Poisson-Lie T-duality and generalized isometries

Pavol Ševera
University of Geneva

What is Poisson-Lie T-duality?
[C. Klimčík, P.Š., 1995]

What is Poisson-Lie T-duality?

[C. Klimčík, P.Š., 1995]

- A non-Abelian generalization of T-duality

What is Poisson-Lie T-duality?

[C. Klimčík, P.Š., 1995]

- A non-Abelian generalization of T-duality
- An (almost) isomorphism of two 2-dim σ-models (seen as Hamiltonian systems)

What is Poisson-Lie T-duality?

[C. Klimčík, P.Š., 1995]

- A non-Abelian generalization of T-duality
- An (almost) isomorphism of two 2-dim σ-models (seen as Hamiltonian systems)
- A generalized isometry between $\left(M_{1}, g_{1}, H_{1}\right)$ and $\left(M_{2}, g_{2}, H_{2}\right)$ (g_{i} a Riemann metric on $M_{i}, H_{i} \in \Omega^{3}\left(M_{i}\right)_{\text {closed }}$)

What is Poisson-Lie T-duality?

[C. Klimčík, P.Š., 1995]

- A non-Abelian generalization of T-duality
- An (almost) isomorphism of two 2-dim σ-models (seen as Hamiltonian systems)
- A generalized isometry between $\left(M_{1}, g_{1}, H_{1}\right)$ and $\left(M_{2}, g_{2}, H_{2}\right)$ (g_{i} a Riemann metric on $M_{i}, H_{i} \in \Omega^{3}\left(M_{i}\right)_{\text {closed }}$)

What is a generalized isometry?

What is Poisson-Lie T-duality?

[C. Klimčík, P.Š., 1995]

- A non-Abelian generalization of T-duality
- An (almost) isomorphism of two 2-dim σ-models (seen as Hamiltonian systems)
- A generalized isometry between $\left(M_{1}, g_{1}, H_{1}\right)$ and $\left(M_{2}, g_{2}, H_{2}\right)$ (g_{i} a Riemann metric on $M_{i}, H_{i} \in \Omega^{3}\left(M_{i}\right)_{\text {closed }}$)

What is a generalized isometry?

- An "isometry" in generalized geometry (Dirac relation compatible with generalized metrics)

What is Poisson-Lie T-duality?

[C. Klimčík, P.Š., 1995]

- A non-Abelian generalization of T-duality
- An (almost) isomorphism of two 2-dim σ-models (seen as Hamiltonian systems)
- A generalized isometry between $\left(M_{1}, g_{1}, H_{1}\right)$ and $\left(M_{2}, g_{2}, H_{2}\right)$ (g_{i} a Riemann metric on $M_{i}, H_{i} \in \Omega^{3}\left(M_{i}\right)_{\text {closed }}$)

What is a generalized isometry?

- An "isometry" in generalized geometry (Dirac relation compatible with generalized metrics)
- perhaps the right "general T-duality"

Courant algebroids

Courant algebroids

Courant algebroid: vector bundle $E \rightarrow M$, symmetric pairing \langle, anchor map $\rho: E \rightarrow T M$, bracket $[]:, \Gamma(E) \times \Gamma(E) \rightarrow \Gamma(E)$ such that $\left(\forall s, t, u \in \Gamma(E)\right.$ and $\left.f \in C^{\infty}(M)\right)$

$$
\begin{aligned}
{[s,[t, u]] } & =[[s, t], u]+[t,[s, u]] \\
{[s, f t] } & =f[s, t]+(\rho(s) f) t \\
\rho(s)\langle t, u\rangle & =\langle[s, t], u\rangle+\langle t,[s, u]\rangle \\
\langle s,[t, t]\rangle & =\langle[s, t], t\rangle .
\end{aligned}
$$

Courant algebroids

Courant algebroid: vector bundle $E \rightarrow M$, symmetric pairing \langle, anchor map $\rho: E \rightarrow T M$, bracket $[]:, \Gamma(E) \times \Gamma(E) \rightarrow \Gamma(E)$ such that $\left(\forall s, t, u \in \Gamma(E)\right.$ and $\left.f \in C^{\infty}(M)\right)$

$$
\begin{aligned}
{[s,[t, u]] } & =[[s, t], u]+[t,[s, u]] \\
{[s, f t] } & =f[s, t]+(\rho(s) f) t \\
\rho(s)\langle t, u\rangle & =\langle[s, t], u\rangle+\langle t,[s, u]\rangle \\
\langle s,[t, t]\rangle & =\langle[s, t], t\rangle .
\end{aligned}
$$

Examples

- exact CAs

$$
0 \rightarrow T^{*} M \rightarrow E \rightarrow T M \rightarrow 0
$$

(classified by $H^{3}(M, \mathbb{R})$)

Courant algebroids

Courant algebroid: vector bundle $E \rightarrow M$, symmetric pairing \langle, anchor map $\rho: E \rightarrow T M$, bracket $[]:, \Gamma(E) \times \Gamma(E) \rightarrow \Gamma(E)$ such that $\left(\forall s, t, u \in \Gamma(E)\right.$ and $\left.f \in C^{\infty}(M)\right)$

$$
\begin{aligned}
{[s,[t, u]] } & =[[s, t], u]+[t,[s, u]] \\
{[s, f t] } & =f[s, t]+(\rho(s) f) t \\
\rho(s)\langle t, u\rangle & =\langle[s, t], u\rangle+\langle t,[s, u]\rangle \\
\langle s,[t, t]\rangle & =\langle[s, t], t\rangle .
\end{aligned}
$$

