

Axial gravity, massless fermions and trace anomalies

Tamara Štemberga

Department of Physics, Faculty of Science, University of Zagreb

SGQG, 2018.

L. Bonora, M. Cvitan, P. Dominis Prester, A. Duarte Pereira, S. Giaccari, T.Š.
 Eur. Phys. J. C 77 (2017) no.8, 511, [arXiv:1703.10473 [hep-th]]

Introduction

- A symmetry of the classical action is a transformation of the fields that leaves the action invariant.
- Are these symmetries still valid in the quantum theory?

If not, the theory is anomalous!

- Two types of anomalies:
 - Harmless
 - Harmful destroy consistency of QFT

Symmetries of classical action

- Classical action S is describing some matter field coupled to a curved background $g_{\mu\nu}$.
- Local diff transformations: $\delta_{\xi}g_{\mu\nu} = \nabla_{\mu}\xi_{\nu} + \nabla_{\nu}\xi_{\mu}$

If classical action is invariant \Rightarrow EMT is conserved $\delta_{\xi}S = 0 \Rightarrow \nabla^{\mu}T_{\mu\nu} = 0$

Energy-momentum tensor

$$T_{\mu\nu} = \frac{2}{\sqrt{g}} \frac{\delta S}{\delta g^{\mu\nu}}$$

Symmetries of classical action

- Classical action S is describing some matter field coupled to a curved background $g_{\mu\nu}$.
- Local diff transformations: $\delta_{\xi}g_{\mu\nu} = \nabla_{\mu}\xi_{\nu} + \nabla_{\nu}\xi_{\mu}$

If classical action is invariant \Rightarrow EMT is conserved $\delta_{\xi}S = 0 \Rightarrow \nabla^{\mu}T_{\mu\nu} = 0$

Energy-momentum tensor

$$T_{\mu\nu} = \frac{2}{\sqrt{g}} \frac{\delta S}{\delta g^{\mu\nu}}$$

• Local Weyl transformations: $\delta_{\omega}g_{\mu\nu} = \omega(x)g_{\mu\nu}$

If classical action is invariant \Rightarrow EMT is tracelsess

$$\delta_\omega S = 0 \qquad \Rightarrow \qquad T^\mu_\mu = 0$$

Tamara Štemberga (PMF) Axial gravity, mass

イロト イポト イヨト イヨト

Ward identities

• Fundamental object is partition function:

$$Z[g]=\int Dar{\psi}D\psi e^{iS}$$

Effective action:

$$Z[g] = e^{iW[g]} \quad \Rightarrow \quad W[g] = -i \ln Z[g]$$

• Expectation (1-point function) of the EMT:

$$\langle \langle T_{\mu\nu}(x) \rangle \rangle = \frac{1}{Z[g]} \int D\bar{\psi} D\psi T_{\mu\nu}(x) e^{iS} = \frac{2}{\sqrt{g}} \frac{\delta W[g]}{\delta g^{\mu\nu}}$$

- ₹ 🗦 🕨

Ward identities

• If the quantum theory has the same symmetries as classical action

Ward identity for diff-invariance

 $abla^{\mu}\langle\langle T_{\mu
u}(x)
angle
angle=0$

Ward identity for Weyl invariance

$$\langle\langle T^{\mu}_{\mu}(x)\rangle\rangle = 0$$

• If classical symmetry breaks after quantization \Rightarrow anomalies

A B A A B A

Diff and trace anomalies

EMT conserved

Diff anomaly

$$abla^{\mu}\langle\langle T_{\mu
u}(x)
angle
angle=0$$

• Symmetry under local Weyl transformations is broken

Trace anomaly - P-even part

 $\langle \langle T^{\mu}_{\mu}(x) \rangle \rangle = a E + c W^2$ [Capper, Duff 1975]

Euler density $E = R_{\mu\nu\lambda\rho}R^{\mu\nu\lambda\rho} - 4R_{\mu\nu}R^{\mu\nu} + R^2$ Weyl density $W^2 = R_{\mu\nu\lambda\rho}R^{\mu\nu\lambda\rho} - 2R_{\mu\nu}R^{\mu\nu} + \frac{1}{3}R^2$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Diff and trace anomalies

- From WZ consistency conditions
 - There is no diff-anomalies

$$abla^{\mu}\langle\langle T_{\mu
u}(x)
angle
angle=0$$

General form of trace anomaly is

$$\langle \langle T^{\mu}_{\mu}(x) \rangle \rangle = a E + c W^2 + e P$$
 [Bonora, Pasti, Tonin 1986]

