Yang-Baxter sigma-models \& conformal twists

Rudjer Boskovic Institute, June 6 2017

with T. Araujo, I. Bakhmatov, J. Sakamoto,
M. M. Sheikh-Jabbari, K. Yoshida
$1702.02861,1705.02063$

AdS/CFT is a duality between type IIB superstrings on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ and $\mathrm{N}=4$ super Yang-Mills
rich integrable structure
can construct a flat connection Bena, Roiban, Polchinski (2003)
expansion of Lax pair results in finite set of conserved charges
less symmetric examples
recent progress in understanding integrable deformations of AdS geometries in a unified way

> Yang-Baxter (YB) sigma-models
key to this approach is an r-matrix solution to classical Yang Baxter equation (CYBE)
set up correspondence between r-matrices and geometries
"gravity/CYBE correspondence"
touch of experimental physics
take your favourite r-matrix, plug into sigma-model, read off deformed geometry, repeat
build up a zoo of integrable deformations

let us begin with Yang-Baxter prehistory

early TsT deformations of $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ inspired by NC deformations of $\mathrm{N}=4 \mathrm{sYM}$

Hashimoto, Itzhaki; Maldacena, Russo; Alishahiha, Oz, Sheikh-Jabbari (1999)

$$
\begin{aligned}
\mathrm{d} s^{2} & =\frac{\left(-\mathrm{d} t^{2}+\mathrm{d} x_{3}^{2}+\mathrm{d} z^{2}\right)}{z^{2}}+\frac{z^{2}}{\left(z^{4}+\eta^{2}\right)}\left(\mathrm{d} x_{1}^{2}+\mathrm{d} x_{2}^{2}\right) \\
B & =\frac{\eta}{z^{4}+\eta^{2}} \mathrm{~d} x_{1} \wedge \mathrm{~d} x_{2}, \quad e^{2 \Phi}=\frac{z^{4}}{\left(z^{4}+\eta^{2}\right)} .
\end{aligned}
$$

$$
\left[\hat{x}^{\mu}, \hat{x}^{\nu}\right]=i \Theta^{\mu \nu}, \quad \Theta^{12}=-\eta
$$

in hindsight, we now understand
i) early T-duality shift T-duality (TsT)
integrable deformation Lunin, Maldacena; Frolov (2005)
ii) more generally, Yang-Baxter deformation

$$
r=\frac{1}{2} P_{1} \wedge P_{2} \quad \text { Matsumoto, Yoshida (2014) }
$$

more milestones...

YB sigma-models introduced for PCM - r matrices satisfy mCYBE Klimcik $(2002,2008)$
extension to symmetric cosets $\mathrm{AdS}_{5} \mathrm{x} \mathrm{S}^{5}$
Delduc, Magro, Vicedo (2013) Kawaguchi, Matsumoto, Yoshida (2014)
generalized type IIB supergravity - DFT/EFT
Arutyunov, Borsato, Frolov, Hoare, Roiban, Tseytlin (2015)
efforts to understand transformation: noncommuting TsTs, non-Abelian T-duality

Borsato, Hoare, Matsumoto, Osten, Thompson, Tseytlin, van Tongeren, Wulff, Yoshida,...(2014-2017)

YB sigma-model

concreteness, AdS_{5} coset

$$
\begin{gathered}
\mathcal{L}=\operatorname{Tr}\left[A P^{(2)} \circ \frac{1}{1-2 \eta R_{g} \circ P^{(2)}} A\right] \\
R_{g}(X) \equiv g^{-1} R\left(g X g^{-1}\right) g, \\
A=-g^{-1} \mathrm{~d} g, \quad g \in S O(4,2) \\
{[R(X), R(Y)]-R([R(X), Y]+[X, R(Y)])=-c^{2}[X, Y]} \\
X, Y \in \mathfrak{g}, \quad c \in \mathbb{C}
\end{gathered}
$$

can write linear operator R as r-matrix

$$
\begin{aligned}
R(X) & =\operatorname{Tr}_{2}[r(1 \otimes X)]=\sum_{i, j} r^{i j} b_{i} \operatorname{Tr}\left[b_{j} X\right] \\
r & =\frac{1}{2} \sum_{i, j} r^{i j} b_{i} \wedge b_{j}, \quad b_{i} \in \mathfrak{s o}(4,2)
\end{aligned}
$$

