Quantum field theories on quantum spaces

Jean-Christophe Wallet

Laboratoire de Physique Théorique d'Orsay, CNRS and University of Paris-Sud 11

18-22 June 2018 / Primošten

About the title

- Quantum space = "noncommutative space" modeled by noncommutative algebra (with involution), says A Examples: fuzzy spheres, NC torus, quantum spheres,..., deformations of ℝⁿ (Moyal, ℝ³_λ,...), κ-deformations,... → We will focus on popular: Moyal spaces, ℝ³_λ, κ-Minkowski
- Quantum field theory : Field theories = Noncommutative Field Theories (NCFT) built on A,

ightarrow We will focus on renormalisation aspects

• Huge literature on the subject Arising in various areas motivated by: String physics, Branes, quantum gravity approaches,...

< D > < P > < E > <</pre>

About the title

- Quantum space = "noncommutative space" modeled by noncommutative algebra (with involution), says A Examples: fuzzy spheres, NC torus, quantum spheres,..., deformations of ℝⁿ (Moyal, ℝ³_λ,...), κ-deformations,... → We will focus on popular: Moyal spaces, ℝ³_λ, κ-Minkowski
- Quantum field theory : Field theories = Noncommutative Field Theories (NCFT) built on A,

 \rightarrow We will focus on renormalisation aspects

• Huge literature on the subject Arising in various areas motivated by: String physics, Branes, quantum gravity approaches,...

• • • • • • • • • •

About the title

- Quantum space = "noncommutative space" modeled by noncommutative algebra (with involution), says A Examples: fuzzy spheres, NC torus, quantum spheres,..., deformations of ℝⁿ (Moyal, ℝ³_λ,...), κ-deformations,... → We will focus on popular: Moyal spaces, ℝ³_λ, κ-Minkowski
 - \rightarrow we will locus on popular: Moyal spaces, \mathbb{R}_{λ}^{*} , κ -Minkowski
- Quantum field theory : Field theories = Noncommutative Field Theories (NCFT) built on A,

 \rightarrow We will focus on renormalisation aspects

• Huge literature on the subject Arising in various areas motivated by: String physics, Branes, quantum gravity approaches,...

Outline

1 NCFT on Moyal spaces and \mathbb{R}^3_{λ} - present situation

- Renormalisable NCFT on Moyal spaces
- Renormalisable NCFT on \mathbb{R}^3_{λ}
- (Twisted) convolution product and Moyal product
- Summary

2 Star product on κ -Minkowski space from Weyl quantization

- Weyl quantization and star product for κ-Minkowski space
- Properties of the star product
- Trading cyclicity for KMS condition
- Family of scalar NCFT: 2-and 4-point functions at 1-loop
- Conclusions

Renormalisable NCFT on Moyal spaces

Informally $\mathbb{C}[x_{\mu}]/[x_{\mu}, x_{\nu}]_{*} = i\theta_{\mu\nu}$ ($\mathbb{F}(\mathbb{R}^{2n}), *$), *: Moyal product. Few renormalisable NCFT – Harmonic ϕ^{4} model [Grosse, Wulkenhaar, CMP.**256**(2005)305]

$$S = \int d^4x \; \frac{1}{2} \partial_\mu \phi \partial_\mu \phi + \frac{m^2}{2} \phi^2 + \frac{\Omega^2}{2} (\tilde{x}_\mu \phi) \star (\tilde{x}_\mu \phi) + \frac{\lambda}{4!} \; \phi \star \phi \star \phi \star \phi$$

Harmonic term cures UV/IR mixing (breaks translation invariance) $\beta_{\lambda} = 0$ (all orders) for $\Omega = 1$ [Dissertori et al., Phys. Lett. B.649 (2007) 95] $\Omega = 1$ LSZ duality [Langmann, Szabo, Zarembo, JHEP 0401 (2004) 017] – Translational-invariant model: (tree level) counterterms cancels IR singularity inducing mixing [Magnen, Rivasseau, Tanasa, CMP 287 (2009) 275] – Rotationaly invariant models: use action of rotation on sympletic structure [de Goursac, JCW, J. Phys. A: Math. Theor. 44 (2011) 055401]

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Renormalisable gauge theories on Moyal spaces?

- D=4 . Still UV/IR mixing. Gauge invariance forbids harmonic term
- Existence of some all order renormalisable gauge theory unknown
- Candidate proposed

[de Goursac, Wulkenhaar, JCW, EPJC**51** (2007) 977] [Grosse, Wohlgenannt, EPJC**52** (2007)435]

$$\mathcal{S}(\mathcal{A}) = \int d^4x \Big(rac{1}{4} \mathcal{F}_{\mu
u} \star \mathcal{F}_{\mu
u} + rac{\Omega^2}{4} \{ \mathcal{A}_\mu, \mathcal{A}_
u \}^2_\star + \mu^2 \mathcal{A}_\mu \star \mathcal{A}_\mu \Big)$$

$$\mathcal{A}_{\mu} = \mathcal{A}_{\mu} + \frac{1}{2}\tilde{X}_{\mu}$$
$$\mathcal{F}_{\mu\nu} = -i[\mathcal{A}_{\mu}, \mathcal{A}_{\nu}]_{\star} + \theta_{\mu\nu}^{-1} = \partial_{\mu}\mathcal{A}_{\nu} - \partial_{\nu}\mathcal{A}_{\mu} - i[\mathcal{A}_{\mu}, \mathcal{A}_{\nu}]_{\star}$$

S(A) complicated vacuum structure Direct perturbative treatment problematic [de Goursac, Wulkenhaar, JCW, EPJC **56** (2008) 293]

Renormalisable gauge theories on Moyal spaces?

– Interpretation as matrix model using A_{μ} interesting Steinacker, Nucl. Phys. B679 (2004) 66; Class. Quant. Grav. 27 (2010) 133001, etc...

-S(A) D = 2 expanded around one particular vacuum investigated only at one loop order [Martinetti, Vitale, JCW, JHEP 09 (2013) 051]. Looks like but \neq 6-vertex model. Vacuum instability.

< ロ > < 同 > < 回 > < 回 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Usual presentation: $\mathbb{C}[(x_i, x_0)]/\mathcal{I}, i = 1, 2, 3$

$$\mathcal{I}: [\mathbf{x}_i, \mathbf{x}_j]_{\star} = i\lambda\epsilon_{ijk}\mathbf{x}_k, \ \mathbf{x}_0^2 - \lambda\mathbf{x}_0 = \sum_i \mathbf{x}_i^2$$

Deformed algebras of function $\mathbb{R}^3_{\lambda} = (\mathbb{F}(\mathbb{R}^3), \star)$: complicated star products not convenient for perturbative computations. Various star products available:

Gracia-Bondia et al., JHEP 0204 (2002) 026; Freidel, Livine, PRL 96 (2006) 221301; Freidel, Majid, Class. Quant. Grav.25 (2008)045006; Kupriyanov, Vassilevich, EPJC58 (2008)627; Jurić, Poulain, JCW, JHEP 1707 (2017) 116.

< ロ > < 同 > < 回 > < 回 >

NCFT on \mathbb{R}^3_λ

• Usual presentation: $\mathbb{C}[(x_i, x_0)]/\mathcal{I}, i = 1, 2, 3$

$$\mathcal{I}: [\mathbf{x}_i, \mathbf{x}_j]_{\star} = i\lambda\epsilon_{ijk}\mathbf{x}_k, \ \mathbf{x}_0^2 - \lambda\mathbf{x}_0 = \sum_i \mathbf{x}_i^2$$

Deformed algebras of function $\mathbb{R}^3_{\lambda} = (\mathbb{F}(\mathbb{R}^3), \star)$: complicated star products not convenient for perturbative computations. Various star products available:

Gracia-Bondia et al., JHEP 0204 (2002) 026; Freidel, Livine, PRL 96 (2006) 221301; Freidel, Majid, Class. Quant. Grav.25 (2008)045006; Kupriyanov, Vassilevich, EPJC58 (2008)627; Jurić, Poulain, JCW, JHEP 1707 (2017) 116.

< ロ > < 同 > < 回 > < 回 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Renormalisable NCFT on \mathbb{R}^3_λ

Conveniently described as $\mathbb{R}^3_{\lambda} \to (\hat{\mathbb{R}}^3_{\lambda} = \bigoplus_{j \in \frac{\mathbb{N}}{2}} \mathbb{M}_{2j+1}(\mathbb{C}), .)$ $\hat{f} = \bigoplus_j \int d\mu(x) f(x) t^j(x) \longrightarrow \text{yields } \hat{f} = \sum_j a^{j}_{m,n} \hat{v}^j_{mn}$

Characterize the natural "matrix base" used to represent NCFT on \mathbb{R}^3_λ as matrix models [Vitale, JCW, JHEP 1304 (2013) 115]

- One-loop calculations:

• Scalar ϕ^4 models (toy models): UV softer than commutative case Sometimes UV/IR mixing. All order renormalisability?

```
[Vitale, JCW, JHEP 1304 (2013) 115 ].
```

[see also Jurić, Poulain, JCW JHEP 05 (2016) 146]

• Gauge theories S(A) (massless) from simple noncommutative differential calculus. Vacuum instability!