Pontryagin density

$$P=rac{1}{2}\,arepsilon^{\mu
u
ho\sigma}\,R_{\mu
u}{}^{lphaeta}\,R_{
ho\sigmalphaeta}$$

[Bonora et al. 2014]

• Consider the action for left-handed Weyl fermion coupled to curved background in 4d.

$$S = \int d^4x \sqrt{|g|} \, i \overline{\psi_L} \gamma^\mu \left(
abla_\mu + rac{1}{2} \omega_\mu
ight) \psi_L$$

• Perturbative calculation around flat background

$$g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}$$

with redefinition of the field $\psi \rightarrow |g|^{\frac{1}{4}}\psi$

• The action up to h^2

$$S \approx \int d^4x \, \left[\frac{i}{2} (\delta^{\mu}_{a} - \frac{1}{2} h^{\mu}_{a}) \overline{\psi}_L \gamma^a \overset{\leftrightarrow}{\partial}_{\mu} \psi_L + \frac{1}{16} \epsilon^{\mu a b c} \, \partial_{\mu} h_{a\lambda} \, h^{\lambda}_b \, \bar{\psi}_L \gamma_c \gamma_5 \psi_L \right]$$

- The calculation of trace anomaly is based on Feynmann diagrams and dimensional regularization
- Vertices

$$egin{aligned} V_{ffh} &: -rac{i}{8} \left[(p+p')_{\mu} \gamma_{
u} + (p+p')_{
u} \gamma_{\mu}
ight] P_L \ V^{\epsilon}_{ffhh} &: rac{1}{64} t_{\mu
u\mu'
u'\kappa\lambda} (k-k')^{\lambda} \gamma^{\kappa} P_L \end{aligned}$$

where $P_L = rac{1+\gamma_5}{2}$ and

 $t_{\mu\nu\mu'\nu'\kappa\lambda} = \eta_{\mu\mu'}\epsilon_{\nu\nu'\kappa\lambda} + \eta_{\nu\nu'}\epsilon_{\mu\mu'\kappa\lambda} + \eta_{\mu\nu'}\epsilon_{\nu\mu'\kappa\lambda} + \eta_{\nu\mu'}\epsilon_{\mu\nu'\kappa\lambda}$

Diagrams

• Parity-odd part of trace of EMT at h^2 order

$$\langle \langle T^{\mu}_{\mu}(x) \rangle \rangle^{(2)}_{\mathrm{P}} = rac{1}{2} \int d^{4}x_{1} d^{4}x_{2} \, \mathcal{T}^{\mu_{1}
u_{1} \mu_{2}
u_{2}}(x, x_{1}, x_{2}) \, h_{\mu_{1}
u_{1}}(x_{1}) \, h_{\mu_{2}
u_{2}}(x_{2})$$

where

$$\mathcal{T}^{\mu_1\nu_1\mu_2\nu_2}(x, x_1, x_2) = -\eta_{\mu\nu} \left\langle T^{\mu\nu}_{(0)}(x) T^{\mu_1\nu_1}_{(0)}(x_1) T^{\mu_2\nu_2}_{(0)}(x_2) \right\rangle_{\mathrm{P-odd}}$$

• ${\cal T}^{\mu
u}_{(0)}$ is the energy momentum tensor in the flat space

$$T^{\mu\nu}_{(0)} = -\frac{i}{4} \left(\overline{\psi}_L \gamma^\mu \overleftrightarrow{\partial^\nu} \psi_L + (\mu \leftrightarrow \nu) \right)$$

• The explicit calculation gives [Bonora et al. 2014]

$$\left\langle \left\langle T^{\mu}_{\mu} \right\rangle \right\rangle_{\mathrm{P}}^{(2)} = \frac{i}{768\pi^2} \epsilon^{\mu\nu\lambda\rho} \left(\partial_{\mu}\partial_{\sigma}h^{\tau}_{\nu} \partial_{\lambda}\partial_{\tau}h^{\sigma}_{\rho} - \partial_{\mu}\partial_{\sigma}h^{\tau}_{\nu} \partial_{\lambda}\partial^{\sigma}h_{\tau\rho} \right)$$

• Covariantize:

$$\mathcal{A}_0 \equiv \langle \langle T^{\mu}_{\mu} \rangle
angle = rac{i}{768\pi^2} P \quad \Rightarrow \quad e_L = rac{i}{768\pi^2}$$

