Non-Abelian T-duality and Linear Quivers

Yolanda Lozano (U. Oviedo)

"Recent Advances in T/U-dualities and Generalized Geometries" Zagreb, June 2017

I. Introduction \& motivation: NATD in AdS/CFT

Non-Abelian T-duality (NATD) has proved to be very useful as a solution generating technique in AdS/CFT

Its realization in the CFT remains however quite unknown Interestingly, some examples suggest that, contrary to its Abelian counterpart, NATD may change the CFT:

NATD of $A d S_{5} \times S^{5}$: Gaiotto \& Maldacena geometry (dual to $\mathrm{N}=2$ SCFTs (Gaiotto theories))

NATD of $\operatorname{AdS} S_{5} \times T^{1,1}:$ Bah, Beem, Bobev, Wecht geometry (dual to $\mathrm{N}=\mathrm{I}$ SCFTs (Sicilian quivers))
See however Jesús Montero's talk

Indeed, contrary to its Abelian counterpart, NATD has not been proven to be a symmetry of string theory

Applying NATD to an AdS/CFT pair, a new AdS background is generated which may have associated a different CFT dual, which, moreover, may only exist in the strong coupling regime

New way to describe new CFTs through AdS/CFT In all examples the CFTs seem to originate from M5-branes

The focus of this talk will be on the interplay between NATD and AdS/CFT, taking the CFT side

Based on Y.L., Carlos Núñez, I603.04440

And also: - Y.L., Niall Macpherson, Jesús Montero, Carlos Núñez, I609.0906I

- Y.L., Carlos Núñez, Salomón Zacarías, I703.004I7
- Georgios Itsios, Y.L., Jesús Montero, Carlos Núñez, I705.0966I

Outline:

I. Introduction and motivation: NATD in AdS/CFT
2. Basics of NATD: i) NATD vs Abelian T-duality
ii) NATD as a solution generating technique
3.The Sfetsos-Thompson $A d S_{5} \times S^{2}$ background
3.I. Short review about Gaiotto-Maldacena geometries 3.2. ST as a GM geometry
4.The $A d S_{4} \times S^{2} \times S^{2}$ example
5. Conclusions

2. Basics of NATD: i) NATD vs Abelian T-duality

Using the string sigma-model Rocek and Verlinde proved that Abelian T-duality is a symmetry to all orders in g_{s} and α^{\prime}

The extension to arbitrary wordsheets determines the global properties of the dual variable:

$$
\theta \in[0,2 \pi] \quad \xrightarrow{\mathrm{T}} \quad \tilde{\theta} \in[0,2 \pi]
$$

In the non-Abelian case neither proof works
Variables living in a group manifold are substituted by variables living in its Lie algebra

$$
g \in S U(2) \quad \xrightarrow{\text { NAT }} \quad \chi \in \mathbb{R}^{3}
$$

In the absence of global information the new variables remain noncompact

In more detail:
Rocek and Verlinde's formulation of Abelian T-duality for ST in a curved background (Buscher'88) :

$$
S=\frac{1}{4 \pi \alpha^{\prime}} \int\left(g_{\mu \nu} d X^{\mu} \wedge * d X^{\nu}+B_{\mu \nu} d X^{\mu} \wedge d X^{\nu}\right)+\frac{1}{4 \pi} \int R^{(2)} \phi
$$

i) Identify an Abelian isometry: $X^{\mu}=\left\{\theta, X^{\alpha}\right\}$ such that

$$
\theta \rightarrow \theta+\epsilon \text { and } \partial_{\theta}(\text { backgrounds })=0
$$

ii) Gauge the isometry: $\quad d \theta \rightarrow D \theta=d \theta+A$
A non-dynamical gauge field $/ \delta A=-d \epsilon$
iii) Add a Lagrange multiplier term: $\tilde{\theta} d A$, such that

$$
\int \mathcal{D} \tilde{\theta} \rightarrow d A=0 \Rightarrow \underset{\text { (in a topol }}{A \text { exact }}
$$

(in a topologically trivial worldsheet)

+ fix the gauge: $A=0 \rightarrow$ Original theory
iv) Integrate the gauge field
+ fix the gauge: $\quad \theta=0 \rightarrow$ Dual sigma model:
$\left\{\theta, X^{\alpha}\right\} \rightarrow\left\{\tilde{\theta}, X^{\alpha}\right\}$ and
$\left(\tilde{g}, \tilde{B}_{2}, \tilde{\phi}\right)$ given by Buscher's formulae
- Conformal invariance? Original and dual theories can be obtained from the gauged Lagrangian either gauging a vectorial or an axial combination of chiral currents
- Arbitrary worldsheets? (symmetry of string perturbation theory):

(a)

(b)

