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N = 4 SYM
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Undeformed theory: symmetries and Lagrangian

Coset PSU(2, 2|4)/SO(4, 1)⇥ SO(5)

SU(2, 2)/SO(4, 1) ⇠ AdS5 SU(4)/SO(5) ⇠ S5



Undeformed theory: symmetries and Lagrangian
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Deforming the theory
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Generic properties if the deformed models

 Classically integrable

    -symmetry

 Hidden symmetry PSUq(2, 2|4)

 At least 8 non-trivial R’s, corresponding to Dynkin diagrams

For the rest of the talk we choose R which corresponds to the standard Dynkin diagram                                           

Other interesting choices are possible!



Bosonic sigma-model       
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Geometry
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                      RR fields

Mirror TBA Bound states

Large L solution of TBA

L ! 1: Bethe-Yang (all 1/L powers) + Lüscher corrections (leading e�mL corrections)

(standing 1-particle states) Lüscher ’86

(general N-particle states) Bajnok, Janik ’08
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Green-Schwarz Lagrangian at quadratic order in fermions
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Green-Schwarz Lagrangian at quadratic order in fermions

Reaching the canonical form of the GS Lagrangian

We found such a field redefinition! The terms with       and             came out correctly!! Hµ⌫⇢



Results for the RR-sector (ABF background)

We find that the lagrangian quadratic in fermions is written as the sum of a piece
contracted with the worldsheet metric and one contracted with the anti-symmetric tensor
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SUGRA eoms are not satisfied! 

Maldacena-Russo background is reproduced!
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[Matsumoto, Yoshida ’14] [Frolov, unpublished ’14]
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Kappa-symmetry

The deformed model has kappa-symmetry

The same field redefinitions bring the kappa-symmetry transformations to the standard form:

RR-couplings can be read off from the variation of the world-sheet metric and they are the same as found before!

Contradiction with                                                               and                                                                                  ? [Bergshoeff, Sezgin, Townsend, 0
86] [Grisaru, Howe, Mezincescu, Nilsson, Townsend 086]

kappa-symmetry implies supergravity constraints (eoms?)

Differential constraints can start showing up only from variations of quartic action in fermions! 

4



ˆds2 = �1� {2⇢2

1 + ⇢2
dˆt2 +

d⇢2

(1 + ⇢2)(1� {2⇢2)
+

d ˆ 2
1

⇢2 cos2 ⇣
+ (⇢⇣ + {⇢ tan ⇣ d ˆ 1)

2
+

d ˆ 2
2

⇢2 sin2 ⇣

+

1 + {2r2

1� r2
d'̂2

+

dr2

(1� r2)(1 + {2r2)
+

dˆ�21
r2 cos2 ⇠

+ (rd⇠ � {r tan ⇠dˆ�1)2 +
dˆ�22

r2 sin2 ⇠

B̂ = 0 , F̂1 = 0 = F̂3

ˆF5 =

4i
p
1 + {2

p
1 + ⇢2

p
1� r2

h�
dˆt+

{⇢d⇢
1� {2⇢2

�
^ d ˆ 2

⇢ sin ⇣
^ d ˆ 1

⇢ cos ⇣
^ (rd⇠ � {r tan ⇠dˆ�1) ^

� dr

1 + {2r2
+ {rd'̂

�

�
�
d'̂� {rdr

1 + {2r2
�
^ dˆ�2

r sin ⇠
^ dˆ�1

r cos ⇠
^ (⇢d⇣ + {⇢ tan ⇣d ˆ 1) ^

� d⇢

1� {2r2
+ {⇢dˆt

�i

HT background in the T-dualized model

ˆ� = �0 � 4{(ˆt+ '̂)� 2{( ˆ 1 � ˆ�1) + log

(1� {2⇢2)2(1 + {2r2)2

⇢2r2
p

1 + ⇢2
p
1� r2 sin 2⇣ sin 2⇠

An exact solution of IIB sugra (metric is non-diagonal)!

Flux          is imaginary !

Dilaton is linear in isometric coordinates !

Formally T-dualizing back is not possible!

F̂5

[Hoare, Tseytlin ’15]
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Scale invariance of the eta-deformed model 
                     NSNS-sector

[Frolov, Hoare, Roiban Tseytlin and G.A. ’15]



Scale vs Weyl Invariance for the bosonic sigma model

Scale invariance:                                                                                                                             or locally 

Z
Tµ
µ = 0

Weyl invariance: Tµ
µ = 0

Tµ
µ = @µK

µ
�gµ⌫ = ✏gµ⌫

�gµ⌫ = ✏(x)gµ⌫

Scale invariance conditions for the bosonic sigma model: 

�G
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4
HmklH

kl
n = �DmXn �DnXm

Weyl invariance conditions for the bosonic sigma model: 

Xm = @m� , Ym = 0

@m�� = 0 , �� ⌘ R� 1

12
H2

mnk + 4D2�� 4@m�@m�

Central charge identity (Curci-Paffuti identity)

� is a dilation

�B
mn ⌘ 1

2
DkHkmn + @mYn � @nYm

!

fields F that directly enter the GS action (1.2), 1

2

D2F + ... = X@F + F@X. Here the r.h.s.

stands for reparametrisation (Lie derivative) terms with the same X-vector as in (1.3),(1.4) and

dots indicate non-linear terms. In the special case when Xm = @m� these equations are the

consequence of the type IIB equations or Weyl invariance conditions, which are 1st order in

F = e��F , i.e. d ?F + ... = 0 and dF + ... = 0.6 These universal scale invariance conditions will

be satisfied by the ABF background for a particular choice of the vectors Xm and Ym.

To explain the origin of the second “I-modified” set of equations let us first ignore the R-R

fields and assume that there exists the following metric-dilaton background that solves the Weyl

invariance equations (i.e. Rmn + 2DmDn� = 0, �̄� =const)

d̂s
2

= e2â(x)[dŷ + Âµ(x)dx
µ]2 + gµ⌫(x)dx

µdx⌫ , �̂ = �c ŷ + f(x) . (1.8)

Here the metric has an isometry which is broken by the linear term in the dilaton (c = const).

Examples of such non-trivial solutions7 can be found by taking special limits of gauged WZW
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expressed in terms of the dual fields G,B will contain additional c-dependent terms obstructing
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general form Rmn +DmXn +DnXm = 0 with a special vector X given by8
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The dilaton equation �̄� = 0 for the original background (1.8) also can be rewritten as the

following generalised equation (cf. (1.6))9
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that is satisfied for the T-dual background.

