Poisson-Lie T-duality and generalized isometries

Pavol Ševera

University of Geneva

• A non-Abelian generalization of T-duality

- A non-Abelian generalization of T-duality
- An (almost) isomorphism of two 2-dim $\sigma\text{-models}$ (seen as Hamiltonian systems)

- A non-Abelian generalization of T-duality
- An (almost) isomorphism of two 2-dim $\sigma\text{-models}$ (seen as Hamiltonian systems)
- A generalized isometry between (M_1, g_1, H_1) and (M_2, g_2, H_2) $(g_i \text{ a Riemann metric on } M_i, H_i \in \Omega^3(M_i)_{\text{closed}})$

- A non-Abelian generalization of T-duality
- An (almost) isomorphism of two 2-dim $\sigma\text{-models}$ (seen as Hamiltonian systems)
- A generalized isometry between (M_1, g_1, H_1) and (M_2, g_2, H_2) $(g_i \text{ a Riemann metric on } M_i, H_i \in \Omega^3(M_i)_{\text{closed}})$

What is a generalized isometry?

- A non-Abelian generalization of T-duality
- An (almost) isomorphism of two 2-dim $\sigma\text{-models}$ (seen as Hamiltonian systems)
- A generalized isometry between (M_1, g_1, H_1) and (M_2, g_2, H_2) $(g_i \text{ a Riemann metric on } M_i, H_i \in \Omega^3(M_i)_{\text{closed}})$

What is a generalized isometry?

• An "isometry" in generalized geometry (Dirac relation compatible with generalized metrics)

- A non-Abelian generalization of T-duality
- An (almost) isomorphism of two 2-dim $\sigma\text{-models}$ (seen as Hamiltonian systems)
- A generalized isometry between (M_1, g_1, H_1) and (M_2, g_2, H_2) $(g_i \text{ a Riemann metric on } M_i, H_i \in \Omega^3(M_i)_{\text{closed}})$

What is a generalized isometry?

- An "isometry" in generalized geometry (Dirac relation compatible with generalized metrics)
- perhaps the right "general T-duality"

Courant algebroid: vector bundle $E \to M$, symmetric pairing \langle , \rangle anchor map $\rho : E \to TM$, bracket $[,] : \Gamma(E) \times \Gamma(E) \to \Gamma(E)$ such that $(\forall s, t, u \in \Gamma(E) \text{ and } f \in C^{\infty}(M))$

$$[s, [t, u]] = [[s, t], u] + [t, [s, u]]$$
$$[s, ft] = f[s, t] + (\rho(s)f)t$$
$$\rho(s)\langle t, u \rangle = \langle [s, t], u \rangle + \langle t, [s, u] \rangle$$
$$\langle s, [t, t] \rangle = \langle [s, t], t \rangle.$$

Courant algebroid: vector bundle $E \to M$, symmetric pairing \langle , \rangle anchor map $\rho : E \to TM$, bracket $[,] : \Gamma(E) \times \Gamma(E) \to \Gamma(E)$ such that $(\forall s, t, u \in \Gamma(E) \text{ and } f \in C^{\infty}(M))$

$$\begin{split} [s,[t,u]] &= [[s,t],u] + [t,[s,u]] \\ [s,ft] &= f[s,t] + (\rho(s)f)t \\ \rho(s)\langle t,u\rangle &= \langle [s,t],u\rangle + \langle t,[s,u]\rangle \\ \langle s,[t,t]\rangle &= \langle [s,t],t\rangle. \end{split}$$

Examples

exact CAs

$$0 \rightarrow T^*M \rightarrow E \rightarrow TM \rightarrow 0$$

(classified by $H^3(M, \mathbb{R})$)

(

Courant algebroid: vector bundle $E \to M$, symmetric pairing \langle , \rangle anchor map $\rho : E \to TM$, bracket $[,] : \Gamma(E) \times \Gamma(E) \to \Gamma(E)$ such that $(\forall s, t, u \in \Gamma(E) \text{ and } f \in C^{\infty}(M))$

$$\begin{split} [s,[t,u]] &= [[s,t],u] + [t,[s,u]] \\ [s,ft] &= f[s,t] + (\rho(s)f)t \\ \rho(s)\langle t,u\rangle &= \langle [s,t],u\rangle + \langle t,[s,u]\rangle \\ \langle s,[t,t]\rangle &= \langle [s,t],t\rangle. \end{split}$$