[Géré, Vitale, JCW, Phys. Rev. D90,(2014) 045019].

When truncated to one $\mathbb{M}_{2j+1}(\mathbb{C})$, almost similar to brane model [Alekseev et al., JHEP 05 (2000) 010]

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Renormalisable NCFT on Moyal spaces Renormalisable NCFT on R³ (Twisted) convolution product and Moyal product Summary

Finite gauge theories on \mathbb{R}^3_λ [Géré, Jurić, JCW, JHEP 12 (2015) 045]

$$\theta_{\mu} = \frac{x_{\mu}}{\lambda^2} \rightarrow \mathcal{A}_{\mu} = \mathcal{A}_{\mu} + i\theta_{\mu}, \ \mathcal{F}_{\mu\nu} = [\mathcal{A}_{\mu}, \mathcal{A}_{\nu}] + \frac{1}{\lambda}\varepsilon_{\mu\nu\rho}\mathcal{A}_{\mu}$$

• Set
$$\Phi_{\mu} := \mathcal{A}_{\mu}$$
. $\Phi_{\mu}^{g} = g^{\dagger} \Phi_{\mu} g$. Observe: $(\theta_{\mu} \theta^{\mu}) \in \mathcal{Z}(\mathbb{R}^{3}_{\lambda})$

- $Tr((\theta_{\mu}\theta^{\mu})\Phi_{\nu}\Phi^{\nu})$ gauge invariant. Harmonic term now allowed!
- One obtains (in the gauge $\Phi_3 = \theta_3$; $\Phi = \Phi_1 + i\Phi_2$)

$$S = \frac{2}{g^2} Tr(\Phi Q \Phi^{\dagger} + \Phi^{\dagger} Q \Phi) + \frac{16}{g^2} Tr((\Omega + 1) \Phi \Phi^{\dagger} \Phi \Phi^{\dagger} + (3\Omega - 1) \Phi \Phi^{\dagger} \Phi^{\dagger} \Phi)$$
$$Q = M + \mu x^2 + 8\Omega L(\theta_3^2) + i4(\Omega - 1)L(\theta_3)D_3$$
$$S \text{ positive for } M > 0, \ \mu > 0, \ \Omega \in [0, \frac{4}{3}].$$

Theorem (Géré, Jurić, JCW, JHEP 12 (2015) 045).

Renormalisable NCFT on Moyal spaces Renormalisable NCFT on R (Twisted) convolution product and Moyal product Summary

Finite gauge theories on \mathbb{R}^3_λ [Géré, Jurić, JCW, JHEP 12 (2015) 045]

$$\theta_{\mu} = \frac{\mathbf{x}_{\mu}}{\lambda^2} \rightarrow \mathcal{A}_{\mu} = \mathbf{A}_{\mu} + i\theta_{\mu}, \ \mathbf{F}_{\mu\nu} = [\mathcal{A}_{\mu}, \mathcal{A}_{\nu}] + \frac{1}{\lambda}\varepsilon_{\mu\nu\rho}\mathcal{A}_{\mu}$$

- Set $\Phi_{\mu} := \mathcal{A}_{\mu}$. $\Phi_{\mu}^{g} = g^{\dagger} \Phi_{\mu} g$. Observe: $(\theta_{\mu} \theta^{\mu}) \in \mathcal{Z}(\mathbb{R}^{3}_{\lambda})$
- $Tr((\theta_{\mu}\theta^{\mu})\Phi_{\nu}\Phi^{\nu})$ gauge invariant. Harmonic term now allowed!
- One obtains (in the gauge $\Phi_3 = \theta_3$; $\Phi = \Phi_1 + i\Phi_2$)

$$S = \frac{2}{g^2} \operatorname{Tr} \left(\Phi Q \Phi^{\dagger} + \Phi^{\dagger} Q \Phi \right) + \frac{16}{g^2} \operatorname{Tr} \left((\Omega + 1) \Phi \Phi^{\dagger} \Phi \Phi^{\dagger} + (3\Omega - 1) \Phi \Phi^{\dagger} \Phi^{\dagger} \Phi \right)$$
$$Q = M + \mu x^2 + 8\Omega L(\theta_3^2) + i4(\Omega - 1)L(\theta_3)D_3$$
$$S \text{ positive for } M > 0, \ \mu > 0, \ \Omega \in [0, \frac{4}{3}].$$

Theorem (Géré, Jurić, JCW, JHEP 12 (2015) 045)

Renormalisable NCFT on Moyal spaces Renormalisable NCFT on R (Twisted) convolution product and Moyal product Summary

Finite gauge theories on \mathbb{R}^3_λ [Géré, Jurić, JCW, JHEP 12 (2015) 045]

$$\theta_{\mu} = \frac{\mathbf{x}_{\mu}}{\lambda^2} \rightarrow \mathcal{A}_{\mu} = \mathbf{A}_{\mu} + i\theta_{\mu}, \ \mathbf{F}_{\mu\nu} = [\mathcal{A}_{\mu}, \mathcal{A}_{\nu}] + \frac{1}{\lambda}\varepsilon_{\mu\nu\rho}\mathcal{A}_{\mu}$$

- Set $\Phi_{\mu} := \mathcal{A}_{\mu}$. $\Phi_{\mu}^{g} = g^{\dagger} \Phi_{\mu} g$. Observe: $(\theta_{\mu} \theta^{\mu}) \in \mathcal{Z}(\mathbb{R}^{3}_{\lambda})$
- $Tr((\theta_{\mu}\theta^{\mu})\Phi_{\nu}\Phi^{\nu})$ gauge invariant. Harmonic term now allowed!
- One obtains (in the gauge $\Phi_3 = \theta_3$; $\Phi = \Phi_1 + i\Phi_2$)

$$S = \frac{2}{g^2} \operatorname{Tr} \left(\Phi Q \Phi^{\dagger} + \Phi^{\dagger} Q \Phi \right) + \frac{16}{g^2} \operatorname{Tr} \left((\Omega + 1) \Phi \Phi^{\dagger} \Phi \Phi^{\dagger} + (3\Omega - 1) \Phi \Phi^{\dagger} \Phi^{\dagger} \Phi \right)$$
$$Q = M + \mu x^2 + 8\Omega L(\theta_3^2) + i4(\Omega - 1)L(\theta_3)D_3$$
$$S \text{ positive for } M > 0, \ \mu > 0, \ \Omega \in [0, \frac{4}{3}].$$

Theorem (Géré, Jurić, JCW, JHEP 12 (2015) 045)

Renormalisable NCFT on Moyal spaces Renormalisable NCFT on R (Twisted) convolution product and Moyal product Summary

Finite gauge theories on \mathbb{R}^3_λ [Géré, Jurić, JCW, JHEP 12 (2015) 045]

$$\theta_{\mu} = \frac{\mathbf{x}_{\mu}}{\lambda^2} \rightarrow \mathcal{A}_{\mu} = \mathbf{A}_{\mu} + i\theta_{\mu}, \ \mathbf{F}_{\mu\nu} = [\mathcal{A}_{\mu}, \mathcal{A}_{\nu}] + \frac{1}{\lambda}\varepsilon_{\mu\nu\rho}\mathcal{A}_{\mu}$$

- Set $\Phi_{\mu} := \mathcal{A}_{\mu}$. $\Phi_{\mu}^{g} = g^{\dagger} \Phi_{\mu} g$. Observe: $(\theta_{\mu} \theta^{\mu}) \in \mathcal{Z}(\mathbb{R}^{3}_{\lambda})$
- $Tr((\theta_{\mu}\theta^{\mu})\Phi_{\nu}\Phi^{\nu})$ gauge invariant. Harmonic term now allowed!
- One obtains (in the gauge $\Phi_3 = \theta_3$; $\Phi = \Phi_1 + i\Phi_2$)

$$S = \frac{2}{g^2} \operatorname{Tr} \left(\Phi Q \Phi^{\dagger} + \Phi^{\dagger} Q \Phi \right) + \frac{16}{g^2} \operatorname{Tr} \left((\Omega + 1) \Phi \Phi^{\dagger} \Phi \Phi^{\dagger} + (3\Omega - 1) \Phi \Phi^{\dagger} \Phi^{\dagger} \Phi \right)$$
$$Q = M + \mu x^2 + 8\Omega L(\theta_3^2) + i4(\Omega - 1)L(\theta_3)D_3$$
$$S \text{ positive for } M > 0, \ \mu > 0, \ \Omega \in [0, \frac{4}{3}].$$

Theorem (Géré, Jurić, JCW, JHEP 12 (2015) 045)

Renormalisable NCFT on Moyal spaces Renormalisable NCFT on R (Twisted) convolution product and Moyal product Summary