Examples

- exact CAs

$$
0 \rightarrow T^{*} M \rightarrow E \rightarrow T M \rightarrow 0
$$

(classified by $H^{3}(M, \mathbb{R})$)

- Lie algebras with invariant symmetric pairing ($M=$ point $)$

Generalized metric

Generalized metric

Generalized metric: a vector subbundle $V^{+} \subset E$ s.t. \langle,$\rangle is$ positive-def. on V^{+}and negative-def. on $V^{-}:=\left(V^{+}\right)^{\perp}$ (alternatively: the reflection $\mathbf{V}: E \rightarrow E$ w.r.t. V^{+})

Generalized metric

Generalized metric: a vector subbundle $V^{+} \subset E$ s.t. \langle,$\rangle is$ positive-def. on V^{+}and negative-def. on $V^{-}:=\left(V^{+}\right)^{\perp}$ (alternatively: the reflection $\mathbf{V}: E \rightarrow E$ w.r.t. V^{+})

Example

A generalized metric in an exact CA $E \rightarrow M$
$=$ a Riemannian metric g and a closed 3 -form H on M
(i.e. the data needed for a 2 -dim σ-model)

Poisson-Lie T-duality

Poisson-Lie T-duality

Backgrounds (M, g, H) of Poisson-Lie type

- a Courant algebroid $\tilde{E} \rightarrow \tilde{M}$ (not exact) with a generalized metric $\tilde{V}^{+} \subset \tilde{E}$

Poisson-Lie T-duality

Backgrounds (M, g, H) of Poisson-Lie type

- a Courant algebroid $\tilde{E} \rightarrow \tilde{M}$ (not exact) with a generalized metric $\tilde{V}^{+} \subset \tilde{E}$
- a surjective submersion $f: M \rightarrow \tilde{M}$

Poisson-Lie T-duality

Backgrounds (M, g, H) of Poisson-Lie type

- a Courant algebroid $\tilde{E} \rightarrow \tilde{M}$ (not exact) with a generalized metric $\tilde{V}^{+} \subset \tilde{E}$
- a surjective submersion $f: M \rightarrow \tilde{M}$
- a compatible exact CA structure on $E:=f^{*} \tilde{E} \rightarrow M$ (not unique!)

Poisson-Lie T-duality

Backgrounds (M, g, H) of Poisson-Lie type

- a Courant algebroid $\tilde{E} \rightarrow \tilde{M}$ (not exact) with a generalized metric $\tilde{V}^{+} \subset \tilde{E}$
- a surjective submersion $f: M \rightarrow \tilde{M}$
- a compatible exact CA structure on $E:=f^{*} \tilde{E} \rightarrow M$ (not unique!)
- pulled-back generalized metric: $V^{+}:=f^{*} \tilde{V}^{+} \subset E$, equivalent to (M, g, H)

Poisson-Lie T-duality

Backgrounds (M, g, H) of Poisson-Lie type

- a Courant algebroid $\tilde{E} \rightarrow \tilde{M}$ (not exact) with a generalized metric $\tilde{V}^{+} \subset \tilde{E}$
- a surjective submersion $f: M \rightarrow \tilde{M}$
- a compatible exact CA structure on $E:=f^{*} \tilde{E} \rightarrow M$ (not unique!)
- pulled-back generalized metric: $V^{+}:=f^{*} \tilde{V}^{+} \subset E$, equivalent to (M, g, H)

PL T-duality

If $\left(M_{1}, g_{1}, H_{1}\right)$ and $\left(M_{2}, g_{2}, H_{2}\right)$ are obtained by pulling back the same gen. metric $\tilde{V}^{+} \subset \tilde{E}$ then the corresponding 2-dim σ-models are (almost) isomorphic as Hamiltonian systems

How to construct it

How to construct it

No spectators (i.e. $\tilde{M}=$ point, $\tilde{E}=\mathfrak{d}$ a Lie algebra, $\tilde{V}^{+} \subset \mathfrak{d}$)

How to construct it

No spectators (i.e. $\tilde{M}=$ point, $\tilde{E}=\mathfrak{d}$ a Lie algebra, $\tilde{V}^{+} \subset \mathfrak{d}$)

- $\mathfrak{g}_{1}, \mathfrak{g}_{2} \subset \mathfrak{d}$ Lagrangian Lie subalgebras $\left(\mathfrak{g}_{i}^{\perp}=\mathfrak{g}_{i}\right)$

How to construct it

No spectators (i.e. $\tilde{M}=$ point, $\tilde{E}=\mathfrak{d}$ a Lie algebra, $\tilde{V}^{+} \subset \mathfrak{d}$)

- $\mathfrak{g}_{1}, \mathfrak{g}_{2} \subset \mathfrak{d}$ Lagrangian Lie subalgebras $\left(\mathfrak{g}_{i}^{\perp}=\mathfrak{g}_{i}\right)$
- $M_{i}=D / G_{i}, E_{i}=\mathfrak{d} \times M_{i}$, the anchor given by the action of \mathfrak{d}

