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|. Introduction & motivation: NATD in AdS/CFT

Non-Abelian T-duality (NATD) has proved to be very useful
as a solution generating technique in AdS/CFT

Its realization in the CFT remains however quite unknown

Interestingly, some examples suggest that, contrary to its
Abelian counterpart, NATD may change the CFT:

NATD of AdSs; x S° : Gaiotto & Maldacena geometry
(dual to N=2 SCFTs (Gaiotto theories))

NATD of AdSs x T! : Bah, Beem, Bobev,Wecht geometry
(dual to N=1I SCFTs (Sicilian quivers))

See however Jesus Montero’s talk



Indeed, contrary to its Abelian counterpart, NATD has not
been proven to be a symmetry of string theory

Applying NATD to an AdS/CFT pair, a new AdS background is
generated which may have associated a different CFT dual,
which, moreover, may only exist in the strong coupling regime

New way to describe new CFTs through AdS/CFT
In all examples the CFTs seem to originate from M5-branes

The focus of this talk will be on the interplay between NATD
and AdS/CFT, taking the CFT side
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2. Basics of NATD: i) NATD vs Abelian T-duality

Using the string sigma-model Rocek and Verlinde proved that Abelian
T-duality is a symmetry to all orders in gs; and o'

The extension to arbitrary wordsheets determines the global
properties of the dual variable:

~

T
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In the non-Abelian case neither proof works

Variables living in a group manifold are substituted by variables
living in its Lie algebra
NAT
geSU(2) — xeR?
In the absence of global information the new variables remain non-
compact



In more detail:

Rocek and Verlinde’s formulation of Abelian T-duality for ST
in a curved background (Buscher’88) :

1
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i) ldentify an Abelian isometry: X* = {6, X“} such that
0 — 0 + ¢ and Ogp(backgrounds) =0

i) Gauge the isometry: df — DO =dh+ A
A non-dynamical gauge field/ 0A = —de




iii) Add a Lagrange multiplier term: 6 dA , such that

/Dé — dA =0 = A exact
(in a topologically trivial worldsheet)

+ fix the gauge: A =0 — Original theory

iv) Integrate the gauge field
+ fix the gauge: 9 =0 — Dual sigma model:
{0, X%} - {0, X} and

(g, Bs, gg) given by Buscher’s formulae

- Conformal invariance! Original and dual theories can be
obtained from the gauged Lagrangian either gauging a
vectorial or an axial combination of chiral currents



- Arbitrary worldsheets! (symmetry of string perturbation
theory):

Large gauge transformations: 7{ de =2mn; n € Z
B

To fix them:

Multivalued Lagrange multiplier: %dé =2tm; m € Z
such that v

/ lexact] - dA =0 + / [harmonic] = A exact

This fixes the periodicity of the dual variable



Non-Abelian T-duality

(De la Ossa, Quevedo’93)

Non-Abelian continuous isometry: X™ — ¢7"X", g€ G

) Gauge it dX™ — DX =dX™ + AT'X"
A € Lie algebra of G A— g(A+d)g

ii) Add a Lagrange multiplier term: Tr(xF)
F=dA—-—ANA
X € LieAlgebra of G, x — gxg "

’

such that

/DX — FF=0 = A exact
(in a topologically trivial worldsheet)

+ fix the gauge: A =0 = Original theory



iii) Integrate the gauge field + fix the gauge — Dual theory

However:

* Non-involutive
* Higher genus generalization? Set to zero W, = pPeb A
* Global properties?

For SU(2): x € R’: Global completion of R??

* Conformal invariance not proved in general (only vectorial gauging)
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iii) Integrate the gauge field + fix the gauge — Dual theory

However:

Non-involutive
Higher genus generalization? Set to zero W., = P edr 4
Global properties!?

For SU(2): x € R’: Global completion of R??

Conformal invariance not proved in general (only vectorial gauging)

True symmetry in String Theory?