Finite gauge theories on \mathbb{R}^3_{λ}

- *S* describes dynamics of fluctuations of Φ_{μ} around $\Phi_{\mu} = 0$ or alternatively fluctuations of the gauge potential A_{μ} around θ_{μ}
- Finiteness origin:
 - Sufficient decay for propagator as $j \rightarrow \infty$ (UV regime)
 - *j* plays role of natural UV cut-off (kind of "external moment")
 - Existence of (finite) upper bound for general amplitude $\mathfrak{A}_{\mathcal{D}}^{J}$
- Commutative limit: does not reproduce Yang-Mills theorie.
- Solvable for $\Omega = \frac{1}{3}$ [JCW, Nucl. Phys. B912 (2016) 354]

< ロ > < 同 > < 回 > < 国

Renormalisable NCFT on Moyal spaces Renormalisable NCFT on R (Twisted) convolution product and Moyal product Summary

Finite gauge theories on \mathbb{R}^3_{λ}

- S describes dynamics of fluctuations of Φ_{μ} around $\Phi_{\mu} = 0$ or alternatively fluctuations of the gauge potential A_{μ} around θ_{μ}
- Finiteness origin:
 - Sufficient decay for propagator as $j \rightarrow \infty$ (UV regime)
 - j plays role of natural UV cut-off (kind of "external moment")
 - Existence of (finite) upper bound for general amplitude $\mathfrak{A}_{\mathcal{D}}^{J}$
- Commutative limit: does not reproduce Yang-Mills theorie.
- Solvable for $\Omega = rac{1}{3}$ [JCW, Nucl. Phys. B912 (2016) 354]

< □ > < □ > < □ > < □ >

Renormalisable NCFT on Moyal spaces Renormalisable NCFT on R (Twisted) convolution product and Moyal product Summary

Finite gauge theories on \mathbb{R}^3_{λ}

- S describes dynamics of fluctuations of Φ_{μ} around $\Phi_{\mu} = 0$ or alternatively fluctuations of the gauge potential A_{μ} around θ_{μ}
- Finiteness origin:
 - Sufficient decay for propagator as $j \rightarrow \infty$ (UV regime)
 - j plays role of natural UV cut-off (kind of "external moment")
 - Existence of (finite) upper bound for general amplitude $\mathfrak{A}_{\mathcal{D}}^{j}$
- Commutative limit: does not reproduce Yang-Mills theorie.
- Solvable for $\Omega = rac{1}{3}$ [JCW, Nucl. Phys. B912 (2016) 354]

< □ > < □ > < □ > < □ >

Exactly solvable gauge theory on \mathbb{R}^3_{λ}

JCW, Nucl. Phys. B912 (2016) 354

For $\Omega = \frac{1}{3}$ in *S* above, partition function Z(Q) exactly computable

$$Z(Q) = \prod_{j \in \frac{\mathbb{N}}{2}} Z_j(Q), \ Z_j(Q) \sim \frac{\det_{-j \le m, n \le j} \left(f(\omega_m^j + \omega_n^j) \right)}{\Delta^2(Q^j)} \quad ,$$
$$f(x) = \sqrt{\frac{\pi g^2}{128(j+1)}} \ \operatorname{erfc}(x \sqrt{\frac{(j+1)}{64g^2}}) \ e^{x \frac{(j+1)}{64g^2}}$$

 $\Delta(Q^i)$ Vandermonde determinant, function of eigenvalues ω_n^j of kinetic operator Q. $Z_i(Q)$: τ -function for integrable 2-d Toda hierarchy.

(Twisted) convolution product and Moyal product

$$(f \star g)(x) = \int d^n k_2 \ e^{ik_2 x} \times \left[d^n k_1 \mathcal{F} f(k_1) \mathcal{F} g(k_2 - k_1) e^{\frac{i}{2}k_2 \theta k_1} \right]$$

Fourier transform of [...]= a twisted convolution product $\hat{\circ}$

- \mathbb{H} Heisenberg group, $F(z, u) \in \mathbb{C}[\mathbb{H}] := (L^1(\mathbb{H}), \circ), u \in \mathbb{R}^{2n}, z \in \mathbb{R}$
- Twist: $F^{\#}(u) := \int dz \ F(z, u) e^{i\frac{\hbar}{2}z}$ Obtained from representation:
- $\begin{aligned} \pi(F)(z,u) &= \int d^{2n} u dz \ F(z,u) \big[e^{\frac{\hbar}{2}z} U(u) \big], \ \big[.\big] \text{ projective unireps of } \mathbb{R}^{2n} \\ &- \text{Hence } (F \circ G)^{\#}(u) = (F^{\#} \widehat{\circ} G^{\#})(u) \end{aligned}$
- Set $F^{\#}(u) = \mathcal{F}f(u)$, i.e functions on 2*n*-dim momentum space
- Weyl quantization map $W(f) := \pi(\mathcal{F}f)$ use $W(f \star g) = W(f)W(g), \pi(F \circ G)^{\#}(u) = \pi(F^{\#})\pi(G^{\#})$ to get

$$f \star g = \mathcal{F}^{-1}(\mathcal{F}f \hat{\circ} \mathcal{F}g)$$

< ロ > < 同 > < 回 > < 回 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Summary

(Up to the twist)

• Start from group G related to coordinates algebra

- Consider $\mathbb{C}[G] = (L^1(G), \circ)$, its representation $\pi : \mathbb{C}[G] \to \mathcal{B}(\mathcal{H})$ $\pi(F) = \int_G d\nu(s)F(s)\pi_U(s),$
- $F = \mathcal{F}f$, i.e interpreted as functions on momentum space
- Weyl-type quantization $Q(f) = \pi(\mathcal{F}f)$, Q^* -morphism
- use $\pi(F \circ G) = \pi(F)\pi(G), \pi(F)^{\dagger} = \pi(F^*)$ to get

$$f \star g = \mathcal{F}^{-1}(\mathcal{F}f \circ \mathcal{F}g)$$

 $f^{\dagger} = \mathcal{F}^{-1}(\mathcal{F}(f)^{*})$

see e.g Hennings, Dubin, Publ. RIMS, Kyoto Univ. 45 (2009), 1041

Extends to *k*-Minkowski

Summary

(Up to the twist)

- Start from group G related to coordinates algebra
- Consider $\mathbb{C}[G] = (L^1(G), \circ)$, its representation $\pi : \mathbb{C}[G] \to \mathcal{B}(\mathcal{H})$ $\pi(F) = \int_G d\nu(s)F(s)\pi_U(s),$
- $F = \mathcal{F}f$, i.e interpreted as functions on momentum space
- Weyl-type quantization $Q(f) = \pi(\mathcal{F}f)$, Q^* -morphism
- use $\pi(F \circ G) = \pi(F)\pi(G)$, $\pi(F)^{\dagger} = \pi(F^*)$ to get

$$f \star g = \mathcal{F}^{-1}(\mathcal{F}f \circ \mathcal{F}g)$$
$$f^{\dagger} = \mathcal{F}^{-1}(\mathcal{F}(f)^{*})$$

see e.g Hennings, Dubin, Publ. RIMS, Kyoto Univ. 45 (2009), 1041

Extends to κ -Minkowski

Summary

(Up to the twist)

- Start from group G related to coordinates algebra
- Consider $\mathbb{C}[G] = (L^1(G), \circ)$, its representation $\pi : \mathbb{C}[G] \to \mathcal{B}(\mathcal{H})$ $\pi(F) = \int_G d\nu(s)F(s)\pi_U(s),$
- $F = \mathcal{F}f$, i.e interpreted as functions on momentum space
- Weyl-type quantization $Q(f) = \pi(\mathcal{F}f)$, Q^* -morphism
- use $\pi(F \circ G) = \pi(F)\pi(G), \pi(F)^{\dagger} = \pi(F^*)$ to get

$$f \star g = \mathcal{F}^{-1}(\mathcal{F}f \circ \mathcal{F}g)$$

 $f^{\dagger} = \mathcal{F}^{-1}(\mathcal{F}(f)^{*})$

see e.g Hennings, Dubin, Publ. RIMS, Kyoto Univ. 45 (2009), 1041

Extends to κ -Minkowski

Summary

(Up to the twist)

- Start from group G related to coordinates algebra
- Consider $\mathbb{C}[G] = (L^1(G), \circ)$, its representation $\pi : \mathbb{C}[G] \to \mathcal{B}(\mathcal{H})$ $\pi(F) = \int_G d\nu(s)F(s)\pi_U(s),$
- $F = \mathcal{F}f$, i.e interpreted as functions on momentum space
- Weyl-type quantization $Q(f) = \pi(\mathcal{F}f)$, Q^* -morphism
- use $\pi(F \circ G) = \pi(F)\pi(G), \pi(F)^{\dagger} = \pi(F^*)$ to get

$$f \star g = \mathcal{F}^{-1}(\mathcal{F}f \circ \mathcal{F}g)$$
$$f^{\dagger} = \mathcal{F}^{-1}(\mathcal{F}(f)^{*})$$

see e.g Hennings, Dubin, Publ. RIMS, Kyoto Univ. 45 (2009), 1041

Extends to κ -Minkowski

Summary

(Up to the twist)