• For RH fermion $e_R = -\frac{i}{768\pi^2}$

- Calculate in 2 ways:
 - Repeat calculation for P-odd part of the trace anomaly for Weyl fermions coupled to curved background in 4d in a more pedantic way
 - Introduce axial gravity use Dirac fermions coupled to metric-axial-tensor (MAT) gravity

12 / 29

1. Calculation with Weyl fermions

- No redefinition of the field
- There are additional vertices, up to h^2 order:

$$V'_{ffh} : \frac{i}{4} \eta_{\mu\nu} (\not p + \not p') P_L$$

$$V'_{ffhh} : \frac{3i}{64} \Big[((p + p')_{\mu} \gamma_{\mu'} \eta_{\nu\nu'} + (p + p')_{\mu} \gamma_{\nu'} \eta_{\nu\mu'} + \{\mu \leftrightarrow \nu\}) \\ + ((p + p')_{\mu'} \gamma_{\mu} \eta_{\nu\nu'} + (p + p')_{\mu'} \gamma_{\nu} \eta_{\mu\nu'} + \{\mu' \leftrightarrow \nu'\}) \Big] P_L$$

$$V''_{ffhh} : -\frac{i}{16} \Big[\eta_{\mu\nu} ((p + p')_{\mu'} \gamma_{\nu'} + (p + p')_{\nu'} \gamma_{\mu'}) \\ + \eta_{\mu'\nu'} ((p + p')_{\mu} \gamma_{\nu} + (p + p')_{\nu} \gamma_{\mu}) \Big] P_L$$

$$V'''_{ffhh} : \frac{i}{8} (\not p + \not p') (\eta_{\mu\nu} \eta_{\mu'\nu'} - \eta_{\mu\nu'} \eta_{\mu'\nu} - \eta_{\mu\mu'} \eta_{\nu\nu'}) P_L$$

1. Calculation with Weyl fermions

• Flat-space energy momentum $T^{\mu\nu}_{(0)}(x)$ contains an additional term

$$T^{\mu\nu}_{(0)} = -\frac{i}{4} \left(\overline{\psi_L} \gamma^\mu \overleftrightarrow{\partial^\nu} \psi_L + (\mu \leftrightarrow \nu) \right) + \frac{i}{2} \eta^{\mu\nu} \overline{\psi_L} \gamma^\lambda \overleftrightarrow{\partial}_\lambda \psi_L$$

• The explicit calculation gives

$$\left\langle \left\langle T^{\mu}_{\mu} \right\rangle \right\rangle_{\mathrm{P}}^{(2)} = -\frac{3i}{768\pi^2} \epsilon^{\mu\nu\lambda\rho} \left(\partial_{\mu}\partial_{\sigma}h^{\tau}_{\nu} \partial_{\lambda}\partial_{\tau}h^{\sigma}_{\rho} - \partial_{\mu}\partial_{\sigma}h^{\tau}_{\nu} \partial_{\lambda}\partial^{\sigma}h_{\tau\rho} \right)$$

Covariantize the result

$$\langle \langle T^{\mu}_{\mu} \rangle
angle = -rac{3i}{768\pi^2} P$$

Not the result we expect!

SGQG, 2018. 14 / 29

1. Calculation with Weyl fermions

Check conservation of EMT, it is not zero

$$abla^{\mu}\langle\langle T_{\mu
u}(x)
angle
angle
eq 0$$

• Introduce counterterm

$${\cal C}=-{1\over 2}\int\omega\,h^\mu_\mu\,{\cal A}_0,$$

which cancels diff-anomaly and trace anomaly becomes

$$\langle \langle T^{\mu}_{\mu} \rangle \rangle = rac{i}{768\pi^2} P$$

Tamara Štemberga (PMF) Axial gravity, massless fermions and trace and

- Ispired by Bardeen's method for chiral gauge anomalies
- Use Dirac field and avoid subtleties with Weyl fermions
- In addition to ordinary gravity introduce axial metric ⇒ metric-axial-tensor (MAT) gravity

$$G_{\mu
u} = g_{\mu
u} + \gamma_5 f_{\mu
u}$$

• Vielbein:

$$E^a_\mu = e^a_\mu + \gamma_5 c^a_\mu, \qquad \hat{E}^\mu_a = \hat{e}^\mu_a + \gamma_5 \hat{c}^\mu_a$$