Examples

exact CAs

$$0 \rightarrow T^*M \rightarrow E \rightarrow TM \rightarrow 0$$

(classified by $H^3(M, \mathbb{R})$)

• Lie algebras with invariant symmetric pairing (M = point)

Generalized metric

Generalized metric

Generalized metric: a vector subbundle $V^+ \subset E$ s.t. \langle , \rangle is positive-def. on V^+ and negative-def. on $V^- := (V^+)^{\perp}$ (alternatively: the reflection $\mathbf{V} : E \to E$ w.r.t. V^+)

Generalized metric

Generalized metric: a vector subbundle $V^+ \subset E$ s.t. \langle , \rangle is positive-def. on V^+ and negative-def. on $V^- := (V^+)^{\perp}$ (alternatively: the reflection $\mathbf{V} : E \to E$ w.r.t. V^+)

Example

- A generalized metric in an exact CA $E \rightarrow M$
- = a Riemannian metric g and a closed 3-form H on M
- (i.e. the data needed for a 2-dim σ -model)

Backgrounds (M, g, H) of Poisson-Lie type

• a Courant algebroid $\tilde{E} \to \tilde{M}$ (not exact) with a generalized metric $\tilde{V}^+ \subset \tilde{E}$

Backgrounds (M, g, H) of Poisson-Lie type

- a Courant algebroid $\tilde{E} \to \tilde{M}$ (not exact) with a generalized metric $\tilde{V}^+ \subset \tilde{E}$
- a surjective submersion $f: M
 ightarrow ilde{M}$

Backgrounds (M, g, H) of Poisson-Lie type

- a Courant algebroid $\tilde{E} \to \tilde{M}$ (not exact) with a generalized metric $\tilde{V}^+ \subset \tilde{E}$
- a surjective submersion $f: M o ilde{M}$
- a compatible *exact* CA structure on $E := f^* \tilde{E} \to M$ (not unique !)

Backgrounds (M, g, H) of Poisson-Lie type

- a Courant algebroid $\tilde{E} \to \tilde{M}$ (not exact) with a generalized metric $\tilde{V}^+ \subset \tilde{E}$
- a surjective submersion $f: M o ilde{M}$
- a compatible exact CA structure on E := f^{*} Ẽ → M (not unique !)
- pulled-back generalized metric: $V^+ := f^* \tilde{V}^+ \subset E$, equivalent to (M, g, H)

Backgrounds (M, g, H) of Poisson-Lie type

- a Courant algebroid $\tilde{E} \to \tilde{M}$ (not exact) with a generalized metric $\tilde{V}^+ \subset \tilde{E}$
- a surjective submersion $f: M o ilde{M}$
- a compatible exact CA structure on E := f^{*} Ẽ → M (not unique !)
- pulled-back generalized metric: V⁺ := f^{*} V⁺ ⊂ E, equivalent to (M, g, H)

PL T-duality

If (M_1, g_1, H_1) and (M_2, g_2, H_2) are obtained by pulling back the same gen. metric $\tilde{V}^+ \subset \tilde{E}$ then the corresponding 2-dim σ -models are (almost) isomorphic as Hamiltonian systems

No spectators (i.e. $ilde{M}=$ point, $ilde{E}=\mathfrak{d}$ a Lie algebra, $ilde{V}^+\subset\mathfrak{d})$

No spectators (i.e. $ilde{M}=$ point, $ilde{E}=\mathfrak{d}$ a Lie algebra, $ilde{V}^+\subset\mathfrak{d})$

• $\mathfrak{g}_1, \mathfrak{g}_2 \subset \mathfrak{d}$ Lagrangian Lie subalgebras $(\mathfrak{g}_i^{\perp} = \mathfrak{g}_i)$

No spectators (i.e. $\tilde{M} = \text{point}, \ \tilde{E} = \mathfrak{d}$ a Lie algebra, $\tilde{V}^+ \subset \mathfrak{d}$)