The T-dual background (G,B) defines a sigma model that is scale invariant on a flat 2d
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trace of stress tensor T = �G
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m@axn+�B
mn✏

ab@axm@bxn is a total derivative T = raNa, Na =

2(Xm@axm+ ✏ b
a Ym@bxm) (up to terms proportional to the xm equations of motion). This cannot

be cancelled by a local counterterm (the classical dilaton term) unless Xm = @m�, Ym = 0

[18, 19], which is not the case for the ABF background. The sigma models based on (1.9)

6The relation between the 1st-order and 2nd-order equations on F has the same spirit as the relation between

the Dirac and the Klein-Gordon (squared Dirac) equations for spinor fields.
7It is important that dilaton has a linear term in a “warped” isometric direction of the metric, i.e. a(x), A

µ

(x)

are non-constant, otherwise the e↵ect of adding the linear dilaton would be trivial.
8The need to introduce the vector X

m

, which is not simply a gradient of a scalar, is therefore directly related

to the feature @
ŷ

�̂ = �c 6= 0.
9Note that this equation is not present in the list of scale invariance conditions, and Weyl invariance conditions

require this relation to hold with X
m

= @
m

� for some �.
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µ]2 + gµ⌫(x)dx

µdx⌫ , �̂ = �c ŷ + f(x) . (1.8)
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m
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ŷ

�̂ = �c 6= 0.
9Note that this equation is not present in the list of scale invariance conditions, and Weyl invariance conditions

require this relation to hold with X
m

= @
m

� for some �.
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Scale invariance conditions for the GS superstring

�G
mn ⌘ Rmn � 1

4
HmklH

kl
n � Tmn = �DmXn �DnXm

�B
mn ⌘ 1

2
DkHkmn +Kmn = XkHkmn + @mYn � @nYm

Tmn ⌘ 1

2
FmFn +

1

4
FmpqF pq

n +
1

4⇥ 4!
FmpqrsF pqrs

n � 1

2
Gmn

⇣1
2
FkFk +

1

12
FkpqFkpq

⌘!

Kmn ⌘ 1

2
FkFkmn +

1

12
FmnklpF klp

Fm ⌘ e�Fm , Fmnk ⌘ e�Fmnk , Fmnklp ⌘ e�Fmnklp

For                                               these equations follow from IIB supergravity action            Xm = @m� , Ym = 0
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X & Y of the eta-deformed model 

field equation (1.4), the FF term as in the II supergravity equations.10 This is expected as for

Xm = @m�, Ym = 0 the resulting equations are the Weyl invariance equations that should be

equivalent to the type II supergravity equations.

The scale invariance equations for the F-fields (to be discussed in section 4) will not, however,

have the familiar supergravity form of 1st-order equations for F (these should follow from the

Weyl invariance conditions). Instead they will be of 2nd order, D2F + ... = X-dependent terms,

and for Xm = @m� will be a consequence of the 1st-order supergravity equations.

Explicitly, the scale invariance conditions (1.3) and (1.4) generalise to

�Gmn ⌘ Rmn � 1

4

HmklHn
kl � Tmn = �DmXn �DnXm , (2.1)
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2

DkHkmn +Kmn = XkHkmn + @mYn � @nYm , (2.2)
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pq + 1
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12

FkpqFkpq) , (2.3)
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FkFkmn + 1

12

FmnklpFklp . (2.4)

Here Fm,Fmnk,Fmnklp are R-R fields of type IIB supergravity (for notation see Appendix A).

For Xm = @m�, Ym = 0 these equations follow from type IIB supergravity action (1.7). Tmn is

the familiar stress tensor that follows from the type IIB action (1.7) upon variation over Gmn.11

As was noted in [12], the existence of the HT solution related to the ABF background by T-

duality, suggests that the GS sigma model for the latter defined on a flat 2d background should

be scale invariant (at least to leading, 1-loop, order). Our key observation is that indeed there

exist vectors Xm and Ym such that eqs. (2.1) and (2.2) are satisfied for the ABF background

(B.1). The vector Xm required to satisfy (2.1) turns out to be (see Appendix B for notation)

X ⌘ Xmdxm = c
0

1 + ⇢2

1� {2⇢2
dt+ c

1

⇢2 sin2 ⇣ d 
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+ c
2

⇢2 cos2 ⇣

1 + {2⇢4 sin2 ⇣
d 

1

+c
3

1� r2

1 + {2r2
d'+ c
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r2 sin2 ⇠ d�
2

+ c
5
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d�

1

+
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d⇣ +
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�
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1� {2⇢2
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2

1 + {2⇢4 sin2 ⇣

�
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+
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2(1 + {2r4 sin2 ⇠)
d⇠ +

1

r

�
1� 3

1 + {2r2
+

2

1 + {2r4 sin2 ⇠

�
dr . (2.5)

Xm can be split in the following way

Xm = Im + Zm , DmIn +DnIm = 0 , DmIm = 0 , (2.6)

where Im =
P

5

i=0

ci(I(i))m. The index i labels the 6 isometric directions yi = (t, 
2

, 
1

,',�
2

,�
1

)

of the 10d ABF metric and ci are arbitrary constant coe�cients. (I(i))m are the 6 independent

commuting Killing vectors of the ABF background: the Lie derivatives of the G,B and F-fields

in [6] along Im all vanish. If we split the coordinates as xm = (yi, xµ) where µ = 1, 2, 3, 4 labels

the non-isometric directions xµ = (⇣, ⇢, ⇠, r), then

Im =
5X

i=0

�imciGii(x
µ) , Im = �imci = const , Zm = �µmZµ(x

⌫) . (2.7)

10For an argument supporting this in the NSR formalism see [17].
11Note that in the first (NS-NS) term of (1.7) one does not need to vary the

p
G factor as its contribution

vanishes after use of the dilaton equation �̄� = 0 in (1.6). This equation is not required for scale invariance.
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5X
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µ) , Im = �imci = const , Zm = �µmZµ(x
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10For an argument supporting this in the NSR formalism see [17].
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G factor as its contribution
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The vector Ym required to satisfy (2.2) on the ABF background is found to be12

Y ⌘ Ymdxm = 4{ 1 + ⇢2

1� {2⇢2
dt+ 2{ ⇢2 cos2 ⇣

1 + {2⇢4 sin2 ⇣
d 

1

+4{ 1� r2

1 + {2r2
d'� 2{ r2 cos2 ⇠

1 + {2r4 sin2 ⇠
d�

1

+
{2⇢4 sin 2⇣

2(1 + {2⇢4 sin2 ⇣)
d⇣ +

1

⇢

�
1� 3

1� {2⇢2
+

2({�1c
2

� 1)

1 + {2⇢4 sin2 ⇣

�
d⇢

+
{2r4 sin 2⇠

2(1 + {2r4 sin2 ⇠)
d⇠ +

1

r

�
1� 3

1 + {2r2
� 2({�1c

5

+ 1)

1 + {2r4 sin2 ⇠

�
dr . (2.8)

We observe that if we fix ci in (2.5) to the following specific values

c
0

= c
3

= 4{ , c
1

= c
4

= 0 , c
2

= �c
5

= 2{ , (2.9)

then Ym and Xm coincide

Ym = Xm . (2.10)

The next surprising observation is that for these specially chosen values of ci in (2.9) the vector

Xm satisfies also a direct generalisation (1.11) of the dilaton equation (1.6) (@m�! Xm):13

�̄X ⌘ R� 1

12

H2

mnk + 4DkXk � 4XkXk = 0 . (2.11)

As we shall show in Appendix C this �̄X satisfies the generalisation of the dilaton identity (1.6)

@m�̄
X = 0 . (2.12)

The reason for this particular choice of ci in (2.9) can be traced to the form of the linear terms

in the dilaton �̂ of the T-dual HT solution (B.3). That is the presence of the I-term in Xm in

(2.6) reflects the presence of the non-isometric linear terms in �̂. Therefore, these terms drive

the modification of the equations satisfied by the ABF background from their standard type II

form. In this sense the Zm part of Xm may be interpreted as the analog of @m� in the modified

equations. Indeed, one can check that for Im in (2.7) with ci chosen as in (2.9) the following

relation is satisfied

@mZn � @nZm + IkHkmn = 0 . (2.13)