How to construct it

No spectators (i.e. $\tilde{M}=$ point, $\tilde{E}=\mathfrak{d}$ a Lie algebra, $\tilde{V}^{+} \subset \mathfrak{d}$)

- $\mathfrak{g}_{1}, \mathfrak{g}_{2} \subset \mathfrak{d}$ Lagrangian Lie subalgebras $\left(\mathfrak{g}_{i}^{\perp}=\mathfrak{g}_{i}\right)$
- $M_{i}=D / G_{i}, E_{i}=\mathfrak{d} \times M_{i}$, the anchor given by the action of \mathfrak{d}
- $\left(g_{i}, H_{i}\right)$ given by the gen. metric $\tilde{V}^{+} \times M_{i} \subset \mathfrak{d} \times M_{i}$

How to construct it

No spectators (i.e. $\tilde{M}=$ point, $\tilde{E}=\mathfrak{d}$ a Lie algebra, $\tilde{V}^{+} \subset \mathfrak{d}$)

- $\mathfrak{g}_{1}, \mathfrak{g}_{2} \subset \mathfrak{d}$ Lagrangian Lie subalgebras $\left(\mathfrak{g}_{i}^{\perp}=\mathfrak{g}_{i}\right)$
- $M_{i}=D / G_{i}, E_{i}=\mathfrak{d} \times M_{i}$, the anchor given by the action of \mathfrak{d}
- $\left(g_{i}, H_{i}\right)$ given by the gen. metric $\tilde{V}^{+} \times M_{i} \subset \mathfrak{d} \times M_{i}$

General \tilde{M}

- A principal D-bundle $P \rightarrow \tilde{M}$

How to construct it

No spectators (i.e. $\tilde{M}=$ point, $\tilde{E}=\mathfrak{d}$ a Lie algebra, $\tilde{V}^{+} \subset \mathfrak{d}$)

- $\mathfrak{g}_{1}, \mathfrak{g}_{2} \subset \mathfrak{d}$ Lagrangian Lie subalgebras $\left(\mathfrak{g}_{i}^{\perp}=\mathfrak{g}_{i}\right)$
- $M_{i}=D / G_{i}, E_{i}=\mathfrak{d} \times M_{i}$, the anchor given by the action of \mathfrak{d}
- $\left(g_{i}, H_{i}\right)$ given by the gen. metric $\tilde{V}^{+} \times M_{i} \subset \mathfrak{d} \times M_{i}$

General \tilde{M}

- A principal D-bundle $P \rightarrow \tilde{M}$
- Vanishing 1st Pontryagin class:
$\langle F, F\rangle / 2=d C\left(C \in \Omega^{3}(\tilde{M})\right)$ gives a transitive CA $\tilde{E} \rightarrow \tilde{M}$

How to construct it

No spectators (i.e. $\tilde{M}=$ point, $\tilde{E}=\mathfrak{d}$ a Lie algebra, $\tilde{V}^{+} \subset \mathfrak{d}$)

- $\mathfrak{g}_{1}, \mathfrak{g}_{2} \subset \mathfrak{d}$ Lagrangian Lie subalgebras $\left(\mathfrak{g}_{i}^{\perp}=\mathfrak{g}_{i}\right)$
- $M_{i}=D / G_{i}, E_{i}=\mathfrak{d} \times M_{i}$, the anchor given by the action of \mathfrak{d}
- $\left(g_{i}, H_{i}\right)$ given by the gen. metric $\tilde{V}^{+} \times M_{i} \subset \mathfrak{d} \times M_{i}$

General \tilde{M}

- A principal D-bundle $P \rightarrow \tilde{M}$
- Vanishing 1st Pontryagin class:
$\langle F, F\rangle / 2=d C\left(C \in \Omega^{3}(\tilde{M})\right)$ gives a transitive CA $\tilde{E} \rightarrow \tilde{M}$
- $M_{i}=P / G_{i}$

How to construct it

No spectators (i.e. $\tilde{M}=$ point, $\tilde{E}=\mathfrak{d}$ a Lie algebra, $\tilde{V}^{+} \subset \mathfrak{d}$)

- $\mathfrak{g}_{1}, \mathfrak{g}_{2} \subset \mathfrak{d}$ Lagrangian Lie subalgebras $\left(\mathfrak{g}_{i}^{\perp}=\mathfrak{g}_{i}\right)$
- $M_{i}=D / G_{i}, E_{i}=\mathfrak{d} \times M_{i}$, the anchor given by the action of \mathfrak{d}
- $\left(g_{i}, H_{i}\right)$ given by the gen. metric $\tilde{V}^{+} \times M_{i} \subset \mathfrak{d} \times M_{i}$

General \tilde{M}

- A principal D-bundle $P \rightarrow \tilde{M}$
- Vanishing 1st Pontryagin class:
$\langle F, F\rangle / 2=d C\left(C \in \Omega^{3}(\tilde{M})\right)$ gives a transitive CA $\tilde{E} \rightarrow \tilde{M}$
- $M_{i}=P / G_{i}$
(A better description: A multiplicative gerbe over D trivial on G_{i} 's, acting on a gerbe on P)