- $\mathfrak{g}_1, \mathfrak{g}_2 \subset \mathfrak{d}$ Lagrangian Lie subalgebras $(\mathfrak{g}_i^{\perp} = \mathfrak{g}_i)$
- $M_i = D/G_i$, $E_i = \mathfrak{d} \times M_i$, the anchor given by the action of \mathfrak{d}

No spectators (i.e. $\tilde{M} = \text{point}, \ \tilde{E} = \mathfrak{d}$ a Lie algebra, $\tilde{V}^+ \subset \mathfrak{d}$)

- $\mathfrak{g}_1, \mathfrak{g}_2 \subset \mathfrak{d}$ Lagrangian Lie subalgebras $(\mathfrak{g}_i^{\perp} = \mathfrak{g}_i)$
- $M_i = D/G_i$, $E_i = \mathfrak{d} \times M_i$, the anchor given by the action of \mathfrak{d}
- (g_i, H_i) given by the gen. metric $\tilde{V}^+ imes M_i \subset \mathfrak{d} imes M_i$

No spectators (i.e. $\tilde{M} = \text{point}, \ \tilde{E} = \mathfrak{d}$ a Lie algebra, $\tilde{V}^+ \subset \mathfrak{d}$)

• $\mathfrak{g}_1, \mathfrak{g}_2 \subset \mathfrak{d}$ Lagrangian Lie subalgebras $(\mathfrak{g}_i^{\perp} = \mathfrak{g}_i)$

- $M_i = D/G_i$, $E_i = \mathfrak{d} \times M_i$, the anchor given by the action of \mathfrak{d}
- (g_i, H_i) given by the gen. metric $\tilde{V}^+ imes M_i \subset \mathfrak{d} imes M_i$

General $ilde{M}$

• A principal *D*-bundle $P
ightarrow ilde{M}$

No spectators (i.e. $\tilde{M} = \text{point}, \tilde{E} = \mathfrak{d}$ a Lie algebra, $\tilde{V}^+ \subset \mathfrak{d}$)

• $\mathfrak{g}_1, \mathfrak{g}_2 \subset \mathfrak{d}$ Lagrangian Lie subalgebras $(\mathfrak{g}_i^{\perp} = \mathfrak{g}_i)$

- $M_i = D/G_i$, $E_i = \mathfrak{d} \times M_i$, the anchor given by the action of \mathfrak{d}
- (g_i, H_i) given by the gen. metric $\tilde{V}^+ imes M_i \subset \mathfrak{d} imes M_i$

General \tilde{M}

- A principal *D*-bundle $P
 ightarrow ilde{M}$
- Vanishing 1st Pontryagin class: $\langle F, F \rangle / 2 = dC \ (C \in \Omega^3(\tilde{M}))$ gives a transitive CA $\tilde{E} \to \tilde{M}$

No spectators (i.e. $ilde{M} = ext{point}, \ ilde{E} = extsf{d}$ a Lie algebra, $ilde{V}^+ \subset extsf{d}$)

• $\mathfrak{g}_1, \mathfrak{g}_2 \subset \mathfrak{d}$ Lagrangian Lie subalgebras $(\mathfrak{g}_i^{\perp} = \mathfrak{g}_i)$

- $M_i = D/G_i$, $E_i = \mathfrak{d} \times M_i$, the anchor given by the action of \mathfrak{d}
- (g_i, H_i) given by the gen. metric $\tilde{V}^+ imes M_i \subset \mathfrak{d} imes M_i$

General \tilde{M}

- A principal *D*-bundle $P
 ightarrow ilde{M}$
- Vanishing 1st Pontryagin class: $\langle F, F \rangle / 2 = dC \ (C \in \Omega^3(\tilde{M}))$ gives a transitive CA $\tilde{E} \to \tilde{M}$

•
$$M_i = P/G_i$$

No spectators (i.e. $\tilde{M} = \text{point}, \ \tilde{E} = \mathfrak{d}$ a Lie algebra, $\tilde{V}^+ \subset \mathfrak{d}$)

• $\mathfrak{g}_1, \mathfrak{g}_2 \subset \mathfrak{d}$ Lagrangian Lie subalgebras $(\mathfrak{g}_i^{\perp} = \mathfrak{g}_i)$