This may be interpreted as a modified “dilaton Bianchi identity”: if Im is formally set to zero

then Zm becomes a derivative of a scalar, @m�. In general, assuming that Im represents an

isometry of the B-field, i.e. the Lie derivative (LIB)mn = Ik@kBmn + Bkn@mIk � Bkm@nIk

vanishes (modulo a gauge transformation term @mUn � @nUm), we can solve (2.13) as14

Zm = @m�+BkmIk , (2.14)

12Y is of course defined modulo a total derivative.
13Since D

n

Xn = D
µ

Zµ , XmX
m

= Gijc
i

c
j

+Gµ⌫Z
µ

Z
⌫

this equation does not depend on signs of c
i

.
14In general, we find Z

m

= @
m

� + B
km

Ik � U
m

. Under gauge transformations of B the vector U
m

transforms

so that � may be assumed to be invariant. In the particular case of the ABF background (B.1) with the B-field

chosen in the manifestly symmetric form we have U
m

= 0.
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We observe that if we fix ci in (2.5) to the following specific values

c
0

= c
3

= 4{ , c
1

= c
4

= 0 , c
2

= �c
5

= 2{ , (2.9)

then Ym and Xm coincide

Ym = Xm . (2.10)

The next surprising observation is that for these specially chosen values of ci in (2.9) the vector

Xm satisfies also a direct generalisation (1.11) of the dilaton equation (1.6) (@m�! Xm):13

�̄X ⌘ R� 1

12

H2

mnk + 4DkXk � 4XkXk = 0 . (2.11)

As we shall show in Appendix C this �̄X satisfies the generalisation of the dilaton identity (1.6)

@m�̄
X = 0 . (2.12)

The reason for this particular choice of ci in (2.9) can be traced to the form of the linear terms

in the dilaton �̂ of the T-dual HT solution (B.3). That is the presence of the I-term in Xm in

(2.6) reflects the presence of the non-isometric linear terms in �̂. Therefore, these terms drive

the modification of the equations satisfied by the ABF background from their standard type II

form. In this sense the Zm part of Xm may be interpreted as the analog of @m� in the modified

equations. Indeed, one can check that for Im in (2.7) with ci chosen as in (2.9) the following

relation is satisfied

@mZn � @nZm + IkHkmn = 0 . (2.13)

This may be interpreted as a modified “dilaton Bianchi identity”: if Im is formally set to zero

then Zm becomes a derivative of a scalar, @m�. In general, assuming that Im represents an

isometry of the B-field, i.e. the Lie derivative (LIB)mn = Ik@kBmn + Bkn@mIk � Bkm@nIk

vanishes (modulo a gauge transformation term @mUn � @nUm), we can solve (2.13) as14

Zm = @m�+BkmIk , (2.14)

12Y is of course defined modulo a total derivative.
13Since D

n

Xn = D
µ

Zµ , XmX
m

= Gijc
i

c
j

+Gµ⌫Z
µ

Z
⌫

this equation does not depend on signs of c
i

.
14In general, we find Z

m

= @
m

� + B
km

Ik � U
m

. Under gauge transformations of B the vector U
m

transforms

so that � may be assumed to be invariant. In the particular case of the ABF background (B.1) with the B-field

chosen in the manifestly symmetric form we have U
m

= 0.
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ABF analog of the dilation 
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relation is satisfied
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then Zm becomes a derivative of a scalar, @m�. In general, assuming that Im represents an

isometry of the B-field, i.e. the Lie derivative (LIB)mn = Ik@kBmn + Bkn@mIk � Bkm@nIk

vanishes (modulo a gauge transformation term @mUn � @nUm), we can solve (2.13) as14

Zm = @m�+BkmIk , (2.14)

12Y is of course defined modulo a total derivative.
13Since D

n
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Zµ , XmX
m
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j

+Gµ⌫Z
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Z
⌫

this equation does not depend on signs of c
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.
14In general, we find Z
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km
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. Under gauge transformations of B the vector U
m
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so that � may be assumed to be invariant. In the particular case of the ABF background (B.1) with the B-field

chosen in the manifestly symmetric form we have U
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= 0.
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We observe that if we fix ci in (2.5) to the following specific values
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= 4{ , c
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4

= 0 , c
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5

= 2{ , (2.9)

then Ym and Xm coincide

Ym = Xm . (2.10)

The next surprising observation is that for these specially chosen values of ci in (2.9) the vector

Xm satisfies also a direct generalisation (1.11) of the dilaton equation (1.6) (@m�! Xm):13

�̄X ⌘ R� 1

12

H2

mnk + 4DkXk � 4XkXk = 0 . (2.11)

As we shall show in Appendix C this �̄X satisfies the generalisation of the dilaton identity (1.6)

@m�̄
X = 0 . (2.12)

The reason for this particular choice of ci in (2.9) can be traced to the form of the linear terms

in the dilaton �̂ of the T-dual HT solution (B.3). That is the presence of the I-term in Xm in

(2.6) reflects the presence of the non-isometric linear terms in �̂. Therefore, these terms drive

the modification of the equations satisfied by the ABF background from their standard type II

form. In this sense the Zm part of Xm may be interpreted as the analog of @m� in the modified

equations. Indeed, one can check that for Im in (2.7) with ci chosen as in (2.9) the following

relation is satisfied

@mZn � @nZm + IkHkmn = 0 . (2.13)

This may be interpreted as a modified “dilaton Bianchi identity”: if Im is formally set to zero

then Zm becomes a derivative of a scalar, @m�. In general, assuming that Im represents an

isometry of the B-field, i.e. the Lie derivative (LIB)mn = Ik@kBmn + Bkn@mIk � Bkm@nIk

vanishes (modulo a gauge transformation term @mUn � @nUm), we can solve (2.13) as14

Zm = @m�+BkmIk , (2.14)

12Y is of course defined modulo a total derivative.
13Since D

n

Xn = D
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Zµ , XmX
m

= Gijc
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+Gµ⌫Z
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Z
⌫

this equation does not depend on signs of c
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.
14In general, we find Z
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m

� + B
km

Ik � U
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. Under gauge transformations of B the vector U
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transforms

so that � may be assumed to be invariant. In the particular case of the ABF background (B.1) with the B-field

chosen in the manifestly symmetric form we have U
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where @m� term represents the trivial “zero-mode” solution. In the particular case of the ABF

background with Zm and Im given by (2.5),(2.6),(2.7) and ci fixed as in (2.9) we find

Xm = Ym = Im + Zm = @m�+ (Gkm +Bkm)Ik , (2.15)

� = 1

2

log
(1� 2⇢2)3(1 + 2r2)3

(1 + 2⇢4 sin2 ⇣)(1 + 2r4 sin2 ⇠)
. (2.16)

The scalar � in (2.16) is precisely the one that is found [12] by applying the standard T-duality

transformation rule to the isometric part of the dilaton �̂ of the HT solution in (B.3) (cf. (1.10)).

3 Modified type II equations: first-order equations for R-R couplings

Let us now explore what modification of the type IIB equations for the R-R couplings is satisfied

by the ABF background.

The standard equations of type IIB supergravity [27] in the R-R sector written in terms of

the rescaled F = e�F field strengths are pairs of dynamical equations and Bianchi identities (see

Appendix A for notation)15

DmFm � ZmFm � 1

6

HmnpFmnp = 0 , dF
1

� Z ^ F
1

= 0 , (3.1)

DpFpmn � ZpFpmn � 1

6

HpqrFmnpqr = 0 , dF
3

� Z ^ F
3

+H
3

^ F
1

= 0 , (3.2)

DrFrmnpq � ZrFmnpq +
1

36

"mnpqrstuvwHrstFuvw = 0 , dF
5

� Z ^ F
5

+H
3

^ F
3

= 0 . (3.3)

Here Z = Zmdxm = d� is the dilaton one-form. The five-form F
5

is also required to satisfy the

self-duality equation ?F
5

= F
5

which implies the equivalence of the first and second equation in

(3.3).