Phase spaces and Hamiltonians

Phase spaces and Hamiltonians

Phase space of σ-model: $T^{*}(L M)$, symplectic form twisted by H

Phase spaces and Hamiltonians

Phase space of σ-model: $T^{*}(L M)$, symplectic form twisted by H Equivalently: $p: E \rightarrow M$ an exact CA

$$
T^{*}(L M)=L_{C A} E:=\left\{\gamma: S^{1} \rightarrow E ; \rho \circ \gamma=(p \circ \gamma)_{*} \partial_{\sigma}\right\}
$$

Phase spaces and Hamiltonians

Phase space of σ-model: $T^{*}(L M)$, symplectic form twisted by H Equivalently: $p: E \rightarrow M$ an exact CA

$$
T^{*}(L M)=L_{C A} E:=\left\{\gamma: S^{1} \rightarrow E ; \rho \circ \gamma=(p \circ \gamma)_{*} \partial_{\sigma}\right\}
$$

Hamiltonian:

$$
\mathcal{H}(\gamma)=\frac{1}{2} \int_{S^{1}} \mathbf{V}(\gamma(\sigma), \gamma(\sigma)) d \sigma
$$

Phase spaces and Hamiltonians

Phase space of σ-model: $T^{*}(L M)$, symplectic form twisted by H Equivalently: $p: E \rightarrow M$ an exact CA

$$
T^{*}(L M)=L_{C A} E:=\left\{\gamma: S^{1} \rightarrow E ; \rho \circ \gamma=(p \circ \gamma)_{*} \partial_{\sigma}\right\}
$$

Hamiltonian:

$$
\mathcal{H}(\gamma)=\frac{1}{2} \int_{S^{1}} \mathbf{V}(\gamma(\sigma), \gamma(\sigma)) d \sigma
$$

Generalized metrics and Hamiltonian systems

- The space $L_{C A} E$ is a symplectic manifold for any Courant algebroid E (a little lie - $L_{C A} E$ needs to be modified).

Phase spaces and Hamiltonians

Phase space of σ-model: $T^{*}(L M)$, symplectic form twisted by H Equivalently: $p: E \rightarrow M$ an exact CA

$$
T^{*}(L M)=L_{C A} E:=\left\{\gamma: S^{1} \rightarrow E ; \rho \circ \gamma=(p \circ \gamma)_{*} \partial_{\sigma}\right\}
$$

Hamiltonian:

$$
\mathcal{H}(\gamma)=\frac{1}{2} \int_{S^{1}} \mathbf{V}(\gamma(\sigma), \gamma(\sigma)) d \sigma
$$

Generalized metrics and Hamiltonian systems

- The space $L_{C A} E$ is a symplectic manifold for any Courant algebroid E (a little lie - $L_{C A} E$ needs to be modified).
- A generalized metric $V^{+} \Rightarrow$ a Hamiltonian \mathcal{H} on $L_{C A} E$

PL T-duality from Hamiltonian point of view

PL T-duality from Hamiltonian point of view

$$
\begin{aligned}
E_{i} & =f_{i}^{*} \tilde{E} \quad(i=1,2) \\
V_{i}^{+} & =f^{*} \tilde{V}^{+}
\end{aligned}
$$

PL T-duality from Hamiltonian point of view

$$
\begin{aligned}
E_{i} & =f_{i}^{*} \tilde{E} \quad(i=1,2) \\
V_{i}^{+} & =f^{*} \tilde{V}^{+}
\end{aligned}
$$

3 Hamiltonian systems:
$\left(L_{C A} \tilde{E}, \tilde{\mathcal{H}}\right),\left(L_{C A} E_{i}, \mathcal{H}_{i}\right)$

PL T-duality from Hamiltonian point of view

$$
\begin{aligned}
E_{i} & =f_{i}^{*} \tilde{E} \quad(i=1,2) \\
V_{i}^{+} & =f^{*} \tilde{V}^{+}
\end{aligned}
$$

3 Hamiltonian systems:
$\left(L_{C A} \tilde{E}, \tilde{\mathcal{H}}\right),\left(L_{C A} E_{i}, \mathcal{H}_{i}\right)$

PL T-duality from Hamiltonian point of view
$L_{C A} \tilde{E}$ is the reduction of a finite-codimension coisotropic submanifold in $L_{C A} E_{i}$, i.e. $L_{C A} E_{1,2}$ are almost isomorphic as Hamiltonian systems

Phase spaces (without lying (too much))

Phase spaces (without lying (too much))

$\mathcal{E}=$ the dg symplectic manifold corresponding to a CA $E \rightarrow M$

$$
L_{C A} E:=\operatorname{dg}-\operatorname{maps}\left(T[1] D^{2} \rightarrow \mathcal{E}\right) / \text { htopy rel boundary }
$$

Phase spaces (without lying (too much))

$\mathcal{E}=$ the dg symplectic manifold corresponding to a CA $E \rightarrow M$

$$
L_{C A} E:=\operatorname{dg}-\operatorname{maps}\left(T[1] D^{2} \rightarrow \mathcal{E}\right) / \text { htopy rel boundary }
$$

Example (PL T-duality without spectators)

$L_{\text {CA }} \mathfrak{d}$ is the space of flat \mathfrak{d}-connections on a disk, modulo gauge transformations vanishing on the boundary.

