu(2) A s me N




XXZ - sigma model

v

Deform to a o-model on a squashed S? chereanik 's11:

s— L / PoTr(g 0,99~ 0_g) + CL F
21 Js

\4

Integrable but SU(2), x SU(2)z — SU(2); x U(1)z

Non-local charges recover semi-classical version of (affine extension of}
Z/{q (5 [2) [Kawaguchi, Matsumoto, Yoshida '11, '121

v

Q3 7@3
_ q% —q %k VC
{QF, Q¢ }rs. = ICEr = g =exp (1 n C)
Important subtleties:

1. Lax involves trig functions + affine g (su2) principal gradation
2. -1 < C<0isaUVsafe; C> 1 large couplings in both IR and UV

v



Yang-Baxter and n Deformations

Integrable models wimei 021 based on modified Yang-Baxter eq
R-matrix: Solution of classical (modified) YB equation:
[RA,RB| — R([RA,B| + [A,RB]) = —*[A,B], VABcg

R-matrix defines an integrable deformed o-model

1 o (-
Sy = QW,/Zdzo*Tr (g 049 1= =9 8—9)

For SU(2) this is the squashed three sphere + pure gauge B-field with C ~ 7?

» Important subtleties:

1. Lax involves rational functions + affine Uq(sl2) homogenous gradation
2. UV safe has n pure imaginary; but ok for SU(2)



Yang-Baxter and n Deformations Il

v

Cosets and super-cosets e.g. AdSs x S° superstring meiduc, Magro, vicedo 13001

> n-sym mefric, SOlVeS modiﬁed SUGRA [Orlando et al 1607, Arutyunov et al. 15111

v

Weyl invariant (solve SUGRA) if unimodular worsato and wuitt 16081

v

Relation to DFT currently being investigated tsakamoto et ai; Baguet et an

v

Case 1: ¢? = —1 n Deformations

v

Case 2: ¢ = 0 Yang-Baxter Deformations



A-deformations: The Sfetsos Procedure

Rather similar to the Buscher procedure this recipe produces integrable A
deformations sretsos 13121 as a regularisation of non-Abelian T-duality

1. Double the d.o.f.: k2Spcum(g] + kSwzwlg]
2. Gauge G; in PCM and Gy in WZW

3. Gauge Fix g =1

4. Integrate out non-propagating gauge fields

B k —1 1 —1
Sa —kSWZWJF%/Tr(g 3+9m3799 )

k

A= Ek



A Deformations interpolate between CFT and non-Abelian T-duals

Nice behaviour in limits of small and large deformations:
» X\ — 0: current bilinear perturbation

k
Sxlr=o = kSwzw + ;/Afiﬁ +O0(\)
» \ — 1: non-Abelian T-dual of PCM
Salat & %/mx"(aab +EX) X+ Ok Y

The T-dual is recovered because in this limit the gauged WZW in the Sfetsos
Procedure becomes a Lagrange multiplier term of the Buscher Procedure



A Commentary

X deformations do solve SUGRA with appropriate RR fields tstetsos om

v

v

Quantum group symmetry expected with g = eT tolowood etan

v

Also applied to cosets isretsost, supercosets wotiowood et an

v

One-loop marginal deformation in case of PSU(2, 2|4)! wppadu, Holtowoodn
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n, A and Poisson-Lie

n and X connected by generalised Poisson Lie T-duality

[Vicedo 1504; Hoare & Tseytlin 1504; Siampos Sfetsos DT 1506; Klimcik 15081

» Modified conservation law for currents of broken Gy in n-model:

d*.]a = ?bca .]b AJe

» fbe, structure constants for gz
A Bjr = [RA,B] + [A RB]
» Mathematically g @ gr ~ g© defines a Drinfel’d Double

» «J pure gauge in a dual algebra (Field Equations < Bianchi identity)

v

So although not isometric just the right structure for PL T-duality waimcik severa



PLT Pairs of Sigma models

» PL T-duality equivalence between two o-models

Slgl = 5- t/dQ L(E-T)'L_, geg,

56l = 5 [ dolhET —T) 'L, ged,

a’ = (g ' Tag, T?), b =(g7'T%, 7%, I=ba

For 1 deformation E=n"" — R.