- Start from group G related to coordinates algebra
- Consider $\mathbb{C}[G] = (L^1(G), \circ)$, its representation $\pi : \mathbb{C}[G] \to \mathcal{B}(\mathcal{H})$ $\pi(F) = \int_G d\nu(s)F(s)\pi_U(s),$
- $F = \mathcal{F}f$, i.e interpreted as functions on momentum space
- Weyl-type quantization $Q(f) = \pi(\mathcal{F}f)$, Q^* -morphism
- use $\pi(F \circ G) = \pi(F)\pi(G), \pi(F)^{\dagger} = \pi(F^*)$ to get

$$f \star g = \mathcal{F}^{-1}(\mathcal{F}f \circ \mathcal{F}g)$$

 $f^{\dagger} = \mathcal{F}^{-1}(\mathcal{F}(f)^{*})$

see e.g Hennings, Dubin, Publ. RIMS, Kyoto Univ. 45 (2009), 1041

Extends to κ -Minkowski

Convolution algebra for κ -Minkowski space

Another quantum space with "Lie algebra-type noncommutativity"

• Lie algebra \mathfrak{g} ($\kappa > 0$): (solvable)

$$[x_0, x_i] = \frac{i}{\kappa} x_i, \ [x_i, x_j] = 0, \ i, j = 1, \cdots, d.$$

Informally, κ -Minkowski \sim universal enveloping algebra of \mathfrak{g}

• Related group is known to be affine group $\mathcal{G} = \mathbb{R} \ltimes_{\phi} \mathbb{R}^{d}$

- Not unimodular: 3 distinct left and right-invariant measures

$$d
u(s) = \Delta_{\mathcal{G}}(s)d\mu(s), \ \forall s \in \mathcal{G}$$

modular function (group homomorphism) $\Delta_{\mathcal{G}}:\mathcal{G} o\mathbb{R}^+_{/0}$ [see e.g: D. Williams, Math. Surveys and Monographs, Vol. 134, AMS (2007)]

Convolution algebra for κ -Minkowski space

Another quantum space with "Lie algebra-type noncommutativity"

• Lie algebra \mathfrak{g} ($\kappa > 0$): (solvable)

$$[x_0, x_i] = \frac{i}{\kappa} x_i, \ [x_i, x_j] = 0, \ i, j = 1, \cdots, d.$$

Informally, κ -Minkowski \sim universal enveloping algebra of \mathfrak{g}

• Related group is known to be affine group

$$\mathcal{G} = \mathbb{R} \ltimes_{\phi} \mathbb{R}^{d}$$

- Not unimodular: 3 distinct left and right-invariant measures

$$d
u(s) = \Delta_{\mathcal{G}}(s)d\mu(s), \ \forall s \in \mathcal{G}$$

modular function (group homomorphism) $\Delta_{\mathcal{G}} : \mathcal{G} \to \mathbb{R}^+_{/0}$ [see e.g: D. Williams, Math. Surveys and Monographs, Vol. 134, AMS (2007)]

Convolution algebra for κ -Minkowski space

Right invariant measure. Corresponding convolution and involution

$$(f \circ g)(t) = \int_{\mathcal{G}} d\nu(s) f(ts^{-1})g(s), \ f^*(t) := \overline{f}(t^{-1})\Delta_{\mathcal{G}}(t),$$

for any functions in $L^1(\mathcal{G})$. Now: 1 – Use group laws for \mathcal{G} : ($p, q \in \mathbb{R}^3$)

$$W(p^0,p)W(q^0,q)=W(p^0+q^0,p+e^{-p^0/\kappa}q)$$

with $\mathbb{I}_{\mathcal{G}} = W(0,0)$, $W^{-1}(p^0,p) = W(-p^0,-e^{p^0/\kappa}p)$ – Note semi-direct product structure $\mathcal{G} = \mathbb{R} \ltimes_{\phi} \mathbb{R}^3$, $\phi(p^0)q = e^{-p^0/\kappa}q$ – Functions on \mathcal{G} viewed as functions on $\mathbb{R}^4 F(W) = F(p^0,p)$ $F(p^0,p) = \mathcal{F}f(p^0,p) = \int_{\mathbb{R}^4} dx_0 d^3x \ e^{-i(p^0x_0+p.x)}f(x_0,x)$

Weyl quantization and star product for κ-Minkowski space Properties of the star product Trading cyclicity for KMS condition Family of scalar NCFT: 2-and 4-point functions at 1-loop Conclusions

< ロ > < 同 > < 回 > < 回 > < 回 > <

Convolution algebra for κ -Minkowski spac

2- Use Modular function

$$\Delta_{\mathcal{G}}(p^0,p)=e^{3p^0/\kappa},$$

- right-invariant measure $d\nu(W) = dp_0 d^3 p$ to obtain

$$(f \circ g)(p_0,p) = \int_{\mathbb{R}^4} dq_0 d^3 q \ f(p_0 - q_0, p - e^{(q_0 - p_0)/\kappa}q) g(q_0,q)$$

$$f^*(p_0,p)=e^{p_0/\kappa}\overline{f}(-p_0,-e^{p_0/\kappa}p)$$

- Representation of the convolution algebra $\pi(f) = \int_{\mathcal{G}} d\nu(s) f(s) \pi_u(s)$ $\pi(f \circ g) = \pi(f) \pi(g)$ $\pi(f)^{\dagger} = \pi(f^*)$

Weyl quantization and star product for κ-Minkowski space Properties of the star product Trading cyclicity for KMS condition Family of scalar NCFT: 2-and 4-point functions at 1-loop Conclusions

< ロ > < 同 > < 回 > < 回 > < 回 > <

Quantization map and star product

Quantization map

 $Q(f) := \pi(\mathcal{F}f),$

One has

$$Q(f \star g) = Q(f)Q(g) = \pi(\mathcal{F}f)\pi(\mathcal{F}g) = \pi(\mathcal{F}f \circ \mathcal{F}g)$$
$$Q(f \star g) = \pi(\mathcal{F}(f \star g))$$

yields star product for κ -Minkowski space:

$$f \star g = \mathcal{F}^{-1}(\mathcal{F}f \circ \mathcal{F}g)$$

and involution using $\pi(f)^{\dagger} = \pi(f^*)$, $Q(f^{\dagger}) = Q(f)^{\dagger}$

$$f^{\dagger} = \mathcal{F}^{-1}(\mathcal{F}(f)^*)$$

Weyl quantization and star product for κ-Minkowski space Properties of the star product Trading cyclicity for KMS condition Family of scalar NCFT: 2-and 4-point functions at 1-loop Conclusions

< ロ > < 同 > < 回 > < 回 >

Quantization map and star product

Quantization map

$$Q(f):=\pi(\mathcal{F}f),$$

One has

$$\begin{array}{lll} Q(f \star g) &=& Q(f)Q(g) = \pi(\mathcal{F}f)\pi(\mathcal{F}g) = \pi(\mathcal{F}f \circ \mathcal{F}g) \\ Q(f \star g) &=& \pi(\mathcal{F}(f \star g)) \end{array}$$

yields star product for κ -Minkowski space:

$$f \star g = \mathcal{F}^{-1}(\mathcal{F}f \circ \mathcal{F}g)$$

and involution using $\pi(f)^{\dagger} = \pi(f^*), Q(f^{\dagger}) = Q(f)^{\dagger}$

$$f^{\dagger} = \mathcal{F}^{-1}(\mathcal{F}(f)^*)$$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Star product for 4-d κ -Minkowski space

One obtains ($x := (x_0, \vec{x})$):

$$(f\star g)(x) = \int rac{dp^0}{2\pi} dy_0 \; e^{-iy_0 p^0} f(x_0 + y_0, ec x) g(x_0, e^{-p^0/\kappa} ec x), \ f^\dagger(x) = \int rac{dp^0}{2\pi} dy_0 \; e^{-iy_0 p^0} ar f(x_0 + y_0, e^{-p^0/\kappa} ec x),$$

Star product can be extended to multiplier algebra, says $\mathbb{F}(\mathbb{R}^4)$ (as to include in particular coordinates x_{μ} 's, constants,...). One recovers $[x_0, x_i] = \frac{i}{\kappa} x_i$, $[x_i, x_j] = 0$, i, j = 1, ..., 3[Durhuus, Sitarz, J. Noncom.Geom. 7 (2013) 605, Poulain, JCW, PRD (2018) in press arXiv:1801.02715]

< ロ > < 同 > < 回 > < 回 >

Basic properties of the star product

Set $\mathcal{M}_{\kappa} = \kappa$ -Minkowski space, $(L^{1}(\mathcal{G}), \circ) = \mathbb{C}[\mathcal{G}]$