Phase spaces (without lying (too much))

$\mathcal{E}=$ the dg symplectic manifold corresponding to a CA $E \rightarrow M$

$$
L_{C A} E:=\operatorname{dg}-\operatorname{maps}\left(T[1] D^{2} \rightarrow \mathcal{E}\right) / \text { htopy rel boundary }
$$

Example (PL T-duality without spectators)

$L_{\text {CAd }}$ is the space of flat \mathfrak{d}-connections on a disk, modulo gauge transformations vanishing on the boundary.
$L_{C A}\left(\mathfrak{d} \times D / G_{i}\right) \cong T^{*}\left(L\left(D / G_{i}\right)\right)$ are the flat \mathfrak{d}-connections on an annulus taking values in $\mathfrak{g}_{i} \subset \mathfrak{d}$ on the inner circle.

$$
L_{C A}\left(d \times D / G_{i}\right):
$$

Phase spaces (without lying (too much))

$\mathcal{E}=$ the dg symplectic manifold corresponding to a CA $E \rightarrow M$

$$
L_{C A} E:=\operatorname{dg}-\operatorname{maps}\left(T[1] D^{2} \rightarrow \mathcal{E}\right) / \text { htopy rel boundary }
$$

Example (PL T-duality without spectators)

$L_{\text {CAd }}$ is the space of flat \mathfrak{d}-connections on a disk, modulo gauge transformations vanishing on the boundary.
$L_{C A}\left(\mathfrak{d} \times D / G_{i}\right) \cong T^{*}\left(L\left(D / G_{i}\right)\right)$ are the flat \mathfrak{d}-connections on an annulus taking values in $\mathfrak{g}_{i} \subset \mathfrak{d}$ on the inner circle.

The Hamiltonian is $\mathcal{H}(A)=\frac{1}{2} \int_{S^{1}}\left\langle A_{\sigma}, \mathbf{V} A_{\sigma}\right\rangle d \sigma$ where \mathbf{V} is the reflection w.r.t. $V^{+} \subset \mathfrak{d}$.

Space-time picture: boundary of Chern-Simons (or AKSZ)

Space-time picture: boundary of Chern-Simons (or AKSZ)

$$
\begin{gathered}
S(A)=\int_{Y}\left(\frac{1}{2}\langle A, d A\rangle+\frac{1}{6}\langle[A, A], A\rangle\right) \quad A \in \Omega^{1}(Y, \mathfrak{d}) \\
\delta S=\int_{Y}\langle\delta A, F\rangle+\frac{1}{2} \int_{\partial Y}\langle\delta A, A\rangle
\end{gathered}
$$

Boundary condition: (exact) Lagrangian submanifold in $\Omega^{1}(\partial Y, \mathfrak{d})$ (of local type: in $\operatorname{Hom}\left(T_{x} \partial Y, \mathfrak{d}\right)$)

Space-time picture: boundary of Chern-Simons (or AKSZ)

$$
\begin{gathered}
S(A)=\int_{Y}\left(\frac{1}{2}\langle A, d A\rangle+\frac{1}{6}\langle[A, A], A\rangle\right) \quad A \in \Omega^{1}(Y, \mathfrak{d}) \\
\delta S=\int_{Y}\langle\delta A, F\rangle+\frac{1}{2} \int_{\partial Y}\langle\delta A, A\rangle
\end{gathered}
$$

Boundary condition: (exact) Lagrangian submanifold in $\Omega^{1}(\partial Y, \mathfrak{d})$ (of local type: in $\operatorname{Hom}\left(T_{x} \partial Y, \mathfrak{d}\right)$)

σ-model type boundary condition

needs a pseudo-Riemannian metric on $\Sigma \subset \partial Y$ and $V^{+} \subset \mathfrak{d}$

$$
*\left(\left.A\right|_{\Sigma}\right)=\left.\mathbf{V} A\right|_{\Sigma}
$$

Space-time picture: boundary of Chern-Simons (or AKSZ)

Hollow cylinder: The σ-model with the target D / G

Boundary condition: $*\left(\left.A\right|_{\Sigma}\right)=\left.\mathbf{V} A\right|_{\Sigma},\left.A\right|_{\Sigma_{i n n}} \in \mathfrak{g}$

Space-time picture: boundary of Chern-Simons (or AKSZ)

Hollow cylinder: The σ-model with the target D / G

Boundary condition: $*\left(\left.A\right|_{\Sigma}\right)=\left.\mathbf{V} A\right|_{\Sigma},\left.A\right|_{\Sigma_{\text {inn }}} \in \mathfrak{g}$

$$
S(A)=" \int p d q-\mathcal{H} d \tau^{"}, \quad \mathcal{H}=\frac{1}{2} \int_{S^{1}}\left\langle A_{\sigma}, \mathbf{V}\left(A_{\sigma}\right)\right\rangle d \sigma
$$

Phase space: moduli space of flat \mathfrak{d}-connections on an annulus $\cong T^{*}(L(D / G))$

Space-time picture: boundary of Chern-Simons (or AKSZ)

Hollow cylinder: The σ-model with the target D / G

Boundary condition: $*\left(\left.A\right|_{\Sigma}\right)=\left.\mathbf{V} A\right|_{\Sigma},\left.A\right|_{\Sigma_{\text {inn }}} \in \mathfrak{g}$

$$
S(A)=" \int p d q-\mathcal{H} d \tau^{\prime \prime}, \quad \mathcal{H}=\frac{1}{2} \int_{S^{1}}\left\langle A_{\sigma}, \mathbf{V}\left(A_{\sigma}\right)\right\rangle d \sigma
$$