- $M_i = D/G_i$, $E_i = \mathfrak{d} \times M_i$, the anchor given by the action of \mathfrak{d}
- (g_i, H_i) given by the gen. metric $\tilde{V}^+ imes M_i \subset \mathfrak{d} imes M_i$

General \tilde{M}

- A principal *D*-bundle $P
 ightarrow ilde{M}$
- Vanishing 1st Pontryagin class: $\langle F, F \rangle / 2 = dC \ (C \in \Omega^3(\tilde{M}))$ gives a transitive CA $\tilde{E} \to \tilde{M}$

•
$$M_i = P/G_i$$

(A better description: A multiplicative gerbe over D trivial on G_i 's, acting on a gerbe on P)

Phase space of σ -model: $T^*(LM)$, symplectic form twisted by H

Phase space of σ -model: $T^*(LM)$, symplectic form twisted by HEquivalently: $p: E \to M$ an exact CA

$$T^*(LM) = L_{CA}E := \{\gamma : S^1 \to E; \ \rho \circ \gamma = (p \circ \gamma)_* \partial_\sigma\}$$

Phase space of σ -model: $T^*(LM)$, symplectic form twisted by HEquivalently: $p: E \to M$ an exact CA

$$T^*(LM) = L_{CA}E := \{\gamma : S^1 \to E; \ \rho \circ \gamma = (p \circ \gamma)_* \partial_\sigma \}$$

Hamiltonian:

$$\mathcal{H}(\gamma) = rac{1}{2} \int_{\mathcal{S}^1} \mathbf{V}(\gamma(\sigma), \gamma(\sigma)) \, d\sigma$$

Phase space of σ -model: $T^*(LM)$, symplectic form twisted by HEquivalently: $p: E \to M$ an exact CA

$$T^*(LM) = L_{CA}E := \{\gamma : S^1 \to E; \ \rho \circ \gamma = (p \circ \gamma)_* \partial_\sigma \}$$

Hamiltonian:

$$\mathcal{H}(\gamma) = rac{1}{2} \int_{\mathcal{S}^1} \mathbf{V}(\gamma(\sigma), \gamma(\sigma)) \, d\sigma$$

Generalized metrics and Hamiltonian systems

• The space $L_{CA}E$ is a symplectic manifold for any Courant algebroid E (a little lie - $L_{CA}E$ needs to be modified).

Phase space of σ -model: $T^*(LM)$, symplectic form twisted by HEquivalently: $p: E \to M$ an exact CA

$$T^*(LM) = L_{CA}E := \{\gamma : S^1 \to E; \ \rho \circ \gamma = (p \circ \gamma)_* \partial_\sigma \}$$

Hamiltonian:

$$\mathcal{H}(\gamma) = rac{1}{2} \int_{\mathcal{S}^1} \mathbf{V}(\gamma(\sigma), \gamma(\sigma)) \, d\sigma$$

Generalized metrics and Hamiltonian systems

- The space $L_{CA}E$ is a symplectic manifold for any Courant algebroid E (a little lie $L_{CA}E$ needs to be modified).
- A generalized metric V^+ \Rightarrow a Hamiltonian ${\cal H}$ on $L_{CA}E$

$$E_i = f_i^* \tilde{E}$$
 $(i = 1, 2)$
 $V_i^+ = f^* \tilde{V}^+$

$$E_i = f_i^* \tilde{E}$$
 $(i = 1, 2)$
 $V_i^+ = f^* \tilde{V}^+$

3 Hamiltonian systems: $(L_{CA}\tilde{E}, \tilde{\mathcal{H}}), (L_{CA}E_i, \mathcal{H}_i)$

$$E_i = f_i^* \tilde{E}$$
 $(i = 1, 2)$
 $V_i^+ = f^* \tilde{V}^+$

3 Hamiltonian systems: $(L_{CA}\tilde{E}, \tilde{\mathcal{H}}), (L_{CA}E_i, \mathcal{H}_i)$

PL T-duality from Hamiltonian point of view

 $L_{CA}\tilde{E}$ is the reduction of a finite-codimension coisotropic submanifold in $L_{CA}E_i$, i.e. $L_{CA}E_{1,2}$ are almost isomorphic as Hamiltonian systems

 $\mathcal{E}=$ the dg symplectic manifold corresponding to a CA $E \rightarrow M$

 $L_{CA}E := dg-maps(T[1]D^2 \rightarrow \mathcal{E})/htopy rel boundary$

 $\mathcal{E}=$ the dg symplectic manifold corresponding to a CA $E \rightarrow M$

 $L_{CA}E := \mathsf{dg-maps}(T[1]D^2 \to \mathcal{E})/\mathsf{htopy}$ rel boundary

Example (PL T-duality without spectators)

 L_{CA} is the space of flat ϑ -connections on a disk, modulo gauge transformations vanishing on the boundary.