An a priori surprising observation is that there exist direct generalisations of the 1st-order

equations (3.1)–(3.3) involving Z = Zmdxm and I = Imdxm in (2.5),(2.6), with fixed values of

the coe�cients ci as given in (2.9), which are solved by the ABF background (B.1). Explicitly,

the equations for the one-form F
1

in (B.1) are

DmFm � ZmFm � 1

6

HmnpFmnp = 0 , ImFm = 0 , (3.4)

(dF
1

� Z ^ F
1

)mn � IpFmnp = 0 . (3.5)

We have added the condition ImFm = 0 as an independent equation on F
1

.16

Similarly, the equations that generalise (3.2) and are satisfied for the three-form F
3

in (B.1)

are found to be

DpFpmn � ZpFpmn � 1

6

HpqrFmnpqr � (I ^ F
1

)mn = 0 , (3.6)

(dF
3

� Z ^ F
3

+H
3

^ F
1

)mnpq � IrFmnpqr = 0 . (3.7)

15Note that all equations including (2.2) are invariant under the simultaneous change of sign of H3 and F3, or

of H3, F1 and F5. The choice of sign of H3 or B can be changed by parity.
16Alternatively, one can derive this equation from the Bianchi equation (3.5), the invariance of F1 under the

isometry, the orthogonality of I and Z, and the condition that Z is not an exact one-form. Indeed, multiplying

(3.5) by Im one finds @
n

(ImF
m

)� Z
n

ImF
m

= 0 Thus, if ImF
m

6= 0 then Z = d ln(ImF
m

). We find, however, it

more convenient to add ImF
m

= 0 as an independent equation, and infer from it the orthogonality of I and Z.
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where @m� term represents the trivial “zero-mode” solution. In the particular case of the ABF

background with Zm and Im given by (2.5),(2.6),(2.7) and ci fixed as in (2.9) we find
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. (2.16)

The scalar � in (2.16) is precisely the one that is found [12] by applying the standard T-duality

transformation rule to the isometric part of the dilaton �̂ of the HT solution in (B.3) (cf. (1.10)).
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by the ABF background.
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Here Z = Zmdxm = d� is the dilaton one-form. The five-form F
5

is also required to satisfy the

self-duality equation ?F
5

= F
5

which implies the equivalence of the first and second equation in

(3.3).

An a priori surprising observation is that there exist direct generalisations of the 1st-order

equations (3.1)–(3.3) involving Z = Zmdxm and I = Imdxm in (2.5),(2.6), with fixed values of

the coe�cients ci as given in (2.9), which are solved by the ABF background (B.1). Explicitly,
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1

in (B.1) are

DmFm � ZmFm � 1

6

HmnpFmnp = 0 , ImFm = 0 , (3.4)

(dF
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)mn � IpFmnp = 0 . (3.5)

We have added the condition ImFm = 0 as an independent equation on F
1

.16

Similarly, the equations that generalise (3.2) and are satisfied for the three-form F
3

in (B.1)

are found to be

DpFpmn � ZpFpmn � 1

6

HpqrFmnpqr � (I ^ F
1

)mn = 0 , (3.6)

(dF
3
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3

+H
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)mnpq � IrFmnpqr = 0 . (3.7)

15Note that all equations including (2.2) are invariant under the simultaneous change of sign of H3 and F3, or

of H3, F1 and F5. The choice of sign of H3 or B can be changed by parity.
16Alternatively, one can derive this equation from the Bianchi equation (3.5), the invariance of F1 under the

isometry, the orthogonality of I and Z, and the condition that Z is not an exact one-form. Indeed, multiplying

(3.5) by Im one finds @
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(ImF
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ImF
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= 0 Thus, if ImF
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6= 0 then Z = d ln(ImF
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). We find, however, it
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= 0 as an independent equation, and infer from it the orthogonality of I and Z.
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Solution:

The vector Ym required to satisfy (2.2) on the ABF background is found to be12

Y ⌘ Ymdxm = 4{ 1 + ⇢2

1� {2⇢2
dt+ 2{ ⇢2 cos2 ⇣

1 + {2⇢4 sin2 ⇣
d 

1

+4{ 1� r2

1 + {2r2
d'� 2{ r2 cos2 ⇠

1 + {2r4 sin2 ⇠
d�

1

+
{2⇢4 sin 2⇣

2(1 + {2⇢4 sin2 ⇣)
d⇣ +

1

⇢

�
1� 3

1� {2⇢2
+

2({�1c
2

� 1)

1 + {2⇢4 sin2 ⇣

�
d⇢

+
{2r4 sin 2⇠

2(1 + {2r4 sin2 ⇠)
d⇠ +

1

r

�
1� 3

1 + {2r2
� 2({�1c

5

+ 1)

1 + {2r4 sin2 ⇠

�
dr . (2.8)

We observe that if we fix ci in (2.5) to the following specific values

c
0

= c
3

= 4{ , c
1

= c
4

= 0 , c
2

= �c
5

= 2{ , (2.9)

then Ym and Xm coincide

Ym = Xm . (2.10)

The next surprising observation is that for these specially chosen values of ci in (2.9) the vector

Xm satisfies also a direct generalisation (1.11) of the dilaton equation (1.6) (@m�! Xm):13

�̄X ⌘ R� 1

12

H2

mnk + 4DkXk � 4XkXk = 0 . (2.11)

As we shall show in Appendix C this �̄X satisfies the generalisation of the dilaton identity (1.6)

@m�̄
X = 0 . (2.12)

The reason for this particular choice of ci in (2.9) can be traced to the form of the linear terms

in the dilaton �̂ of the T-dual HT solution (B.3). That is the presence of the I-term in Xm in

(2.6) reflects the presence of the non-isometric linear terms in �̂. Therefore, these terms drive

the modification of the equations satisfied by the ABF background from their standard type II

form. In this sense the Zm part of Xm may be interpreted as the analog of @m� in the modified

equations. Indeed, one can check that for Im in (2.7) with ci chosen as in (2.9) the following

relation is satisfied

@mZn � @nZm + IkHkmn = 0 . (2.13)

This may be interpreted as a modified “dilaton Bianchi identity”: if Im is formally set to zero

then Zm becomes a derivative of a scalar, @m�. In general, assuming that Im represents an

isometry of the B-field, i.e. the Lie derivative (LIB)mn = Ik@kBmn + Bkn@mIk � Bkm@nIk

vanishes (modulo a gauge transformation term @mUn � @nUm), we can solve (2.13) as14

Zm = @m�+BkmIk , (2.14)

12Y is of course defined modulo a total derivative.
13Since D

n

Xn = D
µ

Zµ , XmX
m

= Gijc
i
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j

+Gµ⌫Z
µ

Z
⌫

this equation does not depend on signs of c
i

.
14In general, we find Z

m
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Ik � U
m

. Under gauge transformations of B the vector U
m

transforms

so that � may be assumed to be invariant. In the particular case of the ABF background (B.1) with the B-field

chosen in the manifestly symmetric form we have U
m

= 0.
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!Zero mode

Precisely the isometric part of the HT dilation       under the standard T-duality

where @m� term represents the trivial “zero-mode” solution. In the particular case of the ABF

background with Zm and Im given by (2.5),(2.6),(2.7) and ci fixed as in (2.9) we find

Xm = Ym = Im + Zm = @m�+ (Gkm +Bkm)Ik , (2.15)

� = 1

2

log
(1� 2⇢2)3(1 + 2r2)3

(1 + 2⇢4 sin2 ⇣)(1 + 2r4 sin2 ⇠)
. (2.16)

The scalar � in (2.16) is precisely the one that is found [12] by applying the standard T-duality

transformation rule to the isometric part of the dilaton �̂ of the HT solution in (B.3) (cf. (1.10)).