- Star product viewed as (inverse) Fourier transform of convolution product of C[G]. One has F : M_κ → C[G]
- Star product does not depend on group algebra representation (quantization map does!).
- Funny properties:
 - If g depends only on x_0 , $(f \star g)(x_0, x_1) = f(x_0, x_1)g(x_0)$
 - If *f* depends only on x_1 , $(f \star g)(x_0, x_1) = f(x_0)g(x_0, x_1)$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Basic properties of the star product

Set $\mathcal{M}_{\kappa} = \kappa$ -Minkowski space, $(L^{1}(\mathcal{G}), \circ) = \mathbb{C}[\mathcal{G}]$

- Star product viewed as (inverse) Fourier transform of convolution product of C[G]. One has F : M_κ → C[G]
- Star product does not depend on group algebra representation (quantization map does!).
- Funny properties:
 If *g* depends only on *x*₀, (*f* * *g*)(*x*₀, *x*₁) = *f*(*x*₀, *x*₁)*g* If *f* depends only on *x*₁, (*f* * *g*)(*x*₀, *x*₁) = *f*(*x*₀)*g*(*x*₀,

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Basic properties of the star product

Set $\mathcal{M}_{\kappa} = \kappa$ -Minkowski space, $(L^{1}(\mathcal{G}), \circ) = \mathbb{C}[\mathcal{G}]$

- Star product viewed as (inverse) Fourier transform of convolution product of C[G]. One has F : M_κ → C[G]
- Star product does not depend on group algebra representation (quantization map does!).
- Funny properties:
 - If g depends only on x_0 , $(f \star g)(x_0, x_1) = f(x_0, x_1)g(x_0)$
 - If *f* depends only on x_1 , $(f \star g)(x_0, x_1) = f(x_0)g(x_0, x_1)$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Useful simplying formulas

Simplifying formulas used in the construction of the action functionals:

$$\int d^4x \ (f\star g^\dagger)(x) = \int d^4x \ f(x)\bar{g}(x), \ \int d^4x \ f^\dagger(x) = \int d^4x \ \bar{f}(x),$$

Notice positive maps $\int d^4x: \mathcal{M}_{\kappa +} \to \mathbb{R}^+$ where $\mathcal{M}_{\kappa +}$:

$$\int d^4x \ f\star f^\dagger \geq 0, \ \int d^4x \ f^\dagger\star f \geq 0,$$

Convenient Hilbert product on \mathcal{M}_{κ} to construct action functionals

$$\langle f,g\rangle := \int d^4x \left(f^{\dagger}\star g\right)(x) = \int d^4x \ \overline{f}(x)(\sigma \triangleright g)(x)$$

$$\sigma \triangleright f := e^{-\frac{3P_0}{\kappa}} \triangleright f$$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Requirements for the action functional $S_{\kappa}(\phi, \phi^{\dagger})$

Let \mathcal{P}_{κ} be the κ -Poincaré Hopf algebra. Lukierski, Nowicki, Ruega, Tolstoy, Phys. Lett. B **268** (1991) 331.

Generated by elements $(P_i, M_i, N_i, \mathcal{E}, \mathcal{E}^{-1})$ $\mathcal{E} = e^{-P_0/\kappa}$

Recall \mathcal{P}_{κ} bicrossproduct structure. \mathcal{P}_{κ} has natural action on \mathcal{M}_{κ} . Majid, Ruegg, Phys. Lett. B**334** (1994) 348 \mathcal{M}_{κ} dual of Hopf subalgebra generated by (P_{μ}, \mathcal{E}) See e.g review Lukierski, J. Phys. Conf. Ser. **804** (2017) 012028

We demand :

-1 - $S_{\kappa}(\phi)$ is \mathcal{P}_{κ} -invariant, achieved when $S_{\kappa}(\phi) = \int d^4x \ \mathcal{L}(\phi)$,

-2 - $S_{\kappa}(\phi)$ reduces to standard complex ϕ^4 theory in the limit $\kappa \to \infty$.

٠

Weyl quantization and star product for *rc*-Minkowski space Properties of the star product Trading cyclicity for KMS condition Family of scalar NOFT: 2-and 4-point functions at 1-loop Conclusions

Trading cyclicity for KMS condition on the field algebra

 $\int d^4x$ does not define a trace:

$$\int d^4x \ f \star g = \int d^4x \ (\sigma \triangleright g) \star f$$

$$\sigma \triangleright f := \mathcal{E}^3 \triangleright f = e^{-\frac{3P_0}{\kappa}} \triangleright f$$

- κ -Poincaré invariance implies Twisted trace: cyclicity lost - Cyclicity is replaced by KMS condition on the algebra of fields = \mathcal{M}_{κ} (not (yet) at the level of algebra of observables). - The map $f \rightarrow \int d^4x f(x)$ defines a KMS weight for a particular
- group of *-automorphims called the modular group.

Definition

Twisted trace on an algebra is a linear positive map Tr such that $Tr(a \star b) = Tr((\sigma \triangleright b) \star a)$, where σ is an automorphism of the algebra called the twist.

Representing scalar NCFT as a non-local field theory

- Use simplifying formulas to represent the action as commutative (non-local) field theory.
- Reality condition from $\langle ., . \rangle$ ($\langle f, f \rangle$ is real) selects suitable terms:

$$\langle \phi, \mathbf{K}_{\kappa} \phi \rangle, \ \langle \phi^{\dagger}, \mathbf{K}_{\kappa} \phi^{\dagger} \rangle \\ \langle \phi^{\dagger} \star \phi, \phi^{\dagger} \star \phi \rangle, \ \langle \phi^{\dagger} \star \phi^{\dagger}, \phi^{\dagger} \star \phi^{\dagger} \rangle, \ \langle \phi \star \phi^{\dagger}, \phi \star \phi^{\dagger} \rangle, \ \langle \phi \star \phi, \phi \star \phi \rangle,$$

$$egin{aligned} &\mathcal{S}^{\mathsf{kin}}_\kappa(\phi^\dagger,\phi) = \langle \phi, (\mathcal{K}_\kappa+m^2)\phi
angle + \langle \phi^\dagger, (\mathcal{K}_\kappa+m^2)\phi^\dagger
angle \ &= \int d^4x \; \phi^\dagger \star (1+\sigma^{-1})(\mathcal{K}_\kappa+m^2)\phi, \end{aligned}$$

 $\mathcal{K}_{\kappa} \; \Psi \mathsf{DO}: (\mathcal{K}_{\kappa} f)(x) = \int rac{d^4 p}{(2\pi)^4} d^4 y \; \mathcal{K}_{\kappa}(p) f(y) e^{i p(x-y)}$

$$S_{1;\kappa}^{\text{int}} = \lambda \int d^4 x \left(\phi^{\dagger} \star \phi \star \phi^{\dagger} \star \phi \right) (x), \ S_{2;\kappa}^{\text{int}} = \lambda \int d^4 x \left(\phi \star \phi \star \phi^{\dagger} \star \phi^{\dagger} \right) (x),$$

$$S_{3;\kappa}^{\text{int}} = \lambda \int d^4 x \left(\phi \star \phi^{\dagger} \star \phi \star \phi^{\dagger} \right) (x), \ S_{4;\kappa}^{\text{int}} = \lambda \int d^4 x \left(\phi^{\dagger} \star \phi^{\dagger} \star \phi \star \phi \right) (x).$$

,

Weyl quantization and star product for *rk*-Minkowski space Properties of the star product Trading cyclicity for KMS condition Family of scalar NCFT: 2-and 4-point functions at 1-loop Conclusions

< ロ > < 同 > < 回 > < 回 > < 回 > <

Representing scalar NCFT as a non-local field theory

Use explicit expression for star product: $S_{\kappa}[\bar{\phi},\phi] = S_{\kappa}^{kin}[\bar{\phi},\phi] + S_{l;\kappa}^{int}[\bar{\phi},\phi], \ l = 1,...,4$

$$egin{split} S^{\mathsf{kin}}_{l;\kappa}[ar{\phi},\phi] &= rac{1}{2}\intrac{d^4p}{(2\pi)^4}\,ar{\phi}(p)\phi(p)\mathcal{K}(p), \ \mathcal{K}(p) &:= rac{1}{2}\left(1+e^{-3p^0/\kappa}
ight)\left(\mathcal{K}_\kappa(p)+m^2
ight), \end{split}$$

$$S_{l;\kappa}^{\text{int}}[\bar{\phi},\phi] = \lambda \int \left[\prod_{i=1}^{4} \frac{d^4 p_i}{(2\pi)^4}\right] \bar{\phi}(p_1)\phi(p_2)\bar{\phi}(p_3)\phi(p_4)V_l(p_1,p_2;p_3,p_4)$$

l = 1, ..., 4.Condition 2 OK: $\lim_{\kappa \to \infty} S_{\kappa}(\phi)$ =standard complex ϕ^4 (formally).