Abelian $\quad\left[b_{i}, b_{j}\right]=0 \quad$ unimodular $\quad r^{i j}\left[b_{i}, b_{j}\right]=0$
Borsato, Wulff (2016)
absence of conformal anomaly $\quad f_{a b}^{a}=0$

read off geometry

$$
g=\exp \left[x^{\mu} P_{\mu}\right] \exp [(\log z) D]
$$

$$
\begin{gathered}
g_{M N}=e_{M}^{m} e_{N}^{n} k_{(m n)}, \quad B_{M N}=e_{M}^{m} e_{N}^{n} k_{[n m]} \\
\mathrm{e}^{\Phi}=g_{s}\left(\operatorname{det}_{5} k\right)^{1 / 2}, \quad k_{m n}=k_{(m n)}+k_{[m n]} \\
k_{m}^{n} \equiv\left(\delta_{m}^{n}-2 \eta \lambda_{m}^{n}\right)^{-1} \\
\lambda_{m}^{n} \equiv \eta^{n l} \operatorname{Tr}\left[\mathbf{P}_{l} R_{g}\left(\mathbf{P}_{m}\right)\right]
\end{gathered}
$$

key point: completely systematic way to generate integrable deformations

But what about the thread to NC YM?

Abelian, Jordanian ([h, e] = e) deformations - Drinfeld twists of symmetry algebra
conjectured AdS/CFT duality (unimodular)

Seiberg-Witten: low-energy limit of - Poincare
for (non-commuting) TsT this is natural
observed that NC parameter is the r-matrix
van Tongeren $(2015,2016)$
We present a unified prescription starting from one key observation.
for all (homogeneous) closed string CYBE deformations of AdS_{5}, the open string metric is undeformed!

All information about the deformation is encoded in a noncommutaive (NC) parameter

YB community have been working out Drinfeld twists of full conformal algebra
"holographic noncommutativity" (z-dependence)
brute force proof that

$$
\Theta^{M N}=-2 \eta r^{M N}
$$

unimodularity: result of symmetry principle
open string metric is undeformed

$$
\begin{aligned}
G_{M N} & =\left(g-B g^{-1} B\right)_{M N} \\
\Theta^{M N} & =-\left((g+B)^{-1} B(g-B)^{-1}\right)^{M N}, \quad \text { Seiberg, Witten } \\
G_{s} & =g_{s} \mathrm{e}^{\Phi}\left(\frac{\operatorname{det}(g+B)}{\operatorname{det} g}\right)^{\frac{1}{2}} \\
\mathrm{~d} s_{\mathrm{open}}^{2} & =\frac{1}{z^{2}}\left(-\mathrm{d} x_{0}^{2}+\mathrm{d} x_{1}^{2}+\mathrm{d} x_{2}^{2}+\mathrm{d} x_{3}^{2}+\mathrm{d} z^{2}\right) \\
\Theta^{12} & =-\eta, \quad G_{s}=g_{s} . \quad \mathrm{HI} / \mathrm{MR} \text { solution }
\end{aligned}
$$

more generally (should also hold mCYBE)

$$
G^{M N}=e_{m}^{M} e_{n}^{N} \eta^{m n}, \quad \Theta^{M N}=2 \eta e_{m}^{M} e_{n}^{N} \lambda^{m n}
$$

let us consider Drinfeld twists of Poincare subalgebra
can formulate QFT on NC spacetime - Moyal star product

$$
\begin{aligned}
(f \star g)(x) & =f(x) \mathrm{e}^{\frac{i}{2} \Theta^{\mu \nu} \overleftarrow{\partial_{\mu}} \vec{\partial}_{\nu}} g(x), \\
\quad[f, g]_{\star} & :=i \Theta^{\mu \nu} \partial_{\mu} f \partial_{\nu} g+\mathcal{O}\left(\partial^{3} f, \partial^{3} g\right)
\end{aligned}
$$

Moyal bracket not Lorentz invariant - puzzle
Chaichian, Kulish, Nishijima, Tureanu (2004)
co-product of Hopf-Poincare algebra deformed
simplest twist of Poincare algebra

$$
\mathcal{F}=e^{-2 i \eta r}=e^{\frac{i}{2} \Theta^{\mu \nu} P_{\mu} \wedge P_{\nu}}
$$

other Poincare twists

HI/MR twist is simplest - constant NC parameter

Poincare twists (P, M)- linear, quadratic x -dependence

$$
\begin{aligned}
r & =\frac{1}{2} M_{01} \wedge M_{23} \\
\Theta^{02} & =-2 \sinh \frac{\eta}{2} \cdot x^{1} x^{3}, \quad \Theta^{03}=2 \sinh \frac{\eta}{2} \cdot x^{1} x^{2} \\
\Theta^{12} & =-2 \sinh \frac{\eta}{2} \cdot x^{0} x^{3}, \quad \Theta^{13}=2 \sinh \frac{\eta}{2} \cdot x^{0} x^{2}
\end{aligned}
$$