3 Modified type II equations: first-order equations for R-R couplings

Let us now explore what modification of the type IIB equations for the R-R couplings is satisfied

by the ABF background.

The standard equations of type IIB supergravity [27] in the R-R sector written in terms of

the rescaled F = e�F field strengths are pairs of dynamical equations and Bianchi identities (see

Appendix A for notation)15
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1
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Here Z = Zmdxm = d� is the dilaton one-form. The five-form F
5

is also required to satisfy the

self-duality equation ?F
5

= F
5

which implies the equivalence of the first and second equation in

(3.3).

An a priori surprising observation is that there exist direct generalisations of the 1st-order

equations (3.1)–(3.3) involving Z = Zmdxm and I = Imdxm in (2.5),(2.6), with fixed values of

the coe�cients ci as given in (2.9), which are solved by the ABF background (B.1). Explicitly,
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in (B.1) are
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(dF
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We have added the condition ImFm = 0 as an independent equation on F
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Similarly, the equations that generalise (3.2) and are satisfied for the three-form F
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are found to be
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15Note that all equations including (2.2) are invariant under the simultaneous change of sign of H3 and F3, or

of H3, F1 and F5. The choice of sign of H3 or B can be changed by parity.
16Alternatively, one can derive this equation from the Bianchi equation (3.5), the invariance of F1 under the

isometry, the orthogonality of I and Z, and the condition that Z is not an exact one-form. Indeed, multiplying
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= 0 as an independent equation, and infer from it the orthogonality of I and Z.

10

!



           Modified type II equations 
                     RR-sector

[Frolov, Hoare, Roiban Tseytlin and G.A. ’15]



Standard IIB sugra equations 

where @m� term represents the trivial “zero-mode” solution. In the particular case of the ABF

background with Zm and Im given by (2.5),(2.6),(2.7) and ci fixed as in (2.9) we find
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. (2.16)

The scalar � in (2.16) is precisely the one that is found [12] by applying the standard T-duality

transformation rule to the isometric part of the dilaton �̂ of the HT solution in (B.3) (cf. (1.10)).

3 Modified type II equations: first-order equations for R-R couplings
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is also required to satisfy the
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The equations satisfied by F
5

of the ABF background are found to be

DrFrmnpq � ZrFrmnpq +
1

36

"mnpqrstuvwHrstFuvw � (I ^ F
3

)mnpq = 0 , (3.8)

(dF
5

� Z ^ F
5

+H
3

^ F
3

)mnpqrs +
1

6

"mnpqrstuvwItFuvw = 0 . (3.9)

These two are equivalent in view of the self-duality of F
5

.

These modified equations (3.4)–(3.9) reduce back to (3.1),(3.2),(3.3) if we drop all terms with

Im and assume that dZ = 0, i.e. if we set

Zm ! @m� , Im ! 0 . (3.10)

The structure of (3.4)–(3.9) supports the interpretation of Z as a generalised “dilaton one-form”,

while the isometry vector I e↵ectively drives the deformation of the standard type IIB equations.

An interesting observation is that there exist certain combinations of the equations (3.4)–(3.9)

that depend on Z and I only through the combination X = Z + I, which entered the NS-NS

equations of the previous section. These are found by adding together equations of equal form

degree, for example, the equation of motion for the R-R three-form and the Bianchi identity for

the R-R one-form. The resulting X-dependent equations are given by

DmFm �XmFm � 1

6

HmnpFmnp = 0 , (3.11)

DpFpmn �XpFpmn � 1
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HpqrFmnpqr + (dF
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)mn = 0 , (3.12)

DrFrmnpq �XrFrmnpq +
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36

"mnpqrstuvwHrstFuvw + (dF
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+H
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^ F
1

)mnpq = 0 .

(3.13)

Using the self-duality of F
5

the last equation can be also written as

(dF
5

�X ^ F
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+H
3

^ F
3

)pqrlmn � 1

6

"pqrlmnvstu(DvFstu �XvFstu � FvHstu) = 0 . (3.14)

As will be discussed below, these three equations are already su�cient for deriving candidates

for the scale invariance equations for the F-fields, which are 2nd order in derivatives.

It is useful to rewrite (3.1)–(3.3) in the notation of forms (see Appendix A for conventions).

To do so we introduce the dual forms defined by

F
1

= ?F
9

, F
3

= � ? F
7

, F
5

= ?F
5

, F
7

= � ? F
3

, F
9

= ?F
1

. (3.15)

Then the complete set of the type II supergravity equations for R-R strengths and Bianchi

identities (3.1)–(3.3) is given by17

dF
2n+1

� Z ^ F
2n+1

+H
3

^ F
2n�1

= 0 , n = 0, 1, ... ,

d ? F
2n+1

� Z ^ ?F
2n+1

�H
3

^ ?F
2n+3

= 0 , n = 0, 1, ... , (3.16)

where Z = d�.

The “I-modified” equations (3.4)–(3.9) are given by18

dF
2n+1

� Z ^ F
2n+1

+H
3

^ F
2n�1

� ?(I ^ ?F
2n+3

) = 0 , n = �1, 0, ... ,

d ? F
2n+1

� Z ^ ?F
2n+1

�H
3

^ ?F
2n+3

+ ?(I ^ F
2n�1

) = 0 , n = 0, 1, ... . (3.17)

17We assume that F
n

= 0 for n < 0 and n > 10.
18Note that here we include n = �1 as in the deformed theory it is no longer trivial: it gives the second equation

in (3.4), i.e. ?(I ^ ?F1) = ImF
m

= 0.
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These two are equivalent in view of the self-duality of F
5

.

These modified equations (3.4)–(3.9) reduce back to (3.1),(3.2),(3.3) if we drop all terms with

Im and assume that dZ = 0, i.e. if we set

Zm ! @m� , Im ! 0 . (3.10)

The structure of (3.4)–(3.9) supports the interpretation of Z as a generalised “dilaton one-form”,

while the isometry vector I e↵ectively drives the deformation of the standard type IIB equations.

An interesting observation is that there exist certain combinations of the equations (3.4)–(3.9)

that depend on Z and I only through the combination X = Z + I, which entered the NS-NS

equations of the previous section. These are found by adding together equations of equal form

degree, for example, the equation of motion for the R-R three-form and the Bianchi identity for

the R-R one-form. The resulting X-dependent equations are given by
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Using the self-duality of F
5

the last equation can be also written as
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"pqrlmnvstu(DvFstu �XvFstu � FvHstu) = 0 . (3.14)

As will be discussed below, these three equations are already su�cient for deriving candidates

for the scale invariance equations for the F-fields, which are 2nd order in derivatives.

It is useful to rewrite (3.1)–(3.3) in the notation of forms (see Appendix A for conventions).

To do so we introduce the dual forms defined by
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Then the complete set of the type II supergravity equations for R-R strengths and Bianchi

identities (3.1)–(3.3) is given by17
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where Z = d�.