 $\mathcal{E}=$ the dg symplectic manifold corresponding to a CA $E \rightarrow M$

 $L_{CA}E := \mathsf{dg-maps}(T[1]D^2 \to \mathcal{E})/\mathsf{htopy}$ rel boundary

Example (PL T-duality without spectators)

 L_{CA} is the space of flat ϑ -connections on a disk, modulo gauge transformations vanishing on the boundary.

 $L_{CA}(\mathfrak{d} \times D/G_i) \cong T^*(L(D/G_i))$ are the flat \mathfrak{d} -connections on an annulus taking values in $\mathfrak{g}_i \subset \mathfrak{d}$ on the inner circle.

 $\mathcal{E}=$ the dg symplectic manifold corresponding to a CA $E \rightarrow M$

 $L_{CA}E := \mathsf{dg-maps}(T[1]D^2 \to \mathcal{E})/\mathsf{htopy}$ rel boundary

Example (PL T-duality without spectators)

 L_{CA} is the space of flat ϑ -connections on a disk, modulo gauge transformations vanishing on the boundary.

 $L_{CA}(\mathfrak{d} \times D/G_i) \cong T^*(L(D/G_i))$ are the flat \mathfrak{d} -connections on an annulus taking values in $\mathfrak{g}_i \subset \mathfrak{d}$ on the inner circle.

The Hamiltonian is $\mathcal{H}(A) = \frac{1}{2} \int_{S^1} \langle A_\sigma, \mathbf{V} A_\sigma \rangle \, d\sigma$ where **V** is the reflection w.r.t. $V^+ \subset \mathfrak{d}$.

$$egin{aligned} \mathcal{S}(A) &= \int_{Y} \Big(rac{1}{2} \langle A, dA
angle + rac{1}{6} \langle [A, A], A
angle \Big) & A \in \Omega^{1}(Y, \mathfrak{d}) \ \delta \mathcal{S} &= \int_{Y} \langle \delta A, F
angle + rac{1}{2} \int_{\partial Y} \langle \delta A, A
angle \end{aligned}$$

Boundary condition: (exact) Lagrangian submanifold in $\Omega^1(\partial Y, \mathfrak{d})$ (of local type: in Hom $(T_x \partial Y, \mathfrak{d})$)

$$\begin{split} \mathcal{S}(A) &= \int_{Y} \left(\frac{1}{2} \langle A, dA \rangle + \frac{1}{6} \langle [A, A], A \rangle \right) \qquad A \in \Omega^{1}(Y, \mathfrak{d}) \\ \delta \mathcal{S} &= \int_{Y} \langle \delta A, F \rangle + \frac{1}{2} \int_{\partial Y} \langle \delta A, A \rangle \end{split}$$

Boundary condition: (exact) Lagrangian submanifold in $\Omega^1(\partial Y, \mathfrak{d})$ (of local type: in Hom $(T_x \partial Y, \mathfrak{d})$)

$\sigma\text{-model}$ type boundary condition

needs a pseudo-Riemannian metric on $\Sigma\subset\partial Y$ and $V^+\subset\mathfrak{d}$

$$*(A|_{\Sigma}) = \mathbf{V}A|_{\Sigma}$$

Hollow cylinder: The σ -model with the target D/G

Boundary condition: $*(A|_{\Sigma}) = \mathbf{V}A|_{\Sigma}, \ A|_{\Sigma_{inn}} \in \mathfrak{g}$

Hollow cylinder: The σ -model with the target D/G

Boundary condition: $*(A|_{\Sigma}) = \mathbf{V}A|_{\Sigma}, \ \underline{A}|_{\Sigma_{inn}} \in \mathfrak{g}$

$$S(A) = "\int p \, dq - \mathcal{H} d au ", \quad \mathcal{H} = rac{1}{2} \int_{S^1} \langle A_\sigma, \mathbf{V}(A_\sigma)
angle \, d\sigma$$

