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What is Poisson-Lie T-duality?
[C. Klim¢&ik, P.S., 1995]

e A non-Abelian generalization of T-duality

e An (almost) isomorphism of two 2-dim o-models (seen as
Hamiltonian systems)

e A generalized isometry between (My, g1, H1) and (Ma, g2, H2)
(gi a Riemann metric on M;, H; € Q3(M;)ciosed)

What is a generalized isometry?

e An “isometry” in generalized geometry (Dirac relation
compatible with generalized metrics)

e perhaps the right “general T-duality”
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Courant algebroids

Courant algebroid: vector bundle E — M, symmetric pairing (, )
anchor map p: E — TM, bracket [, ] : [(E) x ['(E) — I'(E) such
that (Vs,t,u € I'(E) and f € C>*(M))

[Sa [t’ u]] = [[Sv t]v u] + [tv [5’ u]]

[s, ft] = f[s, t] + (p(s)f)t
,O(S)<t, U> = <[57 t]7 u> + <t7 [Sa U]>
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anchor map p: E — TM, bracket [, ] : [(E) x ['(E) — I'(E) such
that (Vs,t,u € I'(E) and f € C>*(M))

[5’ [t’ u]] = [[Sv t]v u] + [tv [57 u]]

[s, ft] = f[s, t] + (p(s)f)t
,O(S)<t, U> = <[57 t]7 u> + <t7 [Sa U]>
<57 [t7 t]> = <[S7 t]7 t>'

e exact CAs

0-TM—E—TM—=0

(classified by H3(M,R))
e Lie algebras with invariant symmetric pairing (M = point)
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Generalized metric: a vector subbundle V* C E s.it. (, ) is
positive-def. on VT and negative-def. on V= := (V+)+
(alternatively: the reflection V: E — E w.r.t. V1)
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Generalized metric

Generalized metric: a vector subbundle V* C E s.t. (, ) is
positive-def. on VT and negative-def. on V= := (V+)+
(alternatively: the reflection V: E — E w.r.t. V1)

Example

A generalized metric in an exact CA E - M
= a Riemannian metric g and a closed 3-form H on M
(i.e. the data needed for a 2-dim o-model)
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Poisson-Lie T-duality

Backgrounds (M, g, H) of Poisson-Lie type

e a Courant algebroid £ — I\ZI (not exact)
with a generalized metric V* C E

e a surjective submersion f : M — M

e a compatible exact CA structure on E := f*E — M
(not unique !)

e pulled-back generalized metric: V' := f* VtcCE,
equivalent to (M, g, H)

PL T-duality

If (M1, g1, H1) andN(Mz,gg, H,) are obtained by pulling back the
same gen. metric VT C E then the corresponding 2-dim o-models
are (almost) isomorphic as Hamiltonian systems
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How to construct it

No spectators (i.e. M = point, £ =0 a Lie algebra, V* C d)

e g1,92 C 0 Lagrangian Lie subalgebras (gi = g;)
e M; =D/G;, E; =0 x M;, the anchor given by the action of d
e (gi, H;) given by the gen. metric VT x Mj Cox M;

e A principal D-bundle P — M

e Vanishing 1st Pontryagin Elass: 5 5
(F,F)/2 =dC (C € Q3(M)) gives a transitive CA E — M
o M,' = P/G,

(A better description: A multiplicative gerbe over D trivial on G;'s,
acting on a gerbe on P)
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Phase spaces and Hamiltonians

Phase space of o-model: T*(LM), symplectic form twisted by H
Equivalently: p: E — M an exact CA

T*(LM) = LcaE == {v:S' = E; poy=(po7).0s}

Hamiltonian: 1

HO) = 5 [ VG0 (e) do

Generalized metrics and Hamiltonian systems

e The space LcaE is a symplectic manifold for any Courant
algebroid E (a little lie - LcaE needs to be modified).

e A generalized metric VT = a Hamiltonian H on LcaE

7/16



PL T-duality from Hamiltonian point of view

/16



PL T-duality from Hamiltonian point of view
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PL T-duality from Hamiltonian point of view

E=fE (i=1,2)

Ei E»
y y Vi = o
M, M, '

E
fl\ I\tﬂ )/,—2 3 Hamiltonian systems:
(LcaE, H), (LcaEi, H))
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PL T-duality from Hamiltonian point of view

E E> Ei=fE (i=12)
* iy + V= ot
My E My i

fl\ I\%ﬂ )/,—2 3 Hamiltonian systems:

(LCAE,/F[). (LCAEia H,)

PL T-duality from Hamiltonian point of view

LcaE is the reduction of a finite-codimension coisotropic
submanifold in LcaE;, i.e. LcaE1 are almost isomorphic as
Hamiltonian systems
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Phase spaces (without lying (too much))
&€ = the dg symplectic manifold corresponding to a CA E — M

LcaE = dg-maps(T[1]D? — &) /htopy rel boundary

Example (PL T-duality without spectators)

Lca0 is the space of flat 9-connections on a disk, modulo gauge
transformations vanishing on the boundary.

Lea(d x D/Gj) = T*(L(D/G;)) are the flat d-connections on an
annulus taking values in g; C 0 on the inner circle.