Weyl quantization and star product for *rk*-Minkowski space Properties of the star product Trading cyclicity for KMS condition Family of scalar NCFT: 2-and 4-point functions at 1-loop Conclusions

Kinetic operators

I

 $(K_{\kappa}f)(x) = \int \frac{d^4p}{(2\pi)^4} d^4y \ \mathcal{K}_{\kappa}(p)f(y)e^{ip(x-y)}$ characterized by \mathcal{K}_{κ} – Assumption: Function of the Casimir of $\mathcal{P}_{\kappa}, \mathcal{C}_{\kappa}(P_{\mu})$. Case 1: $\mathcal{K}_{\kappa} = \mathcal{C}_{\kappa}$

$$\mathcal{C}_\kappa(\pmb{P}_\mu)=4\kappa^2\sinh^2\left(rac{\pmb{P}_0}{2\kappa}
ight)+\pmb{e}^{\pmb{P}_0/\kappa}ec{\pmb{P}}^2$$

(Majid-Ruegg basis) $C_{\kappa}(P_{\mu})$ can be written as (D_0 and D_i self-adjoint):

 $\mathcal{C}_{\kappa}(P_{\mu}) = D_0^2 + D_i D^i, D_0 := \kappa \mathcal{E}^{-1/2} (1 - \mathcal{E}), \quad D_i := \mathcal{E}^{-1/2} P_i, \ i = 1, 2, 3$ Case 2: $\mathcal{K}_{\kappa} = \mathcal{K}_{\kappa}^{eq} (D_0^{eq}, D_i^{eq} \text{ self-adjoints})$

$$egin{aligned} \mathcal{K}^{eq}_\kappa(\mathcal{P}_\mu) &= D_0^{eq} D_0^{eq} + \sum_i D_i^{eq} D_i^{eq}, \ \mathcal{D}^{eq}_0 &:= rac{\mathcal{E}^{-1}}{2} \left(\kappa(1-\mathcal{E}^2) - rac{1}{\kappa}ec{\mathcal{P}}^2
ight) \ , \ D_i^{eq} &:= \mathcal{E}^{-1}\mathcal{P}_i, \end{aligned}$$

Equivariant Dirac operator in D'Andrea, J.Math.Phys. 47 (2006) 062105

Technical advance: quantum features of NCFT on \mathcal{M}_{κ}

- → convenient star product for practical use. Well defined procedure using properties of group algebra for M_κ.
 Easy to represent action as non-local commutative field theory.
- Provides real technical advance opening the actual exploration of NCFT on \mathcal{M}_{κ} .

Numerous papers for more than 20 y on classical properties but only very few dealing with quantum properties.

• *Technical* difficulties due to twisted trace can be overcome.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Technical advance: quantum features of NCFT on \mathcal{M}_{κ}

- → convenient star product for practical use. Well defined procedure using properties of group algebra for M_κ.
 Easy to represent action as non-local commutative field theory.
- Provides real technical advance opening the actual exploration of NCFT on \mathcal{M}_{κ} .

Numerous papers for more than 20 y on classical properties but only very few dealing with quantum properties.

• *Technical* difficulties due to twisted trace can be overcome.

< □ > < □ > < □ > < □ > < </p>

Technical advance: quantum features of NCFT on \mathcal{M}_{κ}

- → convenient star product for practical use. Well defined procedure using properties of group algebra for M_κ.
 Easy to represent action as non-local commutative field theory.
- Provides real technical advance opening the actual exploration of NCFT on \mathcal{M}_{κ} .

Numerous papers for more than 20 y on classical properties but only very few dealing with quantum properties.

• *Technical* difficulties due to twisted trace can be overcome.

One-loop 2-point functions

[Poulain, JCW, PRD (2018) in press, arXiv:1801.02715]

Systematic examination of 1-loop contributions to 2-point functions of each of the (8) different NCFT:

- Planar, non-planar diagrams still make sense
- Twist effect: controls in part the UV behavior of the contributions.
 Generates different behaviors among planar and non planar contributions: new sub-type of diagrams.
- \rightarrow Summary for K^{eq} : UV divergence milder than commutative ϕ^4 .
 - $\phi^{\dagger} \star \phi \star \phi^{\dagger} \star \phi$

No UV/IR mixing (no non planar cont.), linear UV divergence

• $\phi \star \phi \star \phi^{\dagger} \star \phi^{\dagger}$ UV/IR mixing signaled by IR singularity, linear UV divergend

Similar conclusions hold for the 2 other NCFT ($\phi \rightarrow \phi^{\dagger}$).

 \rightarrow Casimir: Linear UV divergence \rightarrow quadratic

One-loop 2-point functions

[Poulain, JCW, PRD (2018) in press, arXiv:1801.02715]

Systematic examination of 1-loop contributions to 2-point functions of each of the (8) different NCFT:

- Planar, non-planar diagrams still make sense
- Twist effect: controls in part the UV behavior of the contributions.
 Generates different behaviors among planar and non planar contributions: new sub-type of diagrams.

 \rightarrow Summary for K^{eq} : UV divergence milder than commutative ϕ^4 .

• $\phi^{\dagger} \star \phi \star \phi^{\dagger} \star \phi$

No UV/IR mixing (no non planar cont.), linear UV divergence

• $\phi \star \phi \star \phi^{\dagger} \star \phi^{\dagger}$

UV/IR mixing signaled by IR singularity, linear UV divergence

Similar conclusions hold for the 2 other NCFT ($\phi \rightarrow \phi^{\dagger}$).

 \rightarrow Casimir: Linear UV divergence \rightarrow quadratic

< ロ > < 同 > < 回 > < 回 > < 回 > <

2- and 4-point functions for "orientable" NCFT [Poulain, JCW, "Beta functions for field theories on κ-Minkowski", to appear]

Interaction $\phi^{\dagger} \star \phi \star \phi^{\dagger} \star \phi + \phi \star \phi^{\dagger} \star \phi \star \phi^{\dagger}$ stable against corrections Kinetic term = K^{eq} .(kinetic term = C_{κ} , nearly similar to ordinary ϕ^{4}) Consider first $\phi^{\dagger} \star \phi \star \phi^{\dagger} \star \phi$:

• Quadratic part of the effective action:

$$\Gamma^{(2)}[ar{\phi},\phi] = \int rac{d^4 p}{(2\pi)^4} \,ar{\phi}(p)\phi(p) \left(3\omega_1 e^{-3p^0/\kappa} + \omega_2
ight)$$

 ω_1 is finite, $\omega_2 = \frac{\lambda \kappa}{2\pi^2} \Lambda_0 + \text{finite terms}$

- Add $\phi \star \phi^{\dagger} \star \phi \star \phi^{\dagger}$. Net effect: $\omega_1 \rightleftharpoons \omega_2$ so that now $\Gamma^{(2)}[\bar{\phi},\phi] = \int \frac{d^4p}{(2\pi)^4} \bar{\phi}(p)\phi(p) \omega_{tot} \left(e^{-3p^0/\kappa} + 1\right)$
- 4-point function: Found to be UV finite. Thanks to existence of an estimate for the propagator.

2- and 4-point functions for "orientable" NCFT [Poulain, JCW, "Beta functions for field theories on κ-Minkowski", to appear]

Interaction $\phi^{\dagger} \star \phi \star \phi^{\dagger} \star \phi + \phi \star \phi^{\dagger} \star \phi \star \phi^{\dagger}$ stable against corrections Kinetic term = K^{eq} .(kinetic term = C_{κ} , nearly similar to ordinary ϕ^{4}) Consider first $\phi^{\dagger} \star \phi \star \phi^{\dagger} \star \phi$:

• Quadratic part of the effective action:

$$\Gamma^{(2)}[ar{\phi},\phi] = \int rac{d^4 p}{(2\pi)^4} \ ar{\phi}(p)\phi(p) \left(3\omega_1 e^{-3p^0/\kappa} + \omega_2
ight)$$

 ω_1 is finite, $\omega_2 = \frac{\lambda \kappa}{2\pi^2} \Lambda_0 + \text{finite terms}$

- Add $\phi \star \phi^{\dagger} \star \phi \star \phi^{\dagger}$. Net effect: $\omega_1 \rightleftharpoons \omega_2$ so that now $\Gamma^{(2)}[\bar{\phi},\phi] = \int \frac{d^4p}{(2\pi)^4} \bar{\phi}(p)\phi(p) \omega_{tot} \left(e^{-3p^0/\kappa} + 1\right)$
- 4-point function: Found to be UV finite. Thanks to existence of an estimate for the propagator.