Phase space: moduli space of flat \mathfrak{d}-connections on an annulus $\cong T^{*}(L(D / G))$

Full cylinder: The duality-invariant part (reduced phase space)

Ricci flow

[P.Š., Fridrich Valach, 2016]

Ricci flow

[P.Š., Fridrich Valach, 2016]
PL T-duality is compatible with the 1-loop renormalization group flow, i.e. with the modified Ricci flow

$$
\frac{d}{d t}(g+B)=-2 \operatorname{Ric}_{g, H} \quad(H=d B \text { is the torsion })
$$

Ricci flow

[P.Š., Fridrich Valach, 2016]
PL T-duality is compatible with the 1-loop renormalization group flow, i.e. with the modified Ricci flow

$$
\frac{d}{d t}(g+B)=-2 \operatorname{Ric}_{g, H} \quad(H=d B \text { is the torsion })
$$

Generalized Ricci flow (of a generalized metric)

$$
\frac{d V^{+}}{d t}=T_{V^{+}}: V_{+} \rightarrow V_{-} \quad\left\langle T_{V^{+}} u, v\right\rangle=-2 \operatorname{GRic}_{V^{+}}(u, v)
$$

Compatible with pull-backs \Rightarrow PL T-duality is compatible with Ricci flow

Dirac structures and generalized isometries

Dirac structures and generalized isometries

Dirac structure in $E \rightarrow M$: a subbundle $\left.C \subset E\right|_{N}(N \subset M)$ s.t. $C^{\perp}=C$, closed under [,], $\rho(C) \subset T N$

Dirac structures and generalized isometries

Dirac structure in $E \rightarrow M$: a subbundle $\left.C \subset E\right|_{N}(N \subset M)$ s.t. $C^{\perp}=C$, closed under [,], $\rho(C) \subset T N$
Equivalently: a Lagrangian dg submanifold of the dg symplectic manifold \mathcal{E}

Dirac structures and generalized isometries

Dirac structure in $E \rightarrow M$: a subbundle $\left.C \subset E\right|_{N}(N \subset M)$ s.t. $C^{\perp}=C$, closed under [,], $\rho(C) \subset T N$
Equivalently: a Lagrangian dg submanifold of the dg symplectic manifold \mathcal{E}

Example

When $E=\left(T \oplus T^{*}\right) M \rightarrow M$ is exact given by $H \in \Omega^{3}(M)_{\text {closed }}$ and $\omega \in \Omega^{2}(N)(N \subset M)$ s.t. $d \omega=\left.H\right|_{N}$ then

$$
\left\{(v, \alpha) \in E ; i_{v} \omega=\left.\alpha\right|_{N}\right\}
$$

is a Dirac structure

Dirac structures and generalized isometries

Dirac structure in $E \rightarrow M$: a subbundle $\left.C \subset E\right|_{N}(N \subset M)$ s.t. $C^{\perp}=C$, closed under [,], $\rho(C) \subset T N$
Equivalently: a Lagrangian dg submanifold of the dg symplectic manifold \mathcal{E}

Example

When $E=\left(T \oplus T^{*}\right) M \rightarrow M$ is exact given by $H \in \Omega^{3}(M)_{\text {closed }}$ and $\omega \in \Omega^{2}(N)(N \subset M)$ s.t. $d \omega=\left.H\right|_{N}$ then

$$
\left\{(v, \alpha) \in E ; i_{v} \omega=\left.\alpha\right|_{N}\right\}
$$

is a Dirac structure
Dirac relation: a Dirac structure in $\bar{E}_{1} \times E_{2}$

Dirac structures and generalized isometries

Dirac structure in $E \rightarrow M$: a subbundle $\left.C \subset E\right|_{N}(N \subset M)$ s.t.
$C^{\perp}=C$, closed under [,], $\rho(C) \subset T N$
Equivalently: a Lagrangian dg submanifold of the dg symplectic manifold \mathcal{E}

Example

When $E=\left(T \oplus T^{*}\right) M \rightarrow M$ is exact given by $H \in \Omega^{3}(M)_{\text {closed }}$ and $\omega \in \Omega^{2}(N)(N \subset M)$ s.t. $d \omega=\left.H\right|_{N}$ then

$$
\left\{(v, \alpha) \in E ; i_{v} \omega=\left.\alpha\right|_{N}\right\}
$$

is a Dirac structure
Dirac relation: a Dirac structure in $\bar{E}_{1} \times E_{2}$

Generalized isometries

A generalized isometry between $V_{1}^{+} \subset E_{1} \rightarrow M_{1}$ and $V_{2}^{+} \subset E_{2} \rightarrow M_{2}$ is a Dirac relation C s.t. $\left(\mathbf{V}_{1} \times \mathbf{V}_{2}\right) C=C$

(Almost) isomorphisms of Hamiltonian systems

(Almost) isomorphisms of Hamiltonian systems

Lagrangian submanifolds in phase spaces
Dirac structure $C \subset E \Rightarrow$ Lagrangian submanifold $L_{C A} C \subset L_{C A} E$

(Almost) isomorphisms of Hamiltonian systems

Lagrangian submanifolds in phase spaces
Dirac structure $C \subset E \Rightarrow$ Lagrangian submanifold $L_{C A} C \subset L_{C A} E$
A generalized isometry C between $V_{1}^{+} E_{1} \rightarrow M_{1}$ and $V_{2}^{+} E_{2} \rightarrow M_{2}$ thus gives a Lagrangian relation

$$
L_{C A} C \subset \overline{L_{C A} E_{1}} \times L_{C A} E_{2}
$$

and $\mathcal{H}_{1}=\mathcal{H}_{2}$ on $L_{C A} C$.