Still useful as a solution generating technique



i) NATD as a solution generating technique

Need to know how the RR fields transform

Sfetsos and Thompson (2010) extended Hassan’s derivation in the

Abelian case:
Implement the relative twist between left and right movers in the

bispinor formed by the RR fields



3.The ST AdSs x S* background

AdSs x S°

|

N=4 SYM

<

NATD »

N=2 AdSs x S* € GM

|

N=2 SCFT

(Sfetsos, Thompson’|0)

- Gaiotto-Maldacena geometries encode the information

about the dual CFT

- Useful example to study the CFT realization of NATD




*Take the AdSs x S° background

ds® = d3,24ds5 + L? (da2 + sin® ad8? + cos”

Fy = 8L*sin acos® ada A dfS A Vol(S?’) + Hodge dual

*Dualize it w.r.t. one of the SU(2) symmetries

In spherical coordinates adapted to the remaining SU(2):

dp? L? cos? ap?
2 7.2 2( 7.2 | 2 2 2/ a2
ds® = dsygg, + L (da + sin” adf ) + [P + e +L4cos4ad8 (57)
3
By = P Vol(S?), e 2% = L? cos® a(L* cos a + p?)

p? + L4 cos? o

Fy, = L*sin v cos® adar A dps, F, = By A\ F5



* New Gaiotto-Maldacena geometry

*VWhat about p?

*Background perfectly smooth for all p € RT
*No global properties inferred from the NATD
*How do we interpret the running of p to infinity in the CFT?

oSingular at o = 7/2 where the original S° shrinks (due to
the presence of NS5-branes)

This is the tip of a cone with S* boundary —;

Large gauge transformations B, — By — nmVol(S?)
for pe[(n—1)r, nr]



This modifies the Page charges such that N, = nNg in each

[(n — 1)m, n7| interval

We have also Nj charge, such that every time we cross a 7

interval one unit of NS5 charge is created

This is compatible with a D4/NS5 brane set-up:

D4: RS p
NS5: RY o,

D4

2 D4

NS5

27

NS5

n D4

NS5

(n—1)m

(in units of Ng)

niw



These D4/NS5 brane set-ups realize 4d N = 2 field theories
with gauge groups connected by bifundamentals (Witten’97)

Having the D4 finite extension in the p direction, the field

theory living in them is 4d at low energies, with effective gauge

coupling: .

— ™~ Pn+1 — Pn
94

For I, D4-branes in [pn,pn+1] the gauge group is SU(I,,)
and there are (I,_1,1,) and (I,,l,+1) hypermultiplets.

The field theory is then described by a quiver



The beta-function for each SU(l,,) gauge theory vanishes if
Zln — ln—l—l + ln—l

This condition is satisfied by our brane configuration, which has

ln — TLNG

It corresponds to an infinite linear quiver:

This is in agreement with Gaiotto-Maldacena



3.1 Short review of GM geometries

Generic backgrounds dual to 4d N=2 SCFTs.
Described in terms of a function V' (o, 7) solving a Laplace eq.
with a given charge density \(n) at ¢ =0

Osl00,V] + 002V =0,  Aln) = 00,V (0, 7)|o0

Regularity and quantization of charges impose strong constraints
on the allowed form of A(7n), which encodes the information of

the dual CFT:

- A SU(n;) gauge group is associated to each integer value of
n=mn; ,with n; given by \(n;) = n;

- A kink in the line profile corresponds to extra k; fundamentals
attached to the gauge group at the node n;



For example:
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Interesting for our work:

Following Reid-Edwards and Stefanski’ 10 (see also Aharony, Berdichevsky,
Berkooz'12), the MN solution can be taken as a building block

for N=2 llA solutions: Any allowed profile of the line charge
density can be viewed as a sum of suitably re-scaled and shifted

>\MN proﬁles

We can use this to complete the NATD solution



3.2.The NATD as a GM geometry

GM geometry with  A(n) =1, n~p, o =sina
A(n) = n = Infinite linear quiver, consistent with the

brane set-up: N

A

>

U

Next, we will complete the quiver and, using holography,
complete the geometry (both for large p and at the
singularity)