The “I-modified” equations (3.4)–(3.9) are given by18
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17We assume that F
n

= 0 for n < 0 and n > 10.
18Note that here we include n = �1 as in the deformed theory it is no longer trivial: it gives the second equation

in (3.4), i.e. ?(I ^ ?F1) = ImF
m

= 0.
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These equations are sufficient to derive 2nd order equations which should express scale invariance conditions



Equations for RR-fields as  
scale invariance conditions  
                



Equations for RR fields as scale invariance conditions

Requirements:
for Fn of the GS sigma model (1.2). To be a candidate for the scale invariance conditions these

equations should have the following properties:

(i) vanish on the supergravity equations (2.1),(2.2),(2.11),(3.1)–(3.3) with X = d�, Y = 0

(ii) depend on Z and I through X = Z + I

(iii) depend on X through Lie derivatives.20

Starting with the modified equations (3.17) and acting with ?d? on the first equation and d?

on the second and then using the modified equations (as described in Appendix D) we arrive at

the following equation, which satisfies the above properties
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Here �B is the 2-form analog of (2.2), i.e.
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This is then a candidate for the scale invariance equation for the R-R form F
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The dependence of these equations on X rather than separately on Z and I can be related to

their close connection to the particular X-dependent combinations of the modified equations in

(3.11),(3.12),(3.13), i.e. to (here n 2 Z as in (3.17))
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We also define as in (1.11),(2.2)
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20Moreover, since the R-R fields F are invariant under the isometries generated by I, their Lie derivatives along

I vanish, and therefore the scale invariance equations in fact depend only on Z.
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Compact form of the I-modified equations

The equations satisfied by F
5

of the ABF background are found to be
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These two are equivalent in view of the self-duality of F
5

.

These modified equations (3.4)–(3.9) reduce back to (3.1),(3.2),(3.3) if we drop all terms with

Im and assume that dZ = 0, i.e. if we set

Zm ! @m� , Im ! 0 . (3.10)

The structure of (3.4)–(3.9) supports the interpretation of Z as a generalised “dilaton one-form”,

while the isometry vector I e↵ectively drives the deformation of the standard type IIB equations.

An interesting observation is that there exist certain combinations of the equations (3.4)–(3.9)

that depend on Z and I only through the combination X = Z + I, which entered the NS-NS
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Equations for RR fields as scale invariance conditions

Deconstructing the derivation in Appendix D, we find that the 2nd-order equation for the R-R

fluxes (4.2) can also be written as
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Finally, let us present the explicit form of eq. (4.5) in components. For F
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while the equation for F
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This expression is consistent with the self-duality of F
5

(in particular, the third and forth lines

are manifestly dual to each other).

These 2nd-order equations for F
1

, F
3

and F
5

exhibit obvious structural similarities. In par-

ticular, they contain the expected Hodge-de Rham operator terms and the vector X only enters

through the reparametrisation terms as in (4.1). The �G and �B terms in these equations are

defined as in (2.1),(2.2) but can also be replaced by expressions on the r.h.s. of (2.1),(2.2).

As we shall discuss in Appendix G, similar equations come out of the computation of the

one-loop beta-functions for the R-R couplings in the GS sigma model (1.2).

5 Origin of modified equations: T-duality relation to type II equations

for backgrounds with non-isometric linear dilaton

Given a scale invariant sigma model in flat 2d space T-duality in an isometric direction should

also produce a scale invariant sigma model. Similarly, given a Weyl invariant sigma model on

curved 2d space with all couplings including the dilaton being isometric the T-dual background
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3)

All three equations contain the expected Hodge-de Rham operator, vector X generates reparametrization and bosonic beta-functions appeared          



T-duality as a origin of the I-deformation (NSNS case)

fields F that directly enter the GS action (1.2), 1

2

D2F + ... = X@F + F@X. Here the r.h.s.

stands for reparametrisation (Lie derivative) terms with the same X-vector as in (1.3),(1.4) and

dots indicate non-linear terms. In the special case when Xm = @m� these equations are the

consequence of the type IIB equations or Weyl invariance conditions, which are 1st order in

F = e��F , i.e. d ?F + ... = 0 and dF + ... = 0.6 These universal scale invariance conditions will

be satisfied by the ABF background for a particular choice of the vectors Xm and Ym.

To explain the origin of the second “I-modified” set of equations let us first ignore the R-R

fields and assume that there exists the following metric-dilaton background that solves the Weyl

invariance equations (i.e. Rmn + 2DmDn� = 0, �̄� =const)

d̂s
2

= e2â(x)[dŷ + Âµ(x)dx
µ]2 + gµ⌫(x)dx

µdx⌫ , �̂ = �c ŷ + f(x) . (1.8)

Here the metric has an isometry which is broken by the linear term in the dilaton (c = const).

Examples of such non-trivial solutions7 can be found by taking special limits of gauged WZW

backgrounds [13]. T-dualising this metric, we find a diagonal metric G and B-field, i.e.

ds2 = e2a(x)dy2 + gµ⌫(x)dx
µdx⌫ , B = Âµ(x) dy ^ dxµ , a = �â . (1.9)

For c = 0 (i.e. when �̂ is isometric) these fields together with the T-duality transformed dilaton

� = �̂ � â would solve the standard Weyl invariance equations (1.3),(1.4) with Xm = @m�,

Ym = 0. For non-zero c the equation R̂mn + 2D̂mD̂n�̂ = 0 (for the original background (1.8))

expressed in terms of the dual fields G,B will contain additional c-dependent terms obstructing

(for non-constant a(x)) the introduction of a new dilaton scalar. Still, they can be put in a more

general form Rmn +DmXn +DnXm = 0 with a special vector X given by8

Xmdxm ⌘ Imdxm + Zmdxm = c e�2a dy +
⇥
@µ(�̂� â) + c Âµ

⇤
dxµ . (1.10)

The dilaton equation �̄� = 0 for the original background (1.8) also can be rewritten as the

following generalised equation (cf. (1.6))9

�̄X ⌘ R� 1

12

H2

mnk + 4DmXm � 4XmXm = 0 , (1.11)

that is satisfied for the T-dual background.

The T-dual background (G,B) defines a sigma model that is scale invariant on a flat 2d

background (satisfying equations (1.3),(1.4) with Ym = Xm) but which is not Weyl invariant. The

trace of stress tensor T = �G
mn@ax

m@axn+�B
mn✏

ab@axm@bxn is a total derivative T = raNa, Na =

2(Xm@axm+ ✏ b
a Ym@bxm) (up to terms proportional to the xm equations of motion). This cannot

be cancelled by a local counterterm (the classical dilaton term) unless Xm = @m�, Ym = 0

[18, 19], which is not the case for the ABF background. The sigma models based on (1.9)

6The relation between the 1st-order and 2nd-order equations on F has the same spirit as the relation between

the Dirac and the Klein-Gordon (squared Dirac) equations for spinor fields.
7It is important that dilaton has a linear term in a “warped” isometric direction of the metric, i.e. a(x), A

µ

(x)

are non-constant, otherwise the e↵ect of adding the linear dilaton would be trivial.
8The need to introduce the vector X
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, which is not simply a gradient of a scalar, is therefore directly related

to the feature @
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fields F that directly enter the GS action (1.2), 1

2

D2F + ... = X@F + F@X. Here the r.h.s.

stands for reparametrisation (Lie derivative) terms with the same X-vector as in (1.3),(1.4) and

dots indicate non-linear terms. In the special case when Xm = @m� these equations are the

consequence of the type IIB equations or Weyl invariance conditions, which are 1st order in

F = e��F , i.e. d ?F + ... = 0 and dF + ... = 0.6 These universal scale invariance conditions will

be satisfied by the ABF background for a particular choice of the vectors Xm and Ym.