Phase space: moduli space of flat ϑ -connections on an annulus $\cong T^*(L(D/G))$

Hollow cylinder: The σ -model with the target D/G

Boundary condition: $*(A|_{\Sigma}) = \mathbf{V}A|_{\Sigma}, \ \underline{A}|_{\underline{\Sigma}_{inn}} \in \mathfrak{g}$

$$S(A) = "\int p \, dq - \mathcal{H} d au ", \quad \mathcal{H} = rac{1}{2} \int_{S^1} \langle A_\sigma, \mathbf{V}(A_\sigma)
angle \, d\sigma$$

Phase space: moduli space of flat \mathfrak{d} -connections on an annulus $\cong T^*(L(D/G))$

Full cylinder: The duality-invariant part (reduced phase space)

Ricci flow [P.Š., Fridrich Valach, 2016]

Ricci flow

[P.Š., Fridrich Valach, 2016]

 $\mathsf{PL}\xspace$ T-duality is compatible with the 1-loop renormalization group flow, i.e. with the modified Ricci flow

$$rac{d}{dt}(g+B)=-2\operatorname{Ric}_{g,H}$$
 ($H=dB$ is the torsion)

Ricci flow

[P.Š., Fridrich Valach, 2016]

 $\mathsf{PL}\xspace$ T-duality is compatible with the 1-loop renormalization group flow, i.e. with the modified Ricci flow

$$rac{d}{dt}(g+B)=-2\operatorname{Ric}_{g,H}$$
 ($H=dB$ is the torsion)

Generalized Ricci flow (of a generalized metric)

$$\frac{dV^+}{dt} = T_{V^+} : V_+ \to V_- \qquad \langle T_{V^+} u, v \rangle = -2 \operatorname{GRic}_{V^+}(u, v)$$

$$\operatorname{GRic}_{V^+}(u,v) := \bigvee_{u \to v}^{\ominus} - u \longrightarrow_{\ominus}^{\ominus} v$$

Compatible with pull-backs \Rightarrow PL T-duality is compatible with Ricci flow

Dirac structure in $E \to M$: a subbundle $C \subset E|_N$ ($N \subset M$) s.t. $C^{\perp} = C$, closed under [,], $\rho(C) \subset TN$

manifold \mathcal{E}

Dirac structure in $E \to M$: a subbundle $C \subset E|_N$ $(N \subset M)$ s.t. $C^{\perp} = C$, closed under [,], $\rho(C) \subset TN$ Equivalently: a Lagrangian dg submanifold of the dg symplectic

Dirac structure in $E \to M$: a subbundle $C \subset E|_N$ ($N \subset M$) s.t. $C^{\perp} = C$, closed under [,], $\rho(C) \subset TN$ Equivalently: a Lagrangian dg submanifold of the dg symplectic manifold \mathcal{E}

Example

When $E = (T \oplus T^*)M \to M$ is exact given by $H \in \Omega^3(M)_{\text{closed}}$ and $\omega \in \Omega^2(N)$ $(N \subset M)$ s.t. $d\omega = H|_N$ then

$$\{(\mathbf{v}, \alpha) \in \mathbf{E}; i_{\mathbf{v}}\omega = \alpha|_{\mathbf{N}}\}$$

is a Dirac structure

Dirac structure in $E \to M$: a subbundle $C \subset E|_N$ ($N \subset M$) s.t. $C^{\perp} = C$, closed under [,], $\rho(C) \subset TN$ Equivalently: a Lagrangian dg submanifold of the dg symplectic manifold \mathcal{E}

Example

When $E = (T \oplus T^*)M \to M$ is exact given by $H \in \Omega^3(M)_{\text{closed}}$ and $\omega \in \Omega^2(N)$ $(N \subset M)$ s.t. $d\omega = H|_N$ then

$$\{(\mathbf{v}, \alpha) \in \mathbf{E}; i_{\mathbf{v}}\omega = \alpha|_{\mathbf{N}}\}$$

is a Dirac structure

Dirac relation: a Dirac structure in $\overline{E}_1 \times E_2$

Dirac structure in $E \to M$: a subbundle $C \subset E|_N$ ($N \subset M$) s.t. $C^{\perp} = C$, closed under [,], $\rho(C) \subset TN$ Equivalently: a Lagrangian dg submanifold of the dg symplectic manifold \mathcal{E}