(Almost) isomorphisms of Hamiltonian systems

Lagrangian submanifolds in phase spaces
Dirac structure $C \subset E \Rightarrow$ Lagrangian submanifold $L_{C A} C \subset L_{C A} E$
A generalized isometry C between $V_{1}^{+} E_{1} \rightarrow M_{1}$ and $V_{2}^{+} E_{2} \rightarrow M_{2}$ thus gives a Lagrangian relation

$$
L_{C A} C \subset \overline{L_{C A} E_{1}} \times L_{C A} E_{2}
$$

and $\mathcal{H}_{1}=\mathcal{H}_{2}$ on $L_{C A} C$.
$L_{C A} C$ fails to be the graph of a symplectomorphism only by a finite dimension $=$ "generalized T-duality"

(Almost) isomorphisms of Hamiltonian systems

Lagrangian submanifolds in phase spaces

Dirac structure $C \subset E \Rightarrow$ Lagrangian submanifold $L_{C A} C \subset L_{C A} E$
A generalized isometry C between $V_{1}^{+} E_{1} \rightarrow M_{1}$ and $V_{2}^{+} E_{2} \rightarrow M_{2}$ thus gives a Lagrangian relation

$$
L_{C A} C \subset \overline{L_{C A} E_{1}} \times L_{C A} E_{2}
$$

and $\mathcal{H}_{1}=\mathcal{H}_{2}$ on $L_{C A} C$.
$L_{C A} C$ fails to be the graph of a symplectomorphism only by a finite dimension $=$ "generalized T-duality"

Open problems

(Almost) isomorphisms of Hamiltonian systems

Lagrangian submanifolds in phase spaces

Dirac structure $C \subset E \Rightarrow$ Lagrangian submanifold $L_{C A} C \subset L_{C A} E$
A generalized isometry C between $V_{1}^{+} E_{1} \rightarrow M_{1}$ and $V_{2}^{+} E_{2} \rightarrow M_{2}$ thus gives a Lagrangian relation

$$
L_{C A} C \subset \overline{L_{C A} E_{1}} \times L_{C A} E_{2}
$$

and $\mathcal{H}_{1}=\mathcal{H}_{2}$ on $L_{C A} C$.
$L_{C A} C$ fails to be the graph of a symplectomorphism only by a finite dimension $=$ "generalized T-duality"

Open problems

- Is it compatible with the Ricci flow? (probably yes)

(Almost) isomorphisms of Hamiltonian systems

Lagrangian submanifolds in phase spaces

Dirac structure $C \subset E \Rightarrow$ Lagrangian submanifold $L_{C A} C \subset L_{C A} E$
A generalized isometry C between $V_{1}^{+} E_{1} \rightarrow M_{1}$ and $V_{2}^{+} E_{2} \rightarrow M_{2}$ thus gives a Lagrangian relation

$$
L_{C A} C \subset \overline{L_{C A} E_{1}} \times L_{C A} E_{2}
$$

and $\mathcal{H}_{1}=\mathcal{H}_{2}$ on $L_{C A} C$.
$L_{C A} C$ fails to be the graph of a symplectomorphism only by a finite dimension $=$ "generalized T-duality"

Open problems

- Is it compatible with the Ricci flow? (probably yes)
- How to generate examples besides PL T-duality?

(Almost) isomorphisms of Hamiltonian systems

Lagrangian submanifolds in phase spaces

Dirac structure $C \subset E \Rightarrow$ Lagrangian submanifold $L_{C A} C \subset L_{C A} E$
A generalized isometry C between $V_{1}^{+} E_{1} \rightarrow M_{1}$ and $V_{2}^{+} E_{2} \rightarrow M_{2}$ thus gives a Lagrangian relation

$$
L_{C A} C \subset \overline{L_{C A} E_{1}} \times L_{C A} E_{2}
$$

and $\mathcal{H}_{1}=\mathcal{H}_{2}$ on $L_{C A} C$.
$L_{C A} C$ fails to be the graph of a symplectomorphism only by a finite dimension $=$ "generalized T-duality"

Open problems

- Is it compatible with the Ricci flow? (probably yes)
- How to generate examples besides PL T-duality?
- Composition and global issues (derived geometry?)