Example in which the field theory informs the geometry



A natural way to complete the quiver is by adding fundamentals:

-------------

This completion reproduces correctly the value of the holographic
central charge:

From the geometry:
N, 62 N g (Klebanov, Kutasov,

UL
CNATD ~ Vint ~ f(m)dn =

; 19 Murugan’08)
: — —(2n, (Shapere,
In '.che.ﬁeld theory we can use: ¢ 12( Ny + 1) Tachikawa’08)
This gives
N2 3 1 ) 2 N2 3
c= 67 [1——_ 5 T 2 }N S
12 D p2N6 N6p3 12



In the geometry, the completed quiver corresponds to
A

A

¥ flavor group

This charge density can be obtained as a superposition of MN
solutions:
This superposition completes the

V(n,o) NATD solution, and removes the
singularity

—_ /=1 Thesingularity can be interpreted
as a result of cutting the space
n at 0 =1



Can we find other examples where the NATD solution belongs
to a classification with known field theory dual, to check these
ideas!?



4. The AdS; x S? x 5% example

Non-Abelian T-duality on a reduction to IIA of AdSs x S7/Z

— 1IB AdS; x S* x S* background, N=4 SUSY, in the
classification of D’Hoker, Estes and Gutperle’07

Analysis of charges: (D3,NS5,D5) brane set-up:

NS5 NS5 NS5 NS5 NS5

D5 D5 D5
IR | IR X R X
D3 7
SEEE I B D3
0 T 2m (n—1)m n

_—
r

Gaiotto and Witten’08:  3d N=4 Tpf’(N) theories



Tf(N) field theories flow to CFTs in the infrared if the partitions
satisfy certain conditions, that are satisfied by our brane set-up

Nps 2Nps 3Nps —@ .........

kO 2]60 3]€0 nko

The holographic duals of these CFTs are known (Assel, Bachas, Estes and
Gomis’| 1)

They belong to the general class of AdS, x S? x S* geometries in
D’Hoker, Estes and Gutperle’07

These are fibrations of AdS; x S* x S* over a Riemann surface
that can be completely determined from two harmonic functions
hl(Z, 2), hg(z, 5)



Assel, Bachas, Estes and Gomis’| | showed how to determine these
functions from the (D3, NS5, D5) brane set-ups associated to
TP(N) theories:

1 <& 12 + 0, — 2
hlz—ZZNngogtaﬂh( 2 ; ) 4 cc
a=1
1 P ~ Z—Sb
hgz—ZZNglogtanh( ) + cc
b=1
5o Oy D
y:W/Q ® ® . ® y
y=0 ° ° ° ' ’
823 5]3_1 2 51

The positions of the D5 and NS5 branes are determined, in turn,
from the linking numbers of the configuration:

. Lol
0p — 0 = logtan(g Nb)




The hi, ho functions computed from our completed brane set-up

agree with those associated to the non-Abelian T-dual geometry
in the region z,y ~ 0 ,far from the location of the branes

The non-Abelian T-dual arises as a result of zooming-in in a
particular region of the completed solution

This completion smoothes out the singularities and defines the
geometry globally



5. Conclusions

- NATD geometries dual to infinite linear quivers

— Different CFTs after NATD
D3 — (D4,NS5) (D2,D6) — (D3,NS5,D5)

- Quivers completed, and thereof the geometries, to define
the CFTs

- NATD as a zooming-in in a patch of the completed geometry

In fact, Penrose limit of superstar solution (see C. Nunez’s talk)

- General pattern?

AdSs x TV — (D4,NS5,NS5’) brane set-up
(see ). Montero’s talk)

Dual CFTs originating from M5-branes



AdSg x S*: (D4,D8) system — (D5,NS5,D7)

AdSs x S* 1IB solutions recently classified by D’Hoker, Gutperle,
Karch and Uhlemann’l 6



THANKS!



