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What is Poisson-Lie T-duality?
[C. Klimč́ık, P.Š., 1995]

• A non-Abelian generalization of T-duality

• An (almost) isomorphism of two 2-dim σ-models (seen as
Hamiltonian systems)

• A generalized isometry between (M1, g1,H1) and (M2, g2,H2)
(gi a Riemann metric on Mi , Hi ∈ Ω3(Mi )closed)

What is a generalized isometry?

• An “isometry” in generalized geometry (Dirac relation
compatible with generalized metrics)

• perhaps the right “general T-duality”
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• A non-Abelian generalization of T-duality

• An (almost) isomorphism of two 2-dim σ-models (seen as
Hamiltonian systems)

• A generalized isometry between (M1, g1,H1) and (M2, g2,H2)
(gi a Riemann metric on Mi , Hi ∈ Ω3(Mi )closed)

What is a generalized isometry?

• An “isometry” in generalized geometry (Dirac relation
compatible with generalized metrics)

• perhaps the right “general T-duality”

2 / 16



What is Poisson-Lie T-duality?
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Courant algebroids

Courant algebroid: vector bundle E → M, symmetric pairing 〈 , 〉
anchor map ρ : E → TM, bracket [ , ] : Γ(E )× Γ(E )→ Γ(E ) such
that (∀s, t, u ∈ Γ(E ) and f ∈ C∞(M))

[s, [t, u]] = [[s, t], u] + [t, [s, u]]

[s, ft] = f [s, t] + (ρ(s)f )t

ρ(s)〈t, u〉 = 〈[s, t], u〉+ 〈t, [s, u]〉
〈s, [t, t]〉 = 〈[s, t], t〉.

Examples

• exact CAs
0→ T ∗M → E → TM → 0

(classified by H3(M,R))

• Lie algebras with invariant symmetric pairing (M = point)
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Generalized metric

Generalized metric: a vector subbundle V+ ⊂ E s.t. 〈 , 〉 is
positive-def. on V+ and negative-def. on V− := (V+)⊥

(alternatively: the reflection V : E → E w.r.t. V+)

Example

A generalized metric in an exact CA E → M
= a Riemannian metric g and a closed 3-form H on M
(i.e. the data needed for a 2-dim σ-model)
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Poisson-Lie T-duality

Backgrounds (M , g ,H) of Poisson-Lie type

• a Courant algebroid Ẽ → M̃ (not exact)
with a generalized metric Ṽ+ ⊂ Ẽ

• a surjective submersion f : M → M̃

• a compatible exact CA structure on E := f ∗Ẽ → M
(not unique !)

• pulled-back generalized metric: V+ := f ∗Ṽ+ ⊂ E ,
equivalent to (M, g ,H)

PL T-duality

If (M1, g1,H1) and (M2, g2,H2) are obtained by pulling back the
same gen. metric Ṽ+ ⊂ Ẽ then the corresponding 2-dim σ-models
are (almost) isomorphic as Hamiltonian systems
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with a generalized metric Ṽ+ ⊂ Ẽ
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How to construct it

No spectators (i.e. M̃ = point, Ẽ = d a Lie algebra, Ṽ+ ⊂ d)

• g1, g2 ⊂ d Lagrangian Lie subalgebras (g⊥i = gi )

• Mi = D/Gi , Ei = d×Mi , the anchor given by the action of d

• (gi ,Hi ) given by the gen. metric Ṽ+ ×Mi ⊂ d×Mi

General M̃

• A principal D-bundle P → M̃

• Vanishing 1st Pontryagin class:
〈F ,F 〉/2 = dC (C ∈ Ω3(M̃)) gives a transitive CA Ẽ → M̃

• Mi = P/Gi

(A better description: A multiplicative gerbe over D trivial on Gi ’s,
acting on a gerbe on P)
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• g1, g2 ⊂ d Lagrangian Lie subalgebras (g⊥i = gi )

• Mi = D/Gi , Ei = d×Mi , the anchor given by the action of d

• (gi ,Hi ) given by the gen. metric Ṽ+ ×Mi ⊂ d×Mi
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• g1, g2 ⊂ d Lagrangian Lie subalgebras (g⊥i = gi )

• Mi = D/Gi , Ei = d×Mi , the anchor given by the action of d

• (gi ,Hi ) given by the gen. metric Ṽ+ ×Mi ⊂ d×Mi
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Phase spaces and Hamiltonians

Phase space of σ-model: T ∗(LM), symplectic form twisted by H
Equivalently: p : E → M an exact CA

T ∗(LM) = LCAE := {γ : S1 → E ; ρ ◦ γ = (p ◦ γ)∗∂σ}

Hamiltonian:

H(γ) =
1

2

∫
S1

V(γ(σ), γ(σ)) dσ

Generalized metrics and Hamiltonian systems

• The space LCAE is a symplectic manifold for any Courant
algebroid E (a little lie - LCAE needs to be modified).