Large gauge transformations: $\quad \oint_{\gamma} d \epsilon=2 \pi n ; n \in \mathbb{Z}$
To fix them:
Multivalued Lagrange multiplier: $\quad \oint_{\gamma} d \tilde{\theta}=2 \pi m ; m \in \mathbb{Z}$
such that

$$
\int[\text { exact }] \rightarrow d A=0+\int[\text { harmonic }] \Rightarrow A \text { exact }
$$

This fixes the periodicity of the dual variable

Non-Abelian T-duality

(De la Ossa, Quevedo'93)
Non-Abelian continuous isometry: $\quad X^{m} \rightarrow g_{n}^{m} X^{n}, g \in G$
i) Gauge it: $\quad d X^{m} \rightarrow D X^{m}=d X^{m}+A_{n}^{m} X^{n}$

$$
A \in \text { Lie algebra of } G \quad A \rightarrow g(A+d) g^{-1}
$$

ii) Add a Lagrange multiplier term: $\operatorname{Tr}(\chi F)$

$$
F=d A-A \wedge A
$$

$\chi \in$ Lie Algebra of $G, \quad \chi \rightarrow g \chi g^{-1}$, such that
$\int \mathcal{D} \chi \rightarrow F=0 \Rightarrow \begin{aligned} & A \text { exact } \\ & \text { (in a topologically trivial worldsheet) }\end{aligned}$

+ fix the gauge: $A=0 \Rightarrow$ Original theory
iii) Integrate the gauge field + fix the gauge \rightarrow Dual theory

However:

- Non-involutive
- Higher genus generalization? Set to zero $W_{\gamma}=P e^{\oint_{\gamma} A}$
- Global properties?

For $\operatorname{SU}(2): \chi \in \mathbb{R}^{3}:$ Global completion of \mathbb{R}^{3} ?

- Conformal invariance not proved in general (only vectorial gauging)
iii) Integrate the gauge field + fix the gauge \rightarrow Dual theory

However:

- Non-involutive
- Higher genus generalization? Set to zero $W_{\gamma}=P e^{\oint_{\gamma} A}$
- Global properties?

For $\operatorname{SU}(2): \quad \chi \in \mathbb{R}^{3}$: Global completion of \mathbb{R}^{3} ?

- Conformal invariance not proved in general (only vectorial gauging)

True symmetry in String Theory?

iii) Integrate the gauge field + fix the gauge \rightarrow Dual theory However:

- Non-involutive
- Higher genus generalization? Set to zero $W_{\gamma}=P e^{\oint_{\gamma} A}$
- Global properties?

For $\operatorname{SU}(2): \chi \in \mathbb{R}^{3}:$ Global completion of \mathbb{R}^{3} ?

- Conformal invariance not proved in general (only vectorial gauging)

> True symmetry in String Theory?

Still useful as a solution generating technique
ii) NATD as a solution generating technique

Need to know how the RR fields transform
Sfetsos and Thompson (2010) extended Hassan's derivation in the Abelian case:
Implement the relative twist between left and right movers in the bispinor formed by the RR fields

3. The ST $A d S_{5} \times S^{2}$ background

$$
\begin{aligned}
& A d S_{5} \times S^{5} \\
& \uparrow \quad \text { NATD } \\
& N=4 S Y M \\
& \mathrm{~N}=2 \quad A d S_{5} \times S^{2} \in \mathrm{GM} \\
& \text { NATD } \\
& \text { N=2 SCFT }
\end{aligned}
$$

(Sfetsos, Thompson'IO)

- Gaiotto-Maldacena geometries encode the information about the dual CFT
- Useful example to study the CFT realization of NATD
- Take the $A d S_{5} \times S^{5}$ background

$$
\begin{aligned}
& d s^{2}=d s_{A d S_{5}}^{2}+L^{2}\left(d \alpha^{2}+\sin ^{2} \alpha d \beta^{2}+\cos ^{2}\left(d s^{2}\left(S^{3}\right)\right.\right. \\
& F_{5}=8 L^{4} \sin \alpha \cos ^{3} \alpha d \alpha \wedge d \beta \wedge \operatorname{Vol}\left(S^{3}\right)+\text { Hodge dual }
\end{aligned}
$$

- Dualize it w.r.t. one of the $S U(2)$ symmetries

In spherical coordinates adapted to the remaining $S U(2)$:

$$
\begin{gathered}
d s^{2}=d s_{A d S_{5}}^{2}+L^{2}\left(d \alpha^{2}+\sin ^{2} \alpha d \beta^{2}\right)+\frac{d \rho^{2}}{L^{2} \cos ^{2} \alpha}+\frac{L^{2} \cos ^{2} \alpha \rho^{2}}{\rho^{2}+L^{4} \cos ^{4} \alpha} d s^{2}\left(S^{2}\right) \\
B_{2}=\frac{\rho^{3}}{\rho^{2}+L^{4} \cos ^{4} \alpha} \operatorname{Vol}\left(S^{2}\right), \quad e^{-2 \phi}=L^{2} \cos ^{2} \alpha\left(L^{4} \cos ^{4} \alpha+\rho^{2}\right) \\
F_{2}=L^{4} \sin \alpha \cos ^{3} \alpha d \alpha \wedge d \beta, \quad F_{4}=B_{2} \wedge F_{2}
\end{gathered}
$$