< ロ > < 同 > < 回 > < 回 > < 回 > <

2- and 4-point functions for "orientable" NCFT [Poulain, JCW, "Beta functions for field theories on κ-Minkowski", to appear]

Interaction $\phi^{\dagger} \star \phi \star \phi^{\dagger} \star \phi + \phi \star \phi^{\dagger} \star \phi \star \phi^{\dagger}$ stable against corrections Kinetic term = K^{eq} .(kinetic term = C_{κ} , nearly similar to ordinary ϕ^{4}) Consider first $\phi^{\dagger} \star \phi \star \phi^{\dagger} \star \phi$:

• Quadratic part of the effective action:

$$\Gamma^{(2)}[ar{\phi},\phi] = \int rac{d^4 p}{(2\pi)^4} \ ar{\phi}(p)\phi(p) \left(3\omega_1 e^{-3p^0/\kappa} + \omega_2
ight)$$

 ω_1 is finite, $\omega_2 = \frac{\lambda \kappa}{2\pi^2} \Lambda_0 + \text{finite terms}$

- Add $\phi \star \phi^{\dagger} \star \phi \star \phi^{\dagger}$. Net effect: $\omega_1 \rightleftharpoons \omega_2$ so that now $\Gamma^{(2)}[\bar{\phi},\phi] = \int \frac{d^4p}{(2\pi)^4} \bar{\phi}(p)\phi(p) \omega_{tot} \left(e^{-3p^0/\kappa} + 1\right)$
- 4-point function: Found to be UV finite. Thanks to existence of an estimate for the propagator.

Conclusions

- Beta function of orientable model is 0 at 1-loop. Asymptotic safety??
- For 2-point functions: Results agree qualitatively with old results (Grosse, Wohlgenannt, Nucl. Phys. B748 (2006) 473.)
- Use of present star product very convenient: open the way to investigation of quantum properties of NCFT on \mathcal{M}_{κ} .
- Interesting issues/conjectures (among others) to be examined:
 - Orientable model renormalisable to all orders (likely)
 - The fate of UV/IR mixing in other scalar NCFT
 - Extension to gauge theories: twist (twisted trace \rightarrow cyclicity lost) versus gauge invariance of the action.
 - The physical consequences (if any) of twisted trace: implication of KMS condition?

Conclusions

- Beta function of orientable model is 0 at 1-loop. Asymptotic safety??
- For 2-point functions: Results agree qualitatively with old results (Grosse, Wohlgenannt, Nucl. Phys. B748 (2006) 473.)
- Use of present star product very convenient: open the way to investigation of quantum properties of NCFT on \mathcal{M}_{κ} .
- Interesting issues/conjectures (among others) to be examined:
 - Orientable model renormalisable to all orders (likely)
 - The fate of UV/IR mixing in other scalar NCFT
 - Extension to gauge theories: twist (twisted trace \rightarrow cyclicity lost) versus gauge invariance of the action.

– The physical consequences (if any) of twisted trace: implication of KMS condition?

< ロ > < 同 > < 回 > < 回 >

Conclusions

- Beta function of orientable model is 0 at 1-loop. Asymptotic safety??
- For 2-point functions: Results agree qualitatively with old results (Grosse, Wohlgenannt, Nucl. Phys. B748 (2006) 473.)
- Use of present star product very convenient: open the way to investigation of quantum properties of NCFT on M_κ.
- Interesting issues/conjectures (among others) to be examined:
 - Orientable model renormalisable to all orders (likely)
 - The fate of UV/IR mixing in other scalar NCFT
 - Extension to gauge theories: twist (twisted trace \rightarrow cyclicity lost) versus gauge invariance of the action.

– The physical consequences (if any) of twisted trace: implication of KMS condition?

Conclusions

- Beta function of orientable model is 0 at 1-loop. Asymptotic safety??
- For 2-point functions: Results agree qualitatively with old results (Grosse, Wohlgenannt, Nucl. Phys. B748 (2006) 473.)
- Use of present star product very convenient: open the way to investigation of quantum properties of NCFT on M_κ.
- Interesting issues/conjectures (among others) to be examined:
 - Orientable model renormalisable to all orders (likely)
 - The fate of UV/IR mixing in other scalar NCFT
 - Extension to gauge theories: twist (twisted trace \rightarrow cyclicity lost) versus gauge invariance of the action.

– The physical consequences (if any) of twisted trace: implication of KMS condition?

Twisted trace and KMS weight [Poulain, JCW, arXiv:1801.02715 (2018)]

- A state is a weight with norm 1. Now a simple lemma:

Lemma (Poulain, JCW - Matassa)

Set $\varphi(f) = \int d^4x f(x)$. The map φ defines a KMS weight on \mathcal{M}_{κ} for the modular group of *-automorphisms of \mathcal{M}_{κ}

$$\sigma_t(f) := e^{it\frac{3P_0}{\kappa}} \triangleright f = e^{\frac{3t}{\kappa}\partial_0} \triangleright f,$$

- One can check: $\varphi(\sigma_z f) = \varphi(f), \ \varphi(\sigma_{\frac{i}{2}}(f) \star (\sigma_{\frac{i}{2}}(f))^{\dagger}) = \varphi(f^{\dagger} \star f)$ where $\sigma_z := e^{iz_3 P_0/\kappa}, \ z \in \mathbb{C}.$ $\sigma = \sigma_{z=i} \text{ and } \sigma(f^{\dagger}) = (\sigma^{-1}(f))^{\dagger} \text{ (regular automorphism)}$

Definition (Kustermans)

A KMS weight on a (C*-)algebra \mathbb{A} for a modular group of *-automorphisms $\{\sigma_t\}_{t\in\mathbb{R}}$ is defined as a linear map $\varphi : \mathbb{A}_+ \to \mathbb{R}^+$ such that $\{\sigma_t\}_{t\in\mathbb{R}}$ admits an analytic extension, still a one-parameter group, $\{\sigma_z\}_{z\in\mathbb{C}}$ acting on \mathbb{A} satisfying:

i)
$$\varphi \circ \sigma_Z = \varphi$$
, ii) $\varphi(a^{\dagger} \star a) = \varphi(\sigma_{\frac{i}{2}}(a) \star (\sigma_{\frac{i}{2}}(a))^{\dagger}),$

Twisted trace and KMS weight [Poulain, JCW, arXiv:1801.02715 (2018)]

- A state is a weight with norm 1. Now a simple lemma:

Lemma (Poulain, JCW - Matassa)

Set $\varphi(f) = \int d^4x f(x)$. The map φ defines a KMS weight on \mathcal{M}_{κ} for the modular group of *-automorphisms of \mathcal{M}_{κ}

$$\sigma_t(f) := \boldsymbol{e}^{it\frac{3P_0}{\kappa}} \triangleright f = \boldsymbol{e}^{\frac{3t}{\kappa}\partial_0} \triangleright f,$$

- One can check: $\varphi(\sigma_z f) = \varphi(f), \ \varphi(\sigma_{\frac{i}{2}}(f) \star (\sigma_{\frac{i}{2}}(f))^{\dagger}) = \varphi(f^{\dagger} \star f)$ where $\sigma_z := e^{iz_3 P_0/\kappa}, \ z \in \mathbb{C}.$ $\sigma = \sigma_{z=i} \text{ and } \sigma(f^{\dagger}) = (\sigma^{-1}(f))^{\dagger} \text{ (regular automorphism)}$

Definition (Kustermans)

A KMS weight on a (C*-)algebra \mathbb{A} for a modular group of *-automorphisms $\{\sigma_t\}_{t\in\mathbb{R}}$ is defined as a linear map $\varphi : \mathbb{A}_+ \to \mathbb{R}^+$ such that $\{\sigma_t\}_{t\in\mathbb{R}}$ admits an analytic extension, still a one-parameter group, $\{\sigma_z\}_{z\in\mathbb{C}}$ acting on \mathbb{A} satisfying:

i)
$$\varphi \circ \sigma_z = \varphi$$
, ii) $\varphi(a^{\dagger} \star a) = \varphi(\sigma_{\frac{i}{2}}(a) \star (\sigma_{\frac{i}{2}}(a))^{\dagger})$

< D > < P > < E > <</pre>

KMS condition [Poulain, JCW, arXiv:1801.02715 (2018)]

– (up to technical conditions): If $\varphi(f)$ is a KMS weight, one has:

$$f_{a,b}(t) = \int d^4x \ \sigma_t(a) \star b := \langle \sigma_t(a) \star b \rangle = \langle b \star \sigma_{t-i}(a) \rangle$$

- looks like usual KMS condition among correlation functions.
- But here, only the algebra of fields (not the one of the observables). - For quantum systems, $f_{A,B}(t) = \langle \Sigma_t(A)B \rangle_{\Omega}$, (thermal) vacuum Ω , A, B functionals of fields, Σ_t evolution operator, in observables algebra. - If a KMS condition holds for algebra of observables, flow generated by the modular group σ_t may be used to define a global time.
- Tomita-Takesaki modular theory. $\Delta_T = e^{3P_0/\kappa}$ Tomita operator
- "physical" KMS condition on observables coming from above KMS?

Presently under study

2-d Moyal star product from a group algebra

- 1) Convolution algebra of Heisenberg group : (L¹(ℍ), ∘) := ℂ[ℍ] Lie algebra: 3-d Heisenberg Lie algebra [P, Q] = iZ, Z central.
 - Group laws for \mathbb{H} : $g(z, u, v)g(z', u', v') = h(z + z' + \frac{1}{2}(uv' - u'v), u + u', v + v'),$ $g^{-1}(z, u, v) = g(-z, -u, -v),$
 - \mathbb{H} unimodular. Haar measure: $d\mu(h) = dzdqdp$ (Lebesgues).
 - Convolution product $(f \circ g)(t) = \int_{\mathbb{H}} d\mu(s) f(s) g(s^{-1}t)$.
 - At this stage, functions on \mathbb{H} viewed as functions on \mathbb{R}^3 .