• A generalized metric V+ ⇒ a Hamiltonian H on LCAE

7 / 16



Phase spaces and Hamiltonians

Phase space of σ-model: T ∗(LM), symplectic form twisted by H

Equivalently: p : E → M an exact CA

T ∗(LM) = LCAE := {γ : S1 → E ; ρ ◦ γ = (p ◦ γ)∗∂σ}

Hamiltonian:

H(γ) =
1

2

∫
S1

V(γ(σ), γ(σ)) dσ

Generalized metrics and Hamiltonian systems

• The space LCAE is a symplectic manifold for any Courant
algebroid E (a little lie - LCAE needs to be modified).

• A generalized metric V+ ⇒ a Hamiltonian H on LCAE

7 / 16



Phase spaces and Hamiltonians

Phase space of σ-model: T ∗(LM), symplectic form twisted by H
Equivalently: p : E → M an exact CA

T ∗(LM) = LCAE := {γ : S1 → E ; ρ ◦ γ = (p ◦ γ)∗∂σ}

Hamiltonian:

H(γ) =
1

2

∫
S1

V(γ(σ), γ(σ)) dσ

Generalized metrics and Hamiltonian systems

• The space LCAE is a symplectic manifold for any Courant
algebroid E (a little lie - LCAE needs to be modified).

• A generalized metric V+ ⇒ a Hamiltonian H on LCAE

7 / 16



Phase spaces and Hamiltonians

Phase space of σ-model: T ∗(LM), symplectic form twisted by H
Equivalently: p : E → M an exact CA

T ∗(LM) = LCAE := {γ : S1 → E ; ρ ◦ γ = (p ◦ γ)∗∂σ}

Hamiltonian:

H(γ) =
1

2

∫
S1

V(γ(σ), γ(σ)) dσ

Generalized metrics and Hamiltonian systems

• The space LCAE is a symplectic manifold for any Courant
algebroid E (a little lie - LCAE needs to be modified).

• A generalized metric V+ ⇒ a Hamiltonian H on LCAE

7 / 16



Phase spaces and Hamiltonians

Phase space of σ-model: T ∗(LM), symplectic form twisted by H
Equivalently: p : E → M an exact CA

T ∗(LM) = LCAE := {γ : S1 → E ; ρ ◦ γ = (p ◦ γ)∗∂σ}

Hamiltonian:

H(γ) =
1

2

∫
S1

V(γ(σ), γ(σ)) dσ

Generalized metrics and Hamiltonian systems

• The space LCAE is a symplectic manifold for any Courant
algebroid E (a little lie - LCAE needs to be modified).

• A generalized metric V+ ⇒ a Hamiltonian H on LCAE

7 / 16



Phase spaces and Hamiltonians

Phase space of σ-model: T ∗(LM), symplectic form twisted by H
Equivalently: p : E → M an exact CA

T ∗(LM) = LCAE := {γ : S1 → E ; ρ ◦ γ = (p ◦ γ)∗∂σ}

Hamiltonian:

H(γ) =
1

2

∫
S1

V(γ(σ), γ(σ)) dσ

Generalized metrics and Hamiltonian systems

• The space LCAE is a symplectic manifold for any Courant
algebroid E (a little lie - LCAE needs to be modified).

• A generalized metric V+ ⇒ a Hamiltonian H on LCAE

7 / 16



PL T-duality from Hamiltonian point of view

E1 E2

M1 Ẽ M2

M̃
f1 f2

Ei = f ∗i Ẽ (i = 1, 2)

V+
i = f ∗Ṽ+

3 Hamiltonian systems:
(LCAẼ , H̃), (LCAEi ,Hi )

PL T-duality from Hamiltonian point of view

LCAẼ is the reduction of a finite-codimension coisotropic
submanifold in LCAEi , i.e. LCAE1,2 are almost isomorphic as
Hamiltonian systems
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Phase spaces (without lying (too much))

E = the dg symplectic manifold corresponding to a CA E → M

LCAE := dg-maps(T [1]D2 → E)/htopy rel boundary

Example (PL T-duality without spectators)

LCAd is the space of flat d-connections on a disk, modulo gauge
transformations vanishing on the boundary.

LCA(d× D/Gi ) ∼= T ∗
(
L(D/Gi )

)
are the flat d-connections on an

annulus taking values in gi ⊂ d on the inner circle.