agrees with our proposal at leading order
more generally, (new) conformal twists

$$
\begin{gathered}
r_{1}=\frac{1}{2} D \wedge K_{1} \\
\text { e.g. } \quad r_{2}=\frac{1}{2}\left(P_{0}-P_{3}\right) \wedge\left(D+M_{03}\right), \\
\Theta^{1 \mu}=\eta x^{\mu}\left(x_{\nu} x^{\nu}+z^{2}\right), \quad \Theta^{1 z}=\eta z\left(x_{\nu} x^{\nu}+z^{2}\right) \\
\Theta^{-+}=-4 \eta x^{+}, \quad \Theta^{-i}=-2 \eta x^{i}, \quad \Theta^{-z}=-2 \eta z \\
x^{ \pm}=x^{0} \pm x^{3}
\end{gathered}
$$

for AdS_{5} can be proved $\Theta^{M N}=-2 \eta r^{M N}$

same result from conformal twist

$$
\begin{gathered}
\mathrm{d} s^{2}=-\mathrm{d} x^{+} \mathrm{d} x^{-}+\left(\mathrm{d} x^{1}\right)^{2}+\left(\mathrm{d} x^{2}\right)^{2} \\
P_{0}-P_{3}=-2 \partial_{-}, \quad D+M_{03}=-2 x^{+} \partial_{+}-x^{1} \partial_{1}-x^{2} \partial_{2} \\
f(x) \star g(x)=m \circ \mathcal{F}(f(x) \otimes g(x))=m \circ e^{-2 i \eta r_{2}}(f(x) \otimes g(x)) \\
=m \circ e^{-i \eta\left(P_{0}-P_{3}\right) \wedge\left(D+M_{03}\right)}(f(x) \otimes g(x)) \\
\\
{\left[x^{\mu}, x^{\nu}\right]_{\star}=x^{\mu} \star x^{\nu}-x^{\nu} \star x^{\mu}} \\
=-i \eta\left(x^{+} \eta^{\mu+} \eta^{\nu-}-x^{1} \eta^{\mu+} \eta^{\nu 1}-x^{2} \eta^{\mu+} \eta^{\nu 1}-\mu \leftrightarrow \nu\right)
\end{gathered}
$$

if r-matrices are generally non-Abelian

led to generalized supergravity

Arutyunov, Frolov, Hoare, Roiban, Tseytlin (2015)

$$
\begin{gathered}
R_{M N}-\frac{1}{4} H_{M K L} H_{N}{ }^{K L}-T_{M N}+D_{M} X_{N}+D_{N} X_{M}=0, \\
\frac{1}{2} D^{K} H_{K M N}+\frac{1}{2} F^{K} F_{K M N}+\frac{1}{12} F_{M N K L P} F^{K L P}=X^{K} H_{K M N}+D_{M} X_{N}-D_{N} X_{M}, \\
R-\frac{1}{12} H^{2}+4 D_{M} X^{M}-4 X_{M} X^{M}=0 \\
X_{M} \equiv I_{M}+Z_{M}, \\
Z_{M}=\partial_{M} \Phi-B_{M N} I^{N}
\end{gathered}
$$

I is Killing - supergravity recovered when I vanishes
efforts to recover from DFT/EFT

symmetry principle

Λ-symmetry $\quad B \rightarrow B+\mathrm{d} \Lambda \quad$ supergravity invariant

$$
\begin{gathered}
S_{\mathrm{DBI}}=\int e^{-\Phi} \sqrt{\operatorname{det}(g+B+\mathrm{d} A)} \quad B \rightarrow B+\mathrm{d} \Lambda, \quad A \rightarrow A-\Lambda \\
\frac{1}{G_{s}} \sqrt{\operatorname{det} G}=\frac{e^{-\Phi}}{g_{s}} \sqrt{\operatorname{det}(g+B)} \\
0=\delta_{\Lambda} S_{\mathrm{tot}}=\delta_{\Lambda} S_{\mathrm{sugra}}+\delta_{\Lambda} S_{\mathrm{DBI}}=\int \sqrt{G} \nabla_{M}^{(G)} \Theta^{M N} \Lambda_{N}
\end{gathered}
$$