Example

When $E = (T \oplus T^*)M \to M$ is exact given by $H \in \Omega^3(M)_{\text{closed}}$ and $\omega \in \Omega^2(N)$ $(N \subset M)$ s.t. $d\omega = H|_N$ then

$$\{(\mathbf{v}, \alpha) \in \mathbf{E}; i_{\mathbf{v}}\omega = \alpha|_{\mathbf{N}}\}$$

is a Dirac structure

Dirac relation: a Dirac structure in $\overline{E}_1 \times E_2$

Generalized isometries

A generalized isometry between $V_1^+ \subset E_1 \rightarrow M_1$ and $V_2^+ \subset E_2 \rightarrow M_2$ is a Dirac relation C s.t. $(\mathbf{V}_1 \times \mathbf{V}_2)C = C$

Lagrangian submanifolds in phase spaces

Dirac structure $C \subset E \Rightarrow$ Lagrangian submanifold $L_{CA}C \subset L_{CA}E$

Lagrangian submanifolds in phase spaces

Dirac structure $C \subset E \Rightarrow$ Lagrangian submanifold $L_{CA}C \subset L_{CA}E$

A generalized isometry C between $V_1^+E_1 \to M_1$ and $V_2^+E_2 \to M_2$ thus gives a Lagrangian relation

$$L_{CA}C \subset \overline{L_{CA}E_1} \times L_{CA}E_2$$

and $\mathcal{H}_1 = \mathcal{H}_2$ on $L_{CA}C$.

Lagrangian submanifolds in phase spaces

Dirac structure $C \subset E \Rightarrow$ Lagrangian submanifold $L_{CA}C \subset L_{CA}E$

A generalized isometry C between $V_1^+E_1 \to M_1$ and $V_2^+E_2 \to M_2$ thus gives a Lagrangian relation

$$L_{CA}C \subset \overline{L_{CA}E_1} \times L_{CA}E_2$$

and $\mathcal{H}_1 = \mathcal{H}_2$ on $L_{CA}C$. $L_{CA}C$ fails to be the graph of a symplectomorphism only by a finite dimension = "generalized T-duality"

Lagrangian submanifolds in phase spaces

Dirac structure $C \subset E \Rightarrow$ Lagrangian submanifold $L_{CA}C \subset L_{CA}E$

A generalized isometry C between $V_1^+E_1 \to M_1$ and $V_2^+E_2 \to M_2$ thus gives a Lagrangian relation

$$L_{CA}C \subset \overline{L_{CA}E_1} \times L_{CA}E_2$$

and $\mathcal{H}_1 = \mathcal{H}_2$ on $L_{CA}C$. $L_{CA}C$ fails to be the graph of a symplectomorphism only by a finite dimension = "generalized T-duality"

Open problems

Lagrangian submanifolds in phase spaces

Dirac structure $C \subset E \Rightarrow$ Lagrangian submanifold $L_{CA}C \subset L_{CA}E$

A generalized isometry C between $V_1^+E_1 \to M_1$ and $V_2^+E_2 \to M_2$ thus gives a Lagrangian relation

$$L_{CA}C \subset \overline{L_{CA}E_1} \times L_{CA}E_2$$

and $\mathcal{H}_1 = \mathcal{H}_2$ on $L_{CA}C$. $L_{CA}C$ fails to be the graph of a symplectomorphism only by a finite dimension = "generalized T-duality"

Open problems

• Is it compatible with the Ricci flow? (probably yes)

Lagrangian submanifolds in phase spaces

Dirac structure $C \subset E \Rightarrow$ Lagrangian submanifold $L_{CA}C \subset L_{CA}E$

A generalized isometry C between $V_1^+E_1 \to M_1$ and $V_2^+E_2 \to M_2$ thus gives a Lagrangian relation

$$L_{CA}C \subset \overline{L_{CA}E_1} \times L_{CA}E_2$$

and $\mathcal{H}_1 = \mathcal{H}_2$ on $L_{CA}C$. $L_{CA}C$ fails to be the graph of a symplectomorphism only by a finite dimension = "generalized T-duality"

Open problems

- Is it compatible with the Ricci flow? (probably yes)
- How to generate examples besides PL T-duality?