LCAd :

LCA(d× D/Gi ) : gi

The Hamiltonian is H(A) = 1
2

∫
S1〈Aσ,VAσ〉 dσ where V is the

reflection w.r.t. V+ ⊂ d.
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Space-time picture: boundary of Chern-Simons (or AKSZ)

S(A) =

∫
Y

(1

2

〈
A, dA

〉
+

1

6

〈
[A,A],A

〉)
A ∈ Ω1(Y , d)

δS =

∫
Y
〈δA,F 〉+

1

2

∫
∂Y
〈δA,A〉

Boundary condition: (exact) Lagrangian submanifold in Ω1(∂Y , d)
(of local type: in Hom(Tx ∂Y , d))

σ-model type boundary condition

needs a pseudo-Riemannian metric on Σ ⊂ ∂Y and V+ ⊂ d

∗(A|Σ) = VA|Σ
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Space-time picture: boundary of Chern-Simons (or AKSZ)

Hollow cylinder: The σ-model with the target D/G

τ

σ
Σinn

Σ

Boundary condition: ∗(A|Σ) = VA|Σ, A|Σinn
∈ g

S(A) = “

∫
p dq −Hdτ ”, H =

1

2

∫
S1

〈Aσ,V(Aσ)〉 dσ

Phase space: moduli space of flat d-connections
on an annulus ∼= T ∗(L(D/G ))

Full cylinder: The duality-invariant part (reduced phase space)
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Ricci flow
[P.Š., Fridrich Valach, 2016]

PL T-duality is compatible with the 1-loop renormalization group
flow, i.e. with the modified Ricci flow

d

dt
(g + B) = −2 Ricg ,H (H = dB is the torsion)

Generalized Ricci flow (of a generalized metric)

dV+

dt
= TV+ : V+ → V− 〈TV+u, v〉 = −2 GRicV+(u, v)

GRicV+(u, v) :=

u v

−

− u v

+

−

Compatible with pull-backs ⇒ PL T-duality is compatible with
Ricci flow
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Dirac structures and generalized isometries

Dirac structure in E → M: a subbundle C ⊂ E |N (N ⊂ M) s.t.
C⊥ = C , closed under [, ], ρ(C ) ⊂ TN
Equivalently: a Lagrangian dg submanifold of the dg symplectic
manifold E

Example

When E = (T ⊕ T ∗)M → M is exact given by H ∈ Ω3(M)closed

and ω ∈ Ω2(N) (N ⊂ M) s.t. dω = H|N then

{(v , α) ∈ E ; ivω = α|N}

is a Dirac structure

Dirac relation: a Dirac structure in Ē1 × E2

Generalized isometries

A generalized isometry between V+
1 ⊂ E1 → M1 and

V+
2 ⊂ E2 → M2 is a Dirac relation C s.t. (V1 × V2)C = C
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(Almost) isomorphisms of Hamiltonian systems

Lagrangian submanifolds in phase spaces

Dirac structure C ⊂ E ⇒ Lagrangian submanifold LCAC ⊂ LCAE

A generalized isometry C between V+
1 E1 → M1 and V+

2 E2 → M2

thus gives a Lagrangian relation

LCAC ⊂ LCAE1 × LCAE2

and H1 = H2 on LCAC .
LCAC fails to be the graph of a symplectomorphism only by a finite
dimension =“generalized T -duality”

Open problems

• Is it compatible with the Ricci flow? (probably yes)

• How to generate examples besides PL T-duality?

• Composition and global issues (derived geometry?)
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Open problems: higher dimensions

Idea: use a dg symplectic manifold E with degω = n
(n = 2 corresponds to CAs)

Phase space

dg-maps(T [1]Dn, E)/htopy rel boundary

“Generalized metric”: a function on gr-maps(Tx [1]Sn−1, E)

Space-time picture: n + 1-dim AKSZ model given by E , with a
(non-topological) boundary condition

n = 1: E = T ∗[1]M, Hamiltonian evolution on (the symplectic
groupoid of) M.

Problem for n ≥ 3

Make it compatible with gauge symmetries, find non-trivial
dualities of (higher) gauge theories
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Open problems: quantization

Kramers-Wannier duality = Poincaré + Poisson

3-dim Y
Σ = gray part of ∂Y
K finite Abelian group
f : H1(Σ, ∂Σred ;K )→ C
(Boltzmann weight)

Zred(f ,K ) :=
∑

α∈H1(Y ,∂Yred ;K)

f (i∗α)

Zred(f ,K ) = Zblue(f̂ ,K ∗)

Quantum: 3d TFT with
colored boundary (RT TFT
given by the double of H)

H = Z
( )

Hopf algebra
g, g∗ ⊂ d

Thanks for your attention!
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