A doubled formalism for PL T-duality

> PL Dual Pairs follow from a first order “doubled formalism” chiralWZW

[Klimcik & Severa, Sfetsos, Hull & Reid-Edwards 1

= / o — HagLALE + 1agLALE +
)

Ms

fABD’I]DC{LA N L2 A L¢

The Doubled o-model lives on the Drinfeld Double group imeix & several

> The Drinfeld Double is a Lie Algebra D which can be decomposed as the
sum D = G + G for two maximally isotropic sub-algebras. If T, = {T,, T°}

then

(TalTy) = (T°|T) = 0 = (TalTs) = 18

> COVGrian version [Driezen,Sevrin,Thompson 1



PLT and DFT?

» The generalised metric is dressed and so has coordinated dependence
H(X)mn = Has LN

- D =u(1)?+ u(1)4 = Abelian T-duality = H,n constant
- D =G+ u(1)? = non-Abelian T-duality = H(x) on-section
- D = G + G = Poisson-Lie T-duality = Hy(x, X) beyond-section

B-function of H 45 implies scalar potential of gauged supergravity wvramis,

Der i , Prezas; Sfet: i s-DT1

» See Scherk Schwarz reduced DFT




n, A and Poisson-Lie

So back to the  model we can PL dualise

v

v

Not quite enough...

v

Analytic continue certain Euler angles and deformation parameters

11— m(14+A)

TN T

v

Acting on the parameter g we have

i
q:e"'(—)q:ek
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Perturbative headaches

» Perturbation theory is great!

—2
M = 0.00115965218178(77)
2 theory

(9-2) = 0.00115965218073(28)

2 experiment

» Perturbation theory is an uncontrolled disaster!

oo
EPerr — ch(QQ)n , Ch ~ n!
n=0

[Aoyama et al.l

[Gabrielse et al.l

generic factorial growth due to # of diagrams (and in QFT loop momenta)

Can we make formal sense of perturbation theory?
Do the divergences hide some real physicse



Borel Resumation

Borel-Laplace resumation gives meaning to divergent sums

BIE() =32 Sr

n=0

SIE™(¢") = 55 [ BIE™I(e Far.

Extend over C to avoid poles = directional resumation

eiBOO
SolF(g?) = — / BIE*"| (e @ dt

92

Finite but ambiguous result

_s
AE = So>0 — So<o ~ i€ e



The resurgence idea

Non-perturbative sector cancels perturbative ambiguities

» Bogomolny; Zinn-Justin: instanton—anti-instanton [/l ambiguity from
quasi-zero model integration exactly cancels perturbative ambiguity!

> Just start of a whole structure of ambiguity cancellations e.g. late terms in
[] cancel early terms in [/

» Semi-classical approximation — Ecalle trans-series

5i )
E(g2) _ Eperf+ 267972 ZCI((I)(92)I<,
i k>0
» Location of poles in Borel plane precisely tied to semi-classical saddles

» Not new [Bender and Wu; Reeve Stone; Berry Howls; Voros] but lots of activity in
QM,; (topological) String Theory, Matrix models, QFT, Localisation winn-ustin
Jentschura; Dunne, Unsal; Pasquetti Schiappa; Ancieto, Schiappa, Vonk; Marifio; Cherman, Dorigoni, Unsal; Gaiotto Moore

Neitzkel



The resurgence puzzles

Intriguing idea but several puzzles remain

- QFT vs. QM
-- Multiple couplings n-deformed SU(2) theory gives a
-- Theories without instantons simple tractable example fo study these

-- Role of complex saddles ideas

Strategy
1. Reduce in a clever way to a QM
2. Study the large order behaviour of the QM
3. Identify non-perturbative obijects that give rise to Borel poles
4. Exhibit the 2d QFT origin of these NP saddles



The perturbative sector 1

» Put SU(2) n-model on R x S* with twisted b.c.
_H _iH _nm(1 0
gltx+ 1) = olg(t e ™, H=T ( Lo )

-- |deq rcherman etal 14031 PCM physics smoothly connected physics between large
and small radius (provable for large N O(N) tsutejmanpasic 16101 )
-- Here an assumption; post hoc we find a consistent story

» After truncating to lightest modes we get the Whittaker-Hill QM

g fxf + (V) — B =0, V(x) =sin’(x) + 7" sin (x)




The perturbative sector 2

» We use a WKB method to find the perturbative ground state energy as a
solution fo Riccati equation

S(x Z /
¥ = exp(—23) = 6759+ S (9" = (V= g°) =0
» Do a double expansion and solve order by order in g*:

S(x) = ZgQ"Sn(X) , E= ZgQ”En

» Easily done on machine to (g*)'*". e.g. forn =3

1 , 61

7
E—I—Eg —

4 6
9569 Tapoed t0 T



The perturbative sector 3

> An all orders approximant: Borel Padé

N
1 P
BN(f):ZlmEnflanm, n+m:N

» Identify branch cuts in full Borel transform as accumulated poles of the
Borel Padé

n=0 n=1/5 n=3/4

Figure: Singularifies of the diagonal BorelPadé approximant Bz 75 (1) in the complex Borel plane for different values of
n=0,n= %, n = % The dashed red circle denotes || = \Sﬁ\, while the dashed blue circle denotes || = |S¢|.



The non-perturbative sector 1

Location of Borel Poles corresponds to [I /] and complex instanton events

Instanton Complex Instanton
/I + 12 tanh(t — ty) ] Oci(t) = 7% + iarctanh [\/1 + n?2 cosh(t — fo)]

/1 + 72 tanh?(t — ty)

S = (1 +m4+nh orcton(n))

0,(f) = m — arccos |:

Sar= (1= (n+n~"arccot(n))




QFT origin of Non-Perturbative Contributions

v

Positive Borel poles match non-perturbative objects: Unitons unienbeck
Not instantons ( 72 [SU(N)] = 0), non BPS, finite action solutions
Depend on a single holomorphic function f(z)

—i ( /1+772(1*|ﬂ2) of ) .
VA F 22+ n2(1 - [2)2 o2f —VITHn2 (1= %)

g*Sy[Uy] =25 .

Lump of Lagrangian density fractionates on R x S' with twisted b.c.

ey
/

v

v

U, =

v

Figure: Lagrangian density of SU(2) n-deformed uniton on R? (leff) and R x S* (right)



The non-perturbative sector 3

» Negative Borel poles surprising: complex Unitons

U= 1 VIF2(1+ %) 2if
" VAR ()t R 2” AR

g°SlUs] =Sa, Sa=(1— (n+n "arccot(n))
» Again fractionates on R x S* with twisted b.c.

» For n — 0 the action diverges and these drop out of the physics whilst at
critical value 7. ~ 0.27 these dominate over the real saddles
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Generalised )\ & YB-)\ Theories

» Sfetsos Procedure can be generalised by replacing PCM:
kSwzwlg) + Slg] = / Tr(g '0+90g '0-9)
> X now a matrix A:
Sx = kSwzw + LS / Tf(9715+9;(379971)
27 | A1+ Adg

A=1+k"'®
» Idea: if © defined integrable PCM, A can define an integrable theory



Generalised \ & YB-)\ Theories for SU(2)

A-XXZ Model A-YB Model

o = diag(c .67, A7) 0 =l+5(1-R)"

Trigonometric Lax

Rational Lax
Lo=Ht[4°TiT — £ [4°T°T Lo = (ct + dR)T4 + (c- + dR)JT-
RG invariant RG invariant
i KR 1-eH(1-N? __2m)
’YQ:Z 22— g2 2 k(1 —))
“Non ultra-local” i.e. central term in current algebra
a b ¢ 4c k ab ¢/
{ji(x)7k7i(y)} = Tab ji(x)éxy:t %5 (5)(),



Classical Symmetries

» Expand monodromy to find symmetries but need to determine expansion

points!
T(z) = Pexp (—/Eo (z))

» Determine Maillet r/s algebra
(L5, L2} = [H(z1,22), L5 + L2]012 + [s(21, 22), L5 — L2]612 — 25(z1, 22) 12

» Locate special points z, where limc_.o r(z., z« + ¢€) = finite



Charges and Symmetries

v

Special points associated to Quantum Group Symmetries
e.g. For A — YB model at ¢(z,) = i d(z.) we find

v

+x
Q ~ / T, @~ / (Jo £iT3) exp {—iz JS’(iy)dy]

¢S]

q=exp (%) =¢” Homogenous Gradation

\{

For A — XXZ model similar with g = exp[w+/+2] Principal Gradation
QG parameters are RG invariant

v

v

Second quantum group point given by KM currents with

, iT
e (5)



Exact S-Matrix

Based on symmetries, limits and RG behaviour, we find conjectured form for
S-matrices using known blocks