• Connection:

$$\Gamma^{\lambda}_{\mu\nu} = \Gamma^{(1)\lambda}_{\mu\nu} + \gamma_5 \Gamma^{(2)\lambda}_{\mu\nu}$$

• Riemann:

$$\mathcal{R}_{\mu\nu\lambda}{}^{\rho} = \mathcal{R}^{(1)}_{\mu\nu\lambda}{}^{\rho} + \gamma_5 \mathcal{R}^{(2)}_{\mu\nu\lambda}{}^{\rho}$$

• The MAT spin connection is introduced in analogy

$$\Omega_{\mu}^{ab} = E_{\nu}^{a} \left(\partial_{\mu} \hat{E}^{\nu b} + \hat{E}^{\sigma b} \Gamma_{\sigma \mu}^{\nu} \right) = \Omega_{\mu}^{(1)ab} + \gamma_{5} \Omega_{\mu}^{(2)ab}$$

- ∢ ∃ ▶

• The action

$$S = \int d^4 x \, i \overline{\psi} \sqrt{|\bar{G}|} \gamma^a \hat{E}^{\mu}_a \left(\partial_{\mu} + \frac{1}{2} \Omega_{\mu} \right) \psi \equiv \int d^4 x \overline{\psi} \sqrt{|\bar{G}|} \mathcal{O} \psi$$

is invariant under diffeomorphisms with parameter $\Xi^{\mu}=\xi^{\mu}+\gamma_5\zeta^{\mu}$

$$\delta_{\Xi} \mathcal{G}_{\mu\nu} = \mathcal{D}_{\mu} \Xi_{\nu} + \mathcal{D}_{\nu} \Xi_{\mu}$$

(日) (同) (三) (三)

3

18 / 29

The action

$$S = \int d^4 x \, i \overline{\psi} \sqrt{|\bar{G}|} \gamma^a \hat{E}^{\mu}_a \left(\partial_{\mu} + \frac{1}{2} \Omega_{\mu} \right) \psi \equiv \int d^4 x \overline{\psi} \sqrt{|\bar{G}|} \mathcal{O} \psi$$

is invariant under diffeomorphisms with parameter $\Xi^{\mu}=\xi^{\mu}+\gamma_5\zeta^{\mu}$

$$\delta_{\Xi} G_{\mu\nu} = \mathcal{D}_{\mu} \Xi_{\nu} + \mathcal{D}_{\nu} \Xi_{\mu}$$

• There are two independent classically conserved EMT

$$T^{\mu\nu} = 2\overline{\psi} \frac{\overleftarrow{\delta} \mathcal{O}}{\delta \mathcal{G}_{\mu\nu}} \psi$$
$$T_5^{\mu\nu} = 2\overline{\psi} \frac{\overleftarrow{\delta} \mathcal{O}}{\delta \mathcal{G}_{\mu\nu}} \gamma_5 \psi$$

Tamara Štemberga (PMF) Axial gravity, massless fermions and trace a

• There are two types of Weyl transformations: the usual

$$\delta_{\omega} G_{\mu\nu} = 2\omega G_{\mu\nu}$$

and the axial one

$$\delta_{\eta}G_{\mu\nu}=2\gamma_{5}\eta G_{\mu\nu}$$

• Two trace conditions

$$T^{\mu
u}g_{\mu
u} + T_5^{\mu
u}f_{\mu
u} = 0,$$

 $T^{\mu
u}f_{\mu
u} + T_5^{\mu
u}g_{\mu
u} = 0,$

< ∃ >

• Expand the action

$$S = \int d^4 x \, i \overline{\psi} \sqrt{|\bar{G}|} \gamma^a \hat{E}^{\mu}_a \left(\partial_{\mu} + rac{1}{2} \Omega_{\mu}
ight) \psi$$

ullet We use redefinition $\psi \to |\bar{G}|^{\frac{1}{4}}\psi$ and expand around flat background

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \qquad f_{\mu\nu} = k_{\mu\nu}$$

20 / 29

• Expand the action

$$S = \int d^4 x \, i \overline{\psi} \sqrt{|\bar{G}|} \gamma^a \hat{E}^{\mu}_a \left(\partial_{\mu} + \frac{1}{2} \Omega_{\mu}
ight) \psi$$

 \bullet We use redefinition $\psi \to |\bar{G}|^{\frac{1}{4}}\psi$ and expand around flat background