Open problems: higher dimensions

Open problems: higher dimensions

Idea: use a dg symplectic manifold \mathcal{E} with $\operatorname{deg} \omega=n$ ($n=2$ corresponds to CAs)

Open problems: higher dimensions

Idea: use a dg symplectic manifold \mathcal{E} with $\operatorname{deg} \omega=n$
($n=2$ corresponds to CAs)
Phase space

$$
\text { dg-maps }\left(T[1] D^{n}, \mathcal{E}\right) / \text { htopy rel boundary }
$$

Open problems: higher dimensions

Idea: use a dg symplectic manifold \mathcal{E} with $\operatorname{deg} \omega=n$
($n=2$ corresponds to CAs)
Phase space

$$
\text { dg-maps }\left(T[1] D^{n}, \mathcal{E}\right) / \text { htopy rel boundary }
$$

"Generalized metric": a function on $\operatorname{gr-maps}\left(T_{x}[1] S^{n-1}, \mathcal{E}\right)$

Open problems: higher dimensions

Idea: use a dg symplectic manifold \mathcal{E} with $\operatorname{deg} \omega=n$
($n=2$ corresponds to CAs)
Phase space

$$
\text { dg-maps }\left(T[1] D^{n}, \mathcal{E}\right) / \text { htopy rel boundary }
$$

"Generalized metric": a function on $\operatorname{gr-maps}\left(T_{x}[1] S^{n-1}, \mathcal{E}\right)$
Space-time picture: $n+1$-dim AKSZ model given by \mathcal{E}, with a (non-topological) boundary condition

Open problems: higher dimensions

Idea: use a dg symplectic manifold \mathcal{E} with $\operatorname{deg} \omega=n$
($n=2$ corresponds to CAs)

Phase space

$$
\text { dg-maps }\left(T[1] D^{n}, \mathcal{E}\right) / \text { htopy rel boundary }
$$

"Generalized metric" : a function on $\operatorname{gr-maps}\left(T_{x}[1] S^{n-1}, \mathcal{E}\right)$
Space-time picture: $n+1$-dim AKSZ model given by \mathcal{E}, with a (non-topological) boundary condition

```
n=1:\mathcal{E}=\mp@subsup{T}{}{*}[1]M\mathrm{ , Hamiltonian evolution on (the symplectic} groupoid of) \(M\).
```


Open problems: higher dimensions

Idea: use a dg symplectic manifold \mathcal{E} with $\operatorname{deg} \omega=n$
($n=2$ corresponds to CAs)

Phase space

$$
\text { dg-maps }\left(T[1] D^{n}, \mathcal{E}\right) / \text { htopy rel boundary }
$$

"Generalized metric": a function on $\operatorname{gr-maps}\left(T_{x}[1] S^{n-1}, \mathcal{E}\right)$
Space-time picture: $n+1$-dim AKSZ model given by \mathcal{E}, with a (non-topological) boundary condition

```
n=1:\mathcal{E}=\mp@subsup{T}{}{*}[1]M, Hamiltonian evolution on (the symplectic
groupoid of) M.
```


Problem for $n \geq 3$

Make it compatible with gauge symmetries, find non-trivial dualities of (higher) gauge theories

Open problems: quantization

Open problems: quantization

Kramers-Wannier duality $=$ Poincaré + Poisson

3-dim Y
$\Sigma=$ gray part of ∂Y
K finite Abelian group
$f: H^{1}\left(\Sigma, \partial \Sigma_{\text {red }} ; K\right) \rightarrow \mathbb{C}$
(Boltzmann weight)

$$
\begin{gathered}
Z_{\text {red }}(f, K):=\sum_{\alpha \in H^{1}\left(Y, \partial Y_{\text {red }} ; K\right)} f\left(i^{*} \alpha\right) \\
Z_{\text {red }}(f, K)=Z_{\text {blue }}\left(\hat{f}, K^{*}\right)
\end{gathered}
$$

Open problems: quantization

Kramers-Wannier duality $=$ Poincaré + Poisson

3-dim Y
$\Sigma=$ gray part of ∂Y
K finite Abelian group $f: H^{1}\left(\Sigma, \partial \Sigma_{\text {red }} ; K\right) \rightarrow \mathbb{C}$
(Boltzmann weight)

$$
\begin{gathered}
Z_{\text {red }}(f, K):=\sum_{\alpha \in H^{1}\left(Y, \partial Y_{\text {red }} ; K\right)} f\left(i^{*} \alpha\right) \\
Z_{\text {red }}(f, K)=Z_{\text {blue }}\left(\hat{f}, K^{*}\right)
\end{gathered}
$$

Quantum: 3d TFT with colored boundary (RT TFT given by the double of H)

Hopf algebra

$$
\mathfrak{g}, \mathfrak{g}^{*} \subset \mathfrak{d}
$$

Open problems: quantization

Kramers-Wannier duality $=$ Poincaré + Poisson

3-dim Y
$\Sigma=$ gray part of ∂Y
K finite Abelian group $f: H^{1}\left(\Sigma, \partial \Sigma_{\text {red }} ; K\right) \rightarrow \mathbb{C}$
(Boltzmann weight)

$$
\begin{gathered}
Z_{\text {red }}(f, K):=\sum_{\alpha \in H^{1}\left(Y, \partial Y_{\text {red }} ; K\right)} f\left(i^{*} \alpha\right) \\
Z_{\text {red }}(f, K)=Z_{\text {blue }}\left(\hat{f}, K^{*}\right)
\end{gathered}
$$

Quantum: 3d TFT with colored boundary (RT TFT given by the double of H)

Hopf algebra

$$
\mathfrak{g}, \mathfrak{g}^{*} \subset \mathfrak{d}
$$

Thanks for your attention!