$$
\nabla_{M} \Theta^{M N}=I^{N}
$$

an example

$$
r=\frac{1}{2} K_{1} \wedge D
$$

$$
\begin{aligned}
\mathrm{d} s^{2} & =\frac{z^{2}\left[\mathrm{~d} t^{2}+\mathrm{d} x_{1}^{2}+\mathrm{d} z^{2}\right]+\eta^{2}\left(x_{1}^{2}+t^{2}+z^{2}\right)^{2}\left(\mathrm{~d} t-t z^{-1} \mathrm{~d} z\right)^{2}}{z^{4}+\eta^{2}\left(t^{2}+z^{2}\right)\left(x_{1}^{2}+t^{2}+z^{2}\right)^{2}} \\
& +\frac{t^{2}\left(-\mathrm{d} \phi^{2}+\cosh ^{2} \phi \mathrm{~d} \theta^{2}\right)}{z^{2}}+\mathrm{d} s^{2}\left(S^{5}\right), \\
B & =\frac{\eta\left(x_{1}^{2}+t^{2}+z^{2}\right)}{z^{4}+\eta^{2}\left(t^{2}+z^{2}\right)\left(x_{1}^{2}+t^{2}+z^{2}\right)^{2}} \mathrm{~d} x_{1} \wedge(t \mathrm{~d} t+z \mathrm{~d} z), \\
\Phi & =\frac{1}{2} \log \left[\frac{z^{4}}{z^{4}+\eta^{2}\left(t^{2}+z^{2}\right)\left(x_{1}^{2}+t^{2}+z^{2}\right)^{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
x_{0} & =t \sinh \phi, \\
x_{2} & =t \cosh \phi \cos \theta, \\
x_{3} & =t \cosh \phi \sin \theta
\end{aligned}
$$

an example

special conformal symmetry

$$
\begin{aligned}
I & =\eta\left[\left(t^{2}-x_{1}^{2}+z^{2}\right) \partial_{x_{1}}-2 x_{1}\left(t \partial_{t}+z \partial_{z}\right)\right] \\
\Theta^{t x_{1}} & =\eta t\left(t^{2}+x_{1}^{2}+z^{2}\right), \quad \Theta^{z x_{1}}=\eta z\left(t^{2}+x_{1}^{2}+z^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\nabla_{M} \Theta^{M x_{1}} & =\eta\left(t^{2}-x_{1}^{2}+z^{2}\right)=I^{x_{1}} \\
\nabla_{M} \Theta^{M t} & =-2 \eta x_{1} t=I^{t} \\
\nabla_{M} \Theta^{M z} & =-2 \eta x_{1} z=I^{z}
\end{aligned}
$$

picture works for YB deformations based on mCYBE
take the $A B F$ solution

$$
\begin{gathered}
g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=-\frac{\left(1+\rho^{2}\right) \mathrm{d} t^{2}}{1-\kappa^{2} \rho^{2}}+\frac{\mathrm{d} \rho^{2}}{\left(1+\rho^{2}\right)\left(1-\kappa^{2} \rho^{2}\right)}+\frac{\rho^{2} \mathrm{~d} \zeta^{2}}{1+\kappa^{2} \rho^{4} \sin ^{2} \zeta} \\
+\frac{\rho^{2} \cos ^{2} \zeta \mathrm{~d} \psi_{1}^{2}}{1+\kappa^{2} \rho^{4} \sin ^{2} \zeta}+\rho^{2} \sin ^{2} \zeta \mathrm{~d} \psi_{2}^{2}, \\
B=-\frac{\kappa \rho^{4} \sin (2 \zeta)}{2\left(1+\kappa^{2} \rho^{4} \sin ^{2} \zeta\right)} \mathrm{d} \zeta \wedge \mathrm{~d} \psi_{1}-\frac{\kappa \rho}{1-\kappa^{2} \mathrm{~d} \rho} \mathrm{~d} t \wedge \mathrm{~d} \rho \\
\Theta^{\zeta \psi_{1}}=\kappa \tan \zeta, \quad \Theta^{t \rho}=-\kappa \rho, \\
I^{t}=4 \kappa, \quad I^{\psi_{1}}=2 \kappa
\end{gathered}
$$

what is the connection to DFT/EFT?
recent interesting paper - 1705.0ry116 Sakamoto, Sakatani, Yoshida
beta-twists from generalized diffeomorphisms
what they did not tell you (to maintain mystery?)

$$
\begin{gathered}
\beta=\Theta \\
f_{a b}^{a}=Q_{a}^{a b}=0 \\
R^{a b c}=3 \Theta_{a} \Theta^{a b}=0 \\
R^{d[a} \partial_{d} \Theta^{b c]}
\end{gathered}
$$

is there a nice DFT equivalent for Killing vector I?
homogeneous YB deformations of AdS and conformal twists have same algebraic structure
open string metric is undeformed

NC parameter is the r-matrix
NC parameter encodes information about YB deformation, e. g. whether a supergravity solution, or not
same picture holds for r-matrix solutions to mCYBE conformal twists of CFT Araujo, oc, Sheikh-Jabbari
integrability of NC deformations of $\mathrm{N}=4 \mathrm{sYM}$