- New Gaiotto-Maldacena geometry
-What about ρ ?
- Background perfectly smooth for all $\rho \in \mathbb{R}^{+}$
- No global properties inferred from the NATD
-How do we interpret the running of ρ to infinity in the CFT?
- Singular at $\alpha=\pi / 2$ where the original S^{3} shrinks (due to the presence of NS5-branes)

This is the tip of a cone with S^{2} boundary \rightarrow
Large gauge transformations $B_{2} \rightarrow B_{2}-n \pi \operatorname{Vol}\left(S^{2}\right)$
for $\rho \in[(n-1) \pi, n \pi]$

This modifies the Page charges such that $N_{4}=n N_{6}$ in each $[(n-1) \pi, n \pi]$ interval

We have also N_{5} charge, such that every time we cross a π interval one unit of NS5 charge is created

This is compatible with a D4/NS5 brane set-up:

These D4/NS5 brane set-ups realize 4d $\mathcal{N}=2$ field theories with gauge groups connected by bifundamentals (Witten'97)

Having the D4 finite extension in the ρ direction, the field theory living in them is 4 d at low energies, with effective gauge coupling:

$$
\frac{1}{g_{4}^{2}} \sim \rho_{n+1}-\rho_{n}
$$

For l_{n} D4-branes in $\left[\rho_{n}, \rho_{n+1}\right.$] the gauge group is $S U\left(l_{n}\right)$ and there are $\left(l_{n-1}, l_{n}\right)$ and $\left(l_{n}, l_{n+1}\right)$ hypermultiplets.

The field theory is then described by a quiver

The beta-function for each $S U\left(l_{n}\right)$ gauge theory vanishes if

$$
2 l_{n}=l_{n+1}+l_{n-1}
$$

This condition is satisfied by our brane configuration, which has $l_{n}=n N_{6}$

It corresponds to an infinite linear quiver:

This is in agreement with Gaiotto-Maldacena

3.I Short review of GM geometries

Generic backgrounds dual to 4d N=2 SCFTs.
Described in terms of a function $V(\sigma, \eta)$ solving a Laplace eq. with a given charge density $\lambda(\eta)$ at $\sigma=0$

$$
\partial_{\sigma}\left[\sigma \partial_{\sigma} V\right]+\sigma \partial_{\eta}^{2} V=0, \quad \lambda(\eta)=\left.\sigma \partial_{\sigma} V(\sigma, \eta)\right|_{\sigma=0}
$$

Regularity and quantization of charges impose strong constraints on the allowed form of $\lambda(\eta)$, which encodes the information of the dual CFT:

- A $S U\left(n_{i}\right)$ gauge group is associated to each integer value of $\eta=\eta_{i}$, with n_{i} given by $\lambda\left(\eta_{i}\right)=n_{i}$
- A kink in the line profile corresponds to extra k_{i} fundamentals attached to the gauge group at the node n_{i}

For example:

The Maldacena-Nunez solution:

Interesting for our work:
Following Reid-Edwards and Stefanski' IO (see also Aharony, Berdichevsky, Berkooz'l2), the MN solution can be taken as a building block for $\mathrm{N}=2$ IIA solutions: Any allowed profile of the line charge density can be viewed as a sum of suitably re-scaled and shifted $\lambda_{M N}$ profiles

We can use this to complete the NATD solution

3.2. The NATD as a GM geometry

GM geometry with $\quad \lambda(\eta)=\eta, \eta \sim \rho, \sigma=\sin \alpha$ $\lambda(\eta)=\eta \Rightarrow$ Infinite linear quiver, consistent with the brane set-up:

Next, we will complete the quiver and, using holography, complete the geometry (both for large ρ and at the singularity)

Example in which the field theory informs the geometry

A natural way to complete the quiver is by adding fundamentals:

This completion reproduces correctly the value of the holographic central charge:

From the geometry:

$$
c_{N A T D} \sim V_{\text {int }} \sim \int_{0}^{\eta_{*}} f(\eta) d \eta=\frac{N_{6}^{2} N_{5}^{3}}{12} \quad \begin{aligned}
& \text { (Klebanov, Kutasov }, \\
& \text { Murugan'08) }
\end{aligned}
$$