Lagrangian submanifolds in phase spaces

Dirac structure $C \subset E \Rightarrow$ Lagrangian submanifold $L_{CA}C \subset L_{CA}E$

A generalized isometry C between $V_1^+E_1 \to M_1$ and $V_2^+E_2 \to M_2$ thus gives a Lagrangian relation

$$L_{CA}C \subset \overline{L_{CA}E_1} \times L_{CA}E_2$$

and $\mathcal{H}_1 = \mathcal{H}_2$ on $L_{CA}C$. $L_{CA}C$ fails to be the graph of a symplectomorphism only by a finite dimension = "generalized *T*-duality"

Open problems

- Is it compatible with the Ricci flow? (probably yes)
- How to generate examples besides PL T-duality?
- Composition and global issues (derived geometry?)

Idea: use a dg symplectic manifold \mathcal{E} with deg $\omega = n$ (n = 2 corresponds to CAs)

Idea: use a dg symplectic manifold \mathcal{E} with deg $\omega = n$ (n = 2 corresponds to CAs)

Phase space

dg-maps($T[1]D^n, \mathcal{E}$)/htopy rel boundary

Idea: use a dg symplectic manifold \mathcal{E} with deg $\omega = n$ (n = 2 corresponds to CAs)

Phase space

dg-maps($T[1]D^n, \mathcal{E})$ /htopy rel boundary

"Generalized metric": a function on gr-maps($T_x[1]S^{n-1}, \mathcal{E}$)
Open problems: higher dimensions

Idea: use a dg symplectic manifold \mathcal{E} with deg $\omega = n$ (n = 2 corresponds to CAs)

Phase space

dg-maps($T[1]D^n, \mathcal{E})$ /htopy rel boundary

"Generalized metric": a function on gr-maps($T_x[1]S^{n-1}, \mathcal{E}$)

Space-time picture: n + 1-dim AKSZ model given by \mathcal{E} , with a (non-topological) boundary condition

Open problems: higher dimensions

Idea: use a dg symplectic manifold \mathcal{E} with deg $\omega = n$ (n = 2 corresponds to CAs)

Phase space

dg-maps($T[1]D^n, \mathcal{E})$ /htopy rel boundary

"Generalized metric": a function on gr-maps($T_{x}[1]S^{n-1}, \mathcal{E})$

Space-time picture: n + 1-dim AKSZ model given by \mathcal{E} , with a (non-topological) boundary condition

n = 1: $\mathcal{E} = T^*[1]M$, Hamiltonian evolution on (the symplectic groupoid of) M.

Open problems: higher dimensions

Idea: use a dg symplectic manifold \mathcal{E} with deg $\omega = n$ (n = 2 corresponds to CAs)

Phase space

dg-maps($T[1]D^n, \mathcal{E})$ /htopy rel boundary

"Generalized metric": a function on gr-maps($T_{x}[1]S^{n-1}, \mathcal{E})$

Space-time picture: n + 1-dim AKSZ model given by \mathcal{E} , with a (non-topological) boundary condition

n = 1: $\mathcal{E} = T^*[1]M$, Hamiltonian evolution on (the symplectic groupoid of) M.

Problem for $n \ge 3$

Make it compatible with gauge symmetries, find non-trivial dualities of (higher) gauge theories

Kramers-Wannier duality = Poincaré + Poisson

Kramers-Wannier duality = Poincaré + Poisson

Quantum: 3d TFT with colored boundary (RT TFT given by the double of *H*)

$$H = Z(\square)$$

Hopf algebra
 $\mathfrak{g}, \mathfrak{g}^* \subset \mathfrak{d}$

Kramers-Wannier duality = Poincaré + Poisson

Quantum: 3d TFT with colored boundary (RT TFT given by the double of *H*)

Thanks for your attention!

$$H = Z(\square)$$

Hopf algebra
 $\mathfrak{g}, \mathfrak{g}^* \subset \mathfrak{d}$