To explain the origin of the second “I-modified” set of equations let us first ignore the R-R

fields and assume that there exists the following metric-dilaton background that solves the Weyl

invariance equations (i.e. Rmn + 2DmDn� = 0, �̄� =const)

d̂s
2

= e2â(x)[dŷ + Âµ(x)dx
µ]2 + gµ⌫(x)dx

µdx⌫ , �̂ = �c ŷ + f(x) . (1.8)

Here the metric has an isometry which is broken by the linear term in the dilaton (c = const).

Examples of such non-trivial solutions7 can be found by taking special limits of gauged WZW

backgrounds [13]. T-dualising this metric, we find a diagonal metric G and B-field, i.e.

ds2 = e2a(x)dy2 + gµ⌫(x)dx
µdx⌫ , B = Âµ(x) dy ^ dxµ , a = �â . (1.9)

For c = 0 (i.e. when �̂ is isometric) these fields together with the T-duality transformed dilaton
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expressed in terms of the dual fields G,B will contain additional c-dependent terms obstructing

(for non-constant a(x)) the introduction of a new dilaton scalar. Still, they can be put in a more

general form Rmn +DmXn +DnXm = 0 with a special vector X given by8

Xmdxm ⌘ Imdxm + Zmdxm = c e�2a dy +
⇥
@µ(�̂� â) + c Âµ

⇤
dxµ . (1.10)
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following generalised equation (cf. (1.6))9
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that is satisfied for the T-dual background.
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mn@ax
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mn✏

ab@axm@bxn is a total derivative T = raNa, Na =
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a Ym@bxm) (up to terms proportional to the xm equations of motion). This cannot

be cancelled by a local counterterm (the classical dilaton term) unless Xm = @m�, Ym = 0

[18, 19], which is not the case for the ABF background. The sigma models based on (1.9)

6The relation between the 1st-order and 2nd-order equations on F has the same spirit as the relation between

the Dirac and the Klein-Gordon (squared Dirac) equations for spinor fields.
7It is important that dilaton has a linear term in a “warped” isometric direction of the metric, i.e. a(x), A
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are non-constant, otherwise the e↵ect of adding the linear dilaton would be trivial.
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⇥
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be cancelled by a local counterterm (the classical dilaton term) unless Xm = @m�, Ym = 0

[18, 19], which is not the case for the ABF background. The sigma models based on (1.9)
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stands for reparametrisation (Lie derivative) terms with the same X-vector as in (1.3),(1.4) and
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F = e��F , i.e. d ?F + ... = 0 and dF + ... = 0.6 These universal scale invariance conditions will
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µdx⌫ , �̂ = �c ŷ + f(x) . (1.8)

Here the metric has an isometry which is broken by the linear term in the dilaton (c = const).
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Ym = 0. For non-zero c the equation R̂mn + 2D̂mD̂n�̂ = 0 (for the original background (1.8))
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⇥
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that is satisfied for the T-dual background.
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background (satisfying equations (1.3),(1.4) with Ym = Xm) but which is not Weyl invariant. The

trace of stress tensor T = �G
mn@ax

m@axn+�B
mn✏

ab@axm@bxn is a total derivative T = raNa, Na =

2(Xm@axm+ ✏ b
a Ym@bxm) (up to terms proportional to the xm equations of motion). This cannot

be cancelled by a local counterterm (the classical dilaton term) unless Xm = @m�, Ym = 0

[18, 19], which is not the case for the ABF background. The sigma models based on (1.9)

6The relation between the 1st-order and 2nd-order equations on F has the same spirit as the relation between

the Dirac and the Klein-Gordon (squared Dirac) equations for spinor fields.
7It is important that dilaton has a linear term in a “warped” isometric direction of the metric, i.e. a(x), A

µ
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are non-constant, otherwise the e↵ect of adding the linear dilaton would be trivial.
8The need to introduce the vector X
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to the feature @
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With

fields F that directly enter the GS action (1.2), 1

2

D2F + ... = X@F + F@X. Here the r.h.s.

stands for reparametrisation (Lie derivative) terms with the same X-vector as in (1.3),(1.4) and

dots indicate non-linear terms. In the special case when Xm = @m� these equations are the

consequence of the type IIB equations or Weyl invariance conditions, which are 1st order in

F = e��F , i.e. d ?F + ... = 0 and dF + ... = 0.6 These universal scale invariance conditions will

be satisfied by the ABF background for a particular choice of the vectors Xm and Ym.

To explain the origin of the second “I-modified” set of equations let us first ignore the R-R

fields and assume that there exists the following metric-dilaton background that solves the Weyl

invariance equations (i.e. Rmn + 2DmDn� = 0, �̄� =const)

d̂s
2

= e2â(x)[dŷ + Âµ(x)dx
µ]2 + gµ⌫(x)dx

µdx⌫ , �̂ = �c ŷ + f(x) . (1.8)

Here the metric has an isometry which is broken by the linear term in the dilaton (c = const).

Examples of such non-trivial solutions7 can be found by taking special limits of gauged WZW

backgrounds [13]. T-dualising this metric, we find a diagonal metric G and B-field, i.e.

ds2 = e2a(x)dy2 + gµ⌫(x)dx
µdx⌫ , B = Âµ(x) dy ^ dxµ , a = �â . (1.9)

For c = 0 (i.e. when �̂ is isometric) these fields together with the T-duality transformed dilaton

� = �̂ � â would solve the standard Weyl invariance equations (1.3),(1.4) with Xm = @m�,

Ym = 0. For non-zero c the equation R̂mn + 2D̂mD̂n�̂ = 0 (for the original background (1.8))

expressed in terms of the dual fields G,B will contain additional c-dependent terms obstructing

(for non-constant a(x)) the introduction of a new dilaton scalar. Still, they can be put in a more

general form Rmn +DmXn +DnXm = 0 with a special vector X given by8

Xmdxm ⌘ Imdxm + Zmdxm = c e�2a dy +
⇥
@µ(�̂� â) + c Âµ

⇤
dxµ . (1.10)

The dilaton equation �̄� = 0 for the original background (1.8) also can be rewritten as the

following generalised equation (cf. (1.6))9

�̄X ⌘ R� 1
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H2

mnk + 4DmXm � 4XmXm = 0 , (1.11)

that is satisfied for the T-dual background.