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \qquad f_{\mu\nu} = k_{\mu\nu}$$

• Vertices: The 2-fermion-1-graviton vertices:

$$V_{ffh} : -\frac{i}{8} \left[(p + p')_{\mu} \gamma_{\nu} + (p + p')_{\nu} \gamma_{\mu} \right]$$
$$V_{ffk} : -\frac{i}{8} \left[(p + p')_{\mu} \gamma_{\nu} + (p + p')_{\nu} \gamma_{\mu} \right] \gamma_{5}$$

• There are six 2-fermion-2-graviton vertices:

$$\begin{split} V_{ffhh} &: \quad \frac{3i}{64} \left[\left((p+p')_{\mu} \gamma_{\mu'} \eta_{\nu\nu'} + (p+p')_{\mu} \gamma_{\nu'} \eta_{\nu\mu'} + \{\mu \leftrightarrow \nu\} \right) \right. \\ &+ \left((p+p')_{\mu'} \gamma_{\mu} \eta_{\nu\nu'} + (p+p')_{\mu'} \gamma_{\nu} \eta_{\mu\nu'} + \{\mu' \leftrightarrow \nu'\} \right) \left] \\ V_{ffkk} &: \quad \frac{3i}{64} \left[\left((p+p')_{\mu} \gamma_{\mu'} \eta_{\nu\nu'} + (p+p')_{\mu} \gamma_{\nu} \eta_{\mu\nu'} + \{\mu \leftrightarrow \nu\} \right) \right. \\ &+ \left((p+p')_{\mu'} \gamma_{\mu} \eta_{\nu\nu'} + (p+p')_{\mu'} \gamma_{\nu} \eta_{\mu\nu'} + \{\mu' \leftrightarrow \nu'\} \right) \left] \right] \\ V_{ffhk} &: \quad \frac{3i}{64} \left[\left((p+p')_{\mu} \gamma_{\mu'} \eta_{\nu\nu'} + (p+p')_{\mu} \gamma_{\nu'} \eta_{\nu\mu'} + \{\mu \leftrightarrow \nu\} \right) \right. \\ &+ \left((p+p')_{\mu'} \gamma_{\mu} \eta_{\nu\nu'} + (p+p')_{\mu'} \gamma_{\nu} \eta_{\mu\nu'} + \{\mu' \leftrightarrow \nu'\} \right) \left] \gamma_{5} \\ V_{ffhh}^{\varepsilon} &: \quad \frac{1}{64} t_{\mu\nu\mu'\nu'\kappa\lambda} (k-k')^{\lambda} \gamma^{\kappa} \gamma_{5} \\ V_{ffhk}^{\varepsilon} &: \quad \frac{1}{64} t_{\mu\nu\mu'\nu'\kappa\lambda} (k-k')^{\lambda} \gamma^{\kappa} \end{cases} \end{split}$$

-

3

• Flat space EMT

$$T^{\mu\nu} \equiv T^{\mu\nu}_{(0,0)} = -\frac{i}{4} \left(\overline{\psi} \gamma^{\mu} \overleftrightarrow{\partial^{\nu}} \psi + \mu \leftrightarrow \nu \right),$$

and

$$T_5^{\mu\nu} \equiv T_{5(0,0)}^{\mu\nu} = \frac{i}{4} \left(\overline{\psi} \gamma_5 \gamma^{\mu} \overleftrightarrow{\partial^{\nu}} \psi + \mu \leftrightarrow \nu \right)$$

• The quantum Ward identities for the Weyl and axial Weyl symmetry

$$\mathcal{T}(x)\equiv \langle\langle T^{\mu
u}
angle
angle g_{\mu
u}+\langle\langle T_5^{\mu
u}
angle
angle f_{\mu
u}=0$$

and

$$\mathcal{T}_{5}(x) \equiv \langle \langle T^{\mu\nu} \rangle \rangle f_{\mu\nu} + \langle \langle T^{\mu\nu}_{5} \rangle \rangle g_{\mu\nu} = 0$$