Lcad : LCA(D X D/G,) :

The Hamiltonian is #(A) = 3 [s1(As, VA,) do where V is the
reflection w.r.t. VT C 0. o1
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Space-time picture: boundary of Chern-Simons (or AKSZ)

5(A):/Y(;<A,dA>+é<[A,A],A>) Ac QYY,0)

55:/Y<5A,F>+;/8y<5A,A>

Boundary condition: (exact) Lagrangian submanifold in Q!(9Y,0)
(of local type: in Hom(T, 0Y,0))

o-model type boundary condition

needs a pseudo-Riemannian metricon ¥ C Y and V* C 0

x(Alx) = VA|x
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Space-time picture: boundary of Chern-Simons (or AKSZ)

Hollow cylinder: The o-model with the target D/G

Boundary condition: x(A|x) = VA|x, Alx

€9

inn
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Space-time picture: boundary of Chern-Simons (or AKSZ)

Hollow cylinder: The o-model with the target D/G

Boundary condition: *(Al|x) = VAls, Ay, €0
1
S(A) = “/pdq—HdT”, H = 2/ (As,V(As)) do
si
Phase space: moduli space of flat d-connections O
on an annulus & T*(L(D/G))
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Space-time picture: boundary of Chern-Simons (or AKSZ)

Hollow cylinder: The o-model with the target D/G

Boundary condition: *(Al|x) = VAls, Ay, €0
1
S(A) = “/pdq—HdT”, H = 2/ (As,V(As)) do
si
Phase space: moduli space of flat d-connections O
on an annulus & T*(L(D/G))

Full cylinder: The duality-invariant part (reduced phase space)
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Ricci flow
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PL T-duality is compatible with the 1-loop renormalization group
flow, i.e. with the modified Ricci flow

i g+ B)=—-2Ric, y (H = dB is the torsion
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Ricci flow

[P.S., Fridrich Valach, 2016]
PL T-duality is compatible with the 1-loop renormalization group
flow, i.e. with the modified Ricci flow

d
g —(g +B) = —2Ricg 4 (H = dB is the torsion)

Generalized Ricci flow (of a generalized metric)

=Ty+: V> Vo (Ty+u,v) = =2GRicy+(u, v)

GRICV+ u, V) = g @7

Compatible with pull-backs = PL T-duality is compatible with
Ricci flow
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Dirac structures and generalized isometries
Dirac structure in E — M: a subbundle C C E|y (N C M) s.t.
Ct = C, closed under [,], p(C) C TN
Equivalently: a Lagrangian dg submanifold of the dg symplectic
manifold £

Example

When E = (T @ T*)M — M is exact given by H € Q3(M)gosed
and w € Q%(N) (N C M) s.t. dw = H|y then

{(v,a) € E; iyw = a|n}

is a Dirac structure

Dirac relation: a Dirac structure in E; x Ep

Generalized isometries

A generalized isometry between V1Jr C Ey -+ M and
V," C E; — My is a Dirac relation C s.t. (V1 x V2)C = C

13/16
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(Almost) isomorphisms of Hamiltonian systems

Lagrangian submanifolds in phase spaces

Dirac structure C C E = Lagrangian submanifold LcaC C LcaE

A generalized isometry C between V;"E; — My and V5, By — My
thus gives a Lagrangian relation

LcaC C LeaEr X LeaBs

and 7‘[1 = 7‘[2 on LCAC.
LcaC fails to be the graph of a symplectomorphism only by a finite
dimension =“generalized T-duality”

Open problems

e |s it compatible with the Ricci flow? (probably yes)
e How to generate examples besides PL T-duality?

e Composition and global issues (derived geometry?)
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Open problems: higher dimensions

Idea: use a dg symplectic manifold £ with degw = n
(n = 2 corresponds to CAs)

dg-maps( T[1]D", £)/htopy rel boundary

“Generalized metric”’: a function on gr-maps( TX[l]S"—l,S)

Space-time picture: n+ 1-dim AKSZ model given by &£, with a
(non-topological) boundary condition

n=1: &= T*[1]M, Hamiltonian evolution on (the symplectic
groupoid of) M.

Problem for n > 3

Make it compatible with gauge symmetries, find non-trivial
dualities of (higher) gauge theories
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Open problems: quantization

Kramers-Wannier duality = Poincaré + Poisson

3-dim Y

Y = gray part of 9Y

K finite Abelian group
f:HY(Z, 0% eq; K) — C
(Boltzmann weight)

Zred(f, K) = > f(i*a)
a€HY(Y,0Y eq; K)

Zred(f7 K) = Zblue(ﬁ K*)
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given by the double of H) Hopf algebra
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Open problems: quantization

Kramers-Wannier duality = Poincaré + Poisson

3-dim Y

Y = gray part of 9Y

K finite Abelian group
f:HY(Z, 0% eq; K) — C
(Boltzmann weight)

Zred(f, K) = > f(i*a)
a€HY(Y,0Y eq; K)

Zred(f7 K) = Zblue(ﬁ K*)

Quantum: 3d TFT with

colored boundary (RT TFT H=2z( )
given by the double of H) Hopf algebra
9,8 C0

Thanks for your attention! 1616