The T-dual background (G,B) defines a sigma model that is scale invariant on a flat 2d

background (satisfying equations (1.3),(1.4) with Ym = Xm) but which is not Weyl invariant. The

trace of stress tensor T = �G
mn@ax

m@axn+�B
mn✏

ab@axm@bxn is a total derivative T = raNa, Na =

2(Xm@axm+ ✏ b
a Ym@bxm) (up to terms proportional to the xm equations of motion). This cannot

be cancelled by a local counterterm (the classical dilaton term) unless Xm = @m�, Ym = 0

[18, 19], which is not the case for the ABF background. The sigma models based on (1.9)

6The relation between the 1st-order and 2nd-order equations on F has the same spirit as the relation between

the Dirac and the Klein-Gordon (squared Dirac) equations for spinor fields.
7It is important that dilaton has a linear term in a “warped” isometric direction of the metric, i.e. a(x), A

µ
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are non-constant, otherwise the e↵ect of adding the linear dilaton would be trivial.
8The need to introduce the vector X
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D2F + ... = X@F + F@X. Here the r.h.s.

stands for reparametrisation (Lie derivative) terms with the same X-vector as in (1.3),(1.4) and

dots indicate non-linear terms. In the special case when Xm = @m� these equations are the

consequence of the type IIB equations or Weyl invariance conditions, which are 1st order in

F = e��F , i.e. d ?F + ... = 0 and dF + ... = 0.6 These universal scale invariance conditions will
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To explain the origin of the second “I-modified” set of equations let us first ignore the R-R
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µdx⌫ , �̂ = �c ŷ + f(x) . (1.8)

Here the metric has an isometry which is broken by the linear term in the dilaton (c = const).
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be cancelled by a local counterterm (the classical dilaton term) unless Xm = @m�, Ym = 0

[18, 19], which is not the case for the ABF background. The sigma models based on (1.9)
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the Dirac and the Klein-Gordon (squared Dirac) equations for spinor fields.
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stands for reparametrisation (Lie derivative) terms with the same X-vector as in (1.3),(1.4) and
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be satisfied by the ABF background for a particular choice of the vectors Xm and Ym.
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Here the metric has an isometry which is broken by the linear term in the dilaton (c = const).
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µdx⌫ , B = Âµ(x) dy ^ dxµ , a = �â . (1.9)
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Ym = 0. For non-zero c the equation R̂mn + 2D̂mD̂n�̂ = 0 (for the original background (1.8))

expressed in terms of the dual fields G,B will contain additional c-dependent terms obstructing

(for non-constant a(x)) the introduction of a new dilaton scalar. Still, they can be put in a more

general form Rmn +DmXn +DnXm = 0 with a special vector X given by8

Xmdxm ⌘ Imdxm + Zmdxm = c e�2a dy +
⇥
@µ(�̂� â) + c Âµ

⇤
dxµ . (1.10)
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that is satisfied for the T-dual background.

The T-dual background (G,B) defines a sigma model that is scale invariant on a flat 2d

background (satisfying equations (1.3),(1.4) with Ym = Xm) but which is not Weyl invariant. The

trace of stress tensor T = �G
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ab@axm@bxn is a total derivative T = raNa, Na =
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a Ym@bxm) (up to terms proportional to the xm equations of motion). This cannot

be cancelled by a local counterterm (the classical dilaton term) unless Xm = @m�, Ym = 0

[18, 19], which is not the case for the ABF background. The sigma models based on (1.9)
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the Dirac and the Klein-Gordon (squared Dirac) equations for spinor fields.
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fields F that directly enter the GS action (1.2), 1

2

D2F + ... = X@F + F@X. Here the r.h.s.

stands for reparametrisation (Lie derivative) terms with the same X-vector as in (1.3),(1.4) and

dots indicate non-linear terms. In the special case when Xm = @m� these equations are the

consequence of the type IIB equations or Weyl invariance conditions, which are 1st order in

F = e��F , i.e. d ?F + ... = 0 and dF + ... = 0.6 These universal scale invariance conditions will

be satisfied by the ABF background for a particular choice of the vectors Xm and Ym.

To explain the origin of the second “I-modified” set of equations let us first ignore the R-R

fields and assume that there exists the following metric-dilaton background that solves the Weyl

invariance equations (i.e. Rmn + 2DmDn� = 0, �̄� =const)

d̂s
2

= e2â(x)[dŷ + Âµ(x)dx
µ]2 + gµ⌫(x)dx

µdx⌫ , �̂ = �c ŷ + f(x) . (1.8)

Here the metric has an isometry which is broken by the linear term in the dilaton (c = const).

Examples of such non-trivial solutions7 can be found by taking special limits of gauged WZW

backgrounds [13]. T-dualising this metric, we find a diagonal metric G and B-field, i.e.

ds2 = e2a(x)dy2 + gµ⌫(x)dx
µdx⌫ , B = Âµ(x) dy ^ dxµ , a = �â . (1.9)

For c = 0 (i.e. when �̂ is isometric) these fields together with the T-duality transformed dilaton

� = �̂ � â would solve the standard Weyl invariance equations (1.3),(1.4) with Xm = @m�,

Ym = 0. For non-zero c the equation R̂mn + 2D̂mD̂n�̂ = 0 (for the original background (1.8))

expressed in terms of the dual fields G,B will contain additional c-dependent terms obstructing

(for non-constant a(x)) the introduction of a new dilaton scalar. Still, they can be put in a more

general form Rmn +DmXn +DnXm = 0 with a special vector X given by8

Xmdxm ⌘ Imdxm + Zmdxm = c e�2a dy +
⇥
@µ(�̂� â) + c Âµ

⇤
dxµ . (1.10)

The dilaton equation �̄� = 0 for the original background (1.8) also can be rewritten as the

following generalised equation (cf. (1.6))9

�̄X ⌘ R� 1

12
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mnk + 4DmXm � 4XmXm = 0 , (1.11)

that is satisfied for the T-dual background.

The T-dual background (G,B) defines a sigma model that is scale invariant on a flat 2d

background (satisfying equations (1.3),(1.4) with Ym = Xm) but which is not Weyl invariant. The

trace of stress tensor T = �G
mn@ax

m@axn+�B
mn✏

ab@axm@bxn is a total derivative T = raNa, Na =

2(Xm@axm+ ✏ b
a Ym@bxm) (up to terms proportional to the xm equations of motion). This cannot

be cancelled by a local counterterm (the classical dilaton term) unless Xm = @m�, Ym = 0

[18, 19], which is not the case for the ABF background. The sigma models based on (1.9)

6The relation between the 1st-order and 2nd-order equations on F has the same spirit as the relation between

the Dirac and the Klein-Gordon (squared Dirac) equations for spinor fields.
7It is important that dilaton has a linear term in a “warped” isometric direction of the metric, i.e. a(x), A

µ

(x)

are non-constant, otherwise the e↵ect of adding the linear dilaton would be trivial.
8The need to introduce the vector X

m

, which is not simply a gradient of a scalar, is therefore directly related

to the feature @
ŷ

�̂ = �c 6= 0.
9Note that this equation is not present in the list of scale invariance conditions, and Weyl invariance conditions

require this relation to hold with X
m

= @
m

� for some �.
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Conclusions 
                    and  
                            future problems 



 Eta-deformed model is scale invariant but not Weyl invariant. Classical kappa-symmetry implies   
scale invariance only! Could this model still be used to define a critical string?

  What about other deformations, e.g. corresponding to the solutions of the CYBE. Yes!

Eta-deformed model is related to the lambda-model by Poisson-Lie duality and analytic continuation. The 
latter model propagates in the  IIB background and therefore is Weyl invariant. Extra fields? Non-locality?

  Is there any way to obtain I-modified gravity equations from some Lagrangian?

  What is I-modification for background fermionic fields?

  Does I-modified equations follow from kappa-symmetry.   Yes!

  I-modification destroys local supersymmetry. If there is still any local (hidden) symmetry?

[Wulff and Tseytlin ’16]

[Yoshida et al. ‘16], [Hoare and van Tongeren ‘16]

 What is the relation to the mirror model ?
[van Tongeren and G.A.  ‘14], [Pachol  and van Tongeren ‘16]

  What is a dual (non-commutative) gauge theory?  

                                                                   [Yoshida et al. ‘17]