I ∃ ►

- It turns out that only the 3-point correlators contribute
- Up to second order in the graviton field (lowest order)

$$\begin{split} \langle \langle T^{\mu}_{\mu} \rangle \rangle &= -\frac{i}{384\pi^2} \epsilon^{\mu\nu\lambda\rho} \left(\partial_{\mu}\partial_{\sigma}h^{\tau}_{\nu} \partial_{\lambda}\partial_{\tau}k^{\sigma}_{\rho} - \partial_{\mu}\partial_{\sigma}h^{\tau}_{\nu} \partial_{\lambda}\partial^{\sigma}k_{\tau\rho} \right) \\ \langle \langle T^{\mu}_{5\,\mu} \rangle \rangle &= -\frac{i}{768\pi^2} \epsilon^{\mu\nu\lambda\rho} \left(\partial_{\mu}\partial_{\sigma}h^{\tau}_{\nu} \partial_{\lambda}\partial_{\tau}h^{\sigma}_{\rho} - \partial_{\mu}\partial_{\sigma}h^{\tau}_{\nu} \partial_{\lambda}\partial^{\sigma}h_{\tau\rho} \right) \\ &- \frac{i}{768\pi^2} \epsilon^{\mu\nu\lambda\rho} \left(\partial_{\mu}\partial_{\sigma}k^{\tau}_{\nu} \partial_{\lambda}\partial_{\tau}k^{\sigma}_{\rho} - \partial_{\mu}\partial_{\sigma}k^{\tau}_{\nu} \partial_{\lambda}\partial^{\sigma}h_{\tau\rho} \right) \end{split}$$

• Covariantize the results:

$$\langle\!\langle T^{\mu}_{\mu}(x)\rangle\!\rangle = \frac{i}{768\pi^2} \epsilon^{\mu\nu\lambda\rho} \mathcal{R}^{(1)\sigma\tau}_{\mu\nu} \mathcal{R}^{(2)}_{\lambda\rho\sigma\tau}$$
$$\langle\!\langle T_{5\mu}{}^{\mu}(x)\rangle\!\rangle = \frac{i}{1536\pi^2} \epsilon^{\mu\nu\lambda\rho} \left(\mathcal{R}^{(1)\sigma\tau}_{\mu\nu} \mathcal{R}^{(1)}_{\lambda\rho\sigma\tau} + \mathcal{R}^{(2)\sigma\tau}_{\mu\nu} \mathcal{R}^{(2)}_{\lambda\rho\sigma\tau} \right)$$

3 SGQG, 2018. 24 / 29

∃ →

Image: A math a math

• Collapsing limit (for left-handed Weyl fermion)

$$h_{\mu
u} o rac{h_{\mu
u}}{2}, \quad k_{\mu
u} o rac{h_{\mu
u}}{2}$$

• The anomaly becomes

$$\langle\!\langle T^{\mu}_{\mu} \rangle\!\rangle = rac{i}{768\pi^2} P$$

• Collapsing limit (for right-handed Weyl fermion)

$$h_{\mu
u} o rac{h_{\mu
u}}{2}, \quad k_{\mu
u} o -rac{h_{\mu
u}}{2}$$

• The anomaly becomes

$$\langle\!\langle T^{\mu}_{\mu}\rangle\!\rangle = -\frac{i}{768\pi^2}P$$

▲ @ ▶ < ∃ ▶</p>

Collapsing limit

$$h_{\mu
u}
ightarrow h_{\mu
u}, \quad k_{\mu
u}
ightarrow 0$$

- The action reduces to the Dirac action (or to Majorana action if ψ satisfies reality condition)
- The anomaly, as expected, vanishes

$$\langle\!\langle T^{\mu}_{\mu} \rangle\!\rangle = 0$$

• There is an anomaly in the axial sector (analog of Kimura-Delbourgo-Salam anomaly for the axial current)

$$\langle\!\langle T^{\mu}_{5\mu}\rangle\!\rangle = \frac{i}{768\pi^2}P$$

Conclusion

Recalculated the parity odd trace anomaly in two ways:

- With Weyl fermions
- MAT gravity with Dirac fermions

P-odd part is given by Pontryagin density in 4d

- The usual opposing argument: "In 4d massless Weyl and Majorana fermion are indistinguishable."
 - Classically, there is one-to-one correspondence between massless Weyl and Majorana fermion
 - We do not expect Pontryagin anomaly for Majorana fermion
 - However, the path integral measure is different for Majorana and Weyl fermion!

Conclusion

• Strange imaginary coefficient $e = \pm \frac{i}{768\pi^2}$

- Could break unitarity
- Theories with chiral unbalance not consistent
- Only Dirac and Majorana fermions!
- Outlook:
 - Schwinger-DeWitt method
 - Calculation with different regularizations