> AXXZ Model in UV Safe Domain 4’2 < 0 semard Leciair
Sv-xxz = Ssa(0,7') ® S,(&s(f))
> A-XXZ Model Other Domain (periodic in rapidity)
Sz = Sp(0, %) @ Spes(6)
» )\-YB Model (periodic in rapidity, parity broken)

Sa—xxz = Sh(0,%) ® SRSOS( )



'Proving' S-matrix |

v

Non-ultra-local i.e.d” makes conventional techniques (QISM) inapplicable

> Alleviation raddeev-reshetinin takes a limit, modifies UV but same IR properties
k.
k—0, =, < fixed
E7A

v

In this limit the Lax connection becomes ultra-local (s(z, w) — 0) and can
be regularised, and quantised, on a latftice

» Obtain a lattice theory, XXZ anisotropic spin chain.
N
H% = Z (U%U;H + 0305-5-1 +C057020r?+1)
n=1

v

Actually need a spin S = £ chain and identify

v=—k

™
?



'Proving' S-matrix Il

v

Ground state using TBA «iitov-Resheticnin find Dirac Sea dominated by k-Bethe
strings whose density p(z) obeys integral equation

p(2) + ph(z /Kz Yo(y)dy = (2)

v

Holes with density p, are excitations above the ground state

v

Amazing fact, these excitations scatter relativistically with a kernel

d

Ko =7

logS(z) = /Ooo cos(zw) (coth(kw) + coth(v'w)) tanh 7w

v

This corresponds exactly to the S-matrix of the A-XXZ Model
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Conclusions

v

n and X models are interesting 2d QFTs

v

Provide a realisation of Poisson Lie duality
» New perspective on non-Abelian T-duality

v

n model provided an interesting playground for resurgence

>

N

A model has tractable multi-parameter generalisations
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Appendix: S-matrix Technology

Rapidity
E=mcoshf®, P=msinh6
Axioms:
1. Factorization 2-body factorisation, no particle production

2. Andlyticity. Only poles along the imaginary axis 0 < Imé < 7 associated
to stable bound states.

3. Hermitian analyticity
ki / s\ * ij
Sij(0")" = S)(=0) .
4. Unitarity
Zs (0)S8n(0)" = 6imbin . OER.

5. Crossing

SK(0) = Cy I (im — 0)Ct = Sl (im — 0)

i'i

where C is the charge conjugation matrix.



Appendix: Gradation |

[Hi, Ej] = ajiE;,  [Hi, Fl = —aif;,  [E, F] = 8;H;

Generalised Cartan matrix a; has off diagonal elements equal —2.

K= Ho + Hi is central. K= 0, i.e. centreless representations su(2) becomes
the loop algebra. Reps are the tensor of an su(2) rep and functions of a
variable z. Gradation is the relative action in su(2) space and zspace.

homogenous gradation
E1:T‘+7 F1:T_, E():ZQT_, FO:Z_2T+, H1:—H0:T3
. principal gradation

E1:ZT+, F12271T7, E():ZTi, F02271T+, H1=—H0=T3



Appendix: Homogenous Gradation

T +2 QF 23 Q;

Zo = +in +1 at Qf Qr
0 9t 9= -9 9

2z, = —in -1 ot 03, a-
l -2 ot, 03, 2,

Figure: The charges and their grades for the expansion of the monodromy around the pair of
special points z = +in. The blue/red and positive/negative graded charges are associated to +in,
respectively. The red and blue charges generate the affine quantum group in homogenous gradation
and all the other charges are obtained by repeated Poisson brackets of these charges.



Appendix: Principal Gradation

su(2),.

T +2 23

Zy = OO _|_1 D+ Q,

7o =—00 -1 9t Q-

Figure: The charges and their grades for the expansion of the monodromy around the pair of
special points z = o0 (or 0, co with a multiplicative spectral parameter). The blue/red and
positive/negative graded charges are associated to +oo, respectively. The red and blue charges
generate the affine quantum group in principal gradation and all the other charges are obtained by
repeated Poisson brackets of these charges.



RG in YB-\ model
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RG in -\ model

N
N il
-zl

Figure: The RG flow (to the IR) of the XXZ lambda model. The WZW fixed point is identified by the
blue blob. The blue line is a line of UV fixed points. The green curve is a UV safe trajectory that has
~" € R. The red curve is a cyclic RG trajectory with v/ = io, o € R. The trajectory has a jump in
the coupling A from —co to oo, but is continuous in 1/X.