2) Representation of convolution algebra π : C[H] → B(L²(R))

$$\pi(f) = \int_{\mathbb{R}^3} dz du dv \ f(z, u, v) \pi_h[g(z, u, v)]$$

 $(\pi_h[g(z, u, v)]\psi)(x) = e^{i\frac{\hbar}{2}z} \cdot e^{i(\hbar\frac{uv}{2} + vx)}\psi(x + \hbar u),$

unirreps of \mathbb{H} : ($\hbar \neq 0$ (Stone-von Neumann))

2-d Moyal star product from a group algebra

- 1) Convolution algebra of Heisenberg group : (L¹(ℍ), ∘) := C[ℍ] Lie algebra: 3-d Heisenberg Lie algebra [P, Q] = iZ, Z central.
 - Group laws for \mathbb{H} : $g(z, u, v)g(z', u', v') = h(z + z' + \frac{1}{2}(uv' - u'v), u + u', v + v'),$ $g^{-1}(z, u, v) = g(-z, -u, -v),$
 - \mathbb{H} unimodular. Haar measure: $d\mu(h) = dzdqdp$ (Lebesgues).
 - Convolution product $(f \circ g)(t) = \int_{\mathbb{H}} d\mu(s) f(s) g(s^{-1}t)$.
 - At this stage, functions on \mathbb{H} viewed as functions on \mathbb{R}^3 .

2) Representation of convolution algebra π : C[H] → B(L²(R))

$$\pi(f) = \int_{\mathbb{R}^3} dz du dv \ f(z, u, v) \pi_h[g(z, u, v)]$$

 $(\pi_{\hbar}[g(z, u, v)]\psi)(x) = e^{i\frac{\hbar}{2}z} \cdot e^{i(\hbar\frac{uv}{2} + vx)}\psi(x + \hbar u),$

unirreps of \mathbb{H} : ($\hbar \neq 0$ (Stone-von Neumann))

2-d Moyal star product from a group algebra

- 1) Convolution algebra of Heisenberg group : (L¹(ℍ), ∘) := C[ℍ] Lie algebra: 3-d Heisenberg Lie algebra [P, Q] = iZ, Z central.
 - Group laws for \mathbb{H} : $g(z, u, v)g(z', u', v') = h(z + z' + \frac{1}{2}(uv' - u'v), u + u', v + v'),$ $g^{-1}(z, u, v) = g(-z, -u, -v),$
 - \mathbb{H} unimodular. Haar measure: $d\mu(h) = dzdqdp$ (Lebesgues).
 - Convolution product $(f \circ g)(t) = \int_{\mathbb{H}} d\mu(s) f(s) g(s^{-1}t)$.
 - At this stage, functions on \mathbb{H} viewed as functions on \mathbb{R}^3 .

2) Representation of convolution algebra π : C[H] → B(L²(R))

$$\pi(f) = \int_{\mathbb{R}^3} dz du dv \ f(z, u, v) \pi_h[g(z, u, v)]$$

 $(\pi_{\hbar}[g(z, u, v)]\psi)(x) = e^{j\frac{\hbar}{2}z} \cdot e^{j(\hbar\frac{uv}{2} + vx)}\psi(x + \hbar u),$

unirreps of \mathbb{H} : ($\hbar \neq 0$ (Stone-von Neumann))

2-d Moyal star product from a group algebra

- 1) Convolution algebra of Heisenberg group : (L¹(ℍ), ∘) := C[ℍ] Lie algebra: 3-d Heisenberg Lie algebra [P, Q] = iZ, Z central.
 - Group laws for \mathbb{H} : $g(z, u, v)g(z', u', v') = h(z + z' + \frac{1}{2}(uv' - u'v), u + u', v + v'),$ $g^{-1}(z, u, v) = g(-z, -u, -v),$
 - \mathbb{H} unimodular. Haar measure: $d\mu(h) = dzdqdp$ (Lebesgues).
 - Convolution product $(f \circ g)(t) = \int_{\mathbb{H}} d\mu(s) f(s) g(s^{-1}t)$.

• At this stage, functions on $\mathbb H$ viewed as functions on $\mathbb R^3$.

2) Representation of convolution algebra π : C[H] → B(L²(R))

$$\pi(f) = \int_{\mathbb{R}^3} dz du dv \ f(z, u, v) \pi_h[g(z, u, v)]$$

 $(\pi_h[g(Z, U, V)]\psi)(X) = e^{j\frac{\hbar}{2}Z} \cdot e^{j(\hbar\frac{UV}{2} + VX)}\psi(X + \hbar U),$

unirreps of \mathbb{H} : ($\hbar \neq 0$ (Stone-von Neumann))

2-d Moyal star product from a group algebra

- 1) Convolution algebra of Heisenberg group : (L¹(ℍ), ∘) := C[ℍ] Lie algebra: 3-d Heisenberg Lie algebra [P, Q] = iZ, Z central.
 - Group laws for \mathbb{H} : $g(z, u, v)g(z', u', v') = h(z + z' + \frac{1}{2}(uv' - u'v), u + u', v + v'),$ $g^{-1}(z, u, v) = g(-z, -u, -v),$
 - \mathbb{H} unimodular. Haar measure: $d\mu(h) = dzdqdp$ (Lebesgues).
 - Convolution product $(f \circ g)(t) = \int_{\mathbb{H}} d\mu(s) f(s) g(s^{-1}t)$.
 - At this stage, functions on \mathbb{H} viewed as functions on \mathbb{R}^3 .

2) Representation of convolution algebra π : C[ℍ] → B(L²(ℝ))

$$\pi(f) = \int_{\mathbb{R}^3} dz du dv \ f(z, u, v) \pi_h[g(z, u, v)]$$

 $(\pi_h[g(z, u, v)]\psi)(x) = e^{j\frac{\hbar}{2}z} \cdot e^{j(\hbar\frac{uv}{2} + vx)}\psi(x + \hbar u),$

unirreps of \mathbb{H} : ($\hbar \neq 0$ (Stone-von Neumann))

2-d Moyal star product from a group algebra

- 1) Convolution algebra of Heisenberg group : (L¹(ℍ), ∘) := C[ℍ] Lie algebra: 3-d Heisenberg Lie algebra [P, Q] = iZ, Z central.
 - Group laws for \mathbb{H} : $g(z, u, v)g(z', u', v') = h(z + z' + \frac{1}{2}(uv' - u'v), u + u', v + v'),$ $g^{-1}(z, u, v) = g(-z, -u, -v),$
 - \mathbb{H} unimodular. Haar measure: $d\mu(h) = dzdqdp$ (Lebesgues).
 - Convolution product $(f \circ g)(t) = \int_{\mathbb{H}} d\mu(s) f(s) g(s^{-1}t)$.
 - At this stage, functions on \mathbb{H} viewed as functions on \mathbb{R}^3 .

• 2) Representation of convolution algebra $\pi : \mathbb{C}[\mathbb{H}] \to \mathcal{B}(L^2(\mathbb{R}))$

$$\pi(f) = \int_{\mathbb{R}^3} dz du dv \ f(z, u, v) \pi_h[g(z, u, v)]$$

 $(\pi_{\hbar}[g(z, u, v)]\psi)(x) = e^{i\frac{\hbar}{2}z} \cdot e^{i(\hbar\frac{uv}{2} + vx)}\psi(x + \hbar u),$

unirreps of \mathbb{H} : ($\hbar \neq 0$ (Stone-von Neumann))

$$\pi(f\circ g)=\pi(f)\pi(g)$$

2-d Moyal star product from a group algebra

Setting:

$$f^{\#}(u,v) := \int dz \ f(z,u,v) e^{j\frac{\hbar}{2}z}$$
 defines a map $\# : L^1(\mathbb{R}^3) \to L^1(\mathbb{R}^2)$

and $(\pi(f)\psi)(x) = \int_{\mathbb{R}^2} du dv f^{\#}(u, v) e^{i(bx+\hbar \frac{pq}{2})} \psi(x + \hbar u)$. Consider action of # on convolution product. Standard calculation :

$$(f \circ g)^{\#}(u, v) = \int_{\mathbb{R}^2} du' dv' f^{\#}(u', v') g^{\#}(u - u', v - v') e^{\frac{i}{2}(uv' - u'v)}$$

yields twisted convolution: $(f \circ g)^{\#}(u, v) = (f^{\#} \circ g^{\#})(u, v)$. $f^{\#}(u, v) \sim$ functions on momentum space. Set $f^{\#}(u, v) = \mathcal{F}f(u, v)$

3) Weyl quantization map W(f) := π(Ff), W(f * g) = W(f)W(g) yields

$$f \star g = \mathcal{F}^{-1}(\mathcal{F}f \hat{\circ} \mathcal{F}g)$$

whose expression is the usual Moyal product.