In the field theory we can use: $\quad c=\frac{1}{12}\left(2 n_{v}+n_{h}\right) \quad \begin{aligned} & \text { (Shapere, } \\ & \text { Tachikawa'08 })\end{aligned}$ This gives

$$
c=\frac{N_{6}^{2} p^{3}}{12}\left[1-\frac{1}{p}-\frac{2}{p^{2} N_{6}^{2}}+\frac{2}{N_{6}^{2} p^{3}}\right] \approx \frac{N_{6}^{2} p^{3}}{12}
$$

In the geometry, the completed quiver corresponds to

$$
\frac{\lambda(\eta)}{N_{6}}= \begin{cases}\eta & 0 \leq \eta \leq p-1 \\ (1-p) \eta+\left(p^{2}-p\right) & (p-1) \leq \eta \leq p\end{cases}
$$

This charge density can be obtained as a superposition of MN solutions:

This superposition completes the NATD solution, and removes the singularity

The singularity can be interpreted as a result of cutting the space at $\sigma=1$

Can we find other examples where the NATD solution belongs to a classification with known field theory dual, to check these ideas?

4. The $A d S_{4} \times S^{2} \times S^{2}$ example

Non-Abelian T-duality on a reduction to IIA of $A d S_{4} \times S^{7} / \mathbb{Z}_{k}$ \rightarrow IIB $A d S_{4} \times S^{2} \times S^{2}$ background, $\mathrm{N}=4$ SUSY, in the classification of D'Hoker, Estes and Gutperle'07

Analysis of charges: (D3,NS5,D5) brane set-up:

Gaiotto and Witten'08: $\quad 3 \mathrm{~d} \mathbf{N}=4 T_{\rho}^{\hat{\rho}}(N)$ theories
$T_{\rho}^{\hat{\rho}}(N)$ field theories flow to CFTs in the infrared if the partitions satisfy certain conditions, that are satisfied by our brane set-up

The holographic duals of these CFTs are known (Assel, Bachas, Estes and Gomis'll)

They belong to the general class of $A d S_{4} \times S^{2} \times S^{2}$ geometries in D'Hoker, Estes and Gutperle'07

These are fibrations of $A d S_{4} \times S^{2} \times S^{2}$ over a Riemann surface that can be completely determined from two harmonic functions $h_{1}(z, \bar{z}), h_{2}(z, \bar{z})$

Assel, Bachas, Estes and Gomis'।। showed how to determine these functions from the (D3, NS5, D5) brane set-ups associated to $T_{\rho}^{\hat{\rho}}(N)$ theories:

$$
\begin{aligned}
& h_{1}=-\frac{1}{4} \sum_{a=1}^{p} N_{5}^{a} \log \tanh \left(\frac{i \frac{\pi}{2}+\delta_{a}-z}{2}\right)+c c \\
& h_{2}=-\frac{1}{4} \sum_{b=1}^{\hat{p}} \hat{N}_{5}^{b} \log \tanh \left(\frac{z-\hat{\delta}_{b}}{2}\right)+c c \\
& y=\pi / 2 \xrightarrow{\delta_{0}} \begin{array}{llll}
\delta_{1} & \cdots & \delta_{p-1} & \delta_{p} \\
\bullet & \bullet
\end{array}
\end{aligned}
$$

The positions of the D5 and NS5 branes are determined, in turn, from the linking numbers of the configuration:
$\hat{\delta}_{b}-\delta_{a}=\log \tan \left(\frac{\pi}{2} \frac{l_{a} \hat{l}_{b}}{N}\right)$

The h_{1}, h_{2} functions computed from our completed brane set-up agree with those associated to the non-Abelian T-dual geometry in the region $x, y \sim 0$, far from the location of the branes

The non-Abelian T-dual arises as a result of zooming-in in a particular region of the completed solution

This completion smoothes out the singularities and defines the geometry globally

5. Conclusions

- NATD geometries dual to infinite linear quivers
\rightarrow Different CFTs after NATD
D3 \rightarrow (D4,NS5) $\quad(D 2, D 6) \rightarrow(D 3, N S 5, D 5)$
- Quivers completed, and thereof the geometries, to define the CFTs
- NATD as a zooming-in in a patch of the completed geometry In fact, Penrose limit of superstar solution (see C. Nuñez's talk)
- General pattern?

$$
\begin{aligned}
A d S_{5} \times T^{1,1} \rightarrow & (\text { D4,NS5,NS5') brane set-up } \\
& \text { (see J. Montero's talk) }
\end{aligned}
$$

Dual CFTs originating from M5-branes
$A d S_{6} \times S^{4}:(\mathrm{D} 4, \mathrm{D} 8)$ system $\rightarrow(\mathrm{D} 5, \mathrm{NS} 5, \mathrm{D} 7)$
$A d S_{6} \times S^{2}$ IIB solutions recently classified by D'Hoker, Gutperle,
Karch and Uhlemann' 16

THANKS!

