Thermodynamic relations for black holes with NLE fields

Ivica Smolić

University of Zagreb

 I. Barjašić, L. Gulin and I.S.: Nonlinear electromagnetic fields and symmetries PRD 95 (2017) 124037 [1705.00628]

- I. Barjašić, L. Gulin and I.S.: Nonlinear electromagnetic fields and symmetries PRD 95 (2017) 124037 [1705.00628]
- L. Gulin and I.S.: Generalizations of the Smarr formula for black holes with nonlinear electromagnetic fields
 CQG 35 (2018) 025015 [1710.04660]

- I. Barjašić, L. Gulin and I.S.: Nonlinear electromagnetic fields and symmetries PRD 95 (2017) 124037 [1705.00628]
- L. Gulin and I.S.: Generalizations of the Smarr formula for black holes with nonlinear electromagnetic fields
 CQG 35 (2018) 025015 [1710.04660]
- I.S.: Spacetimes dressed with stealth electromagnetic fields
 PRD 97 (2018) 084041 [1711.07490]

Central question:

Central question:

HOW DOES NONLINEAR ELECTRODYNAMICS MODIFY BLACK HOLE THERMODYNAMICS?

Black hole thermodynamics

o.
$$T = const.$$

1. $dE = TdS + \dots$

$$\kappa = \text{const.}$$

$$2. \quad \delta S > 0$$

$$\delta A > 0$$

3.
$$T \rightarrow 0$$

$$\kappa \nrightarrow 0$$

Euler
$$E = TS + \dots$$

$$M = \frac{1}{4\pi} \kappa A + \dots$$

 $dM = \frac{1}{8\pi} \kappa dA + \dots$

Going beyond Einstein and Maxwell

• identify intensive-extensive pairs:

$$(\kappa,\mathcal{A})$$
 , (Ω,J) , (Φ,Q) , (Ψ,P) , (Λ,V) , ...

Going beyond Einstein and Maxwell

· identify intensive-extensive pairs:

$$(\kappa,\mathcal{A})$$
 , (Ω,J) , (Φ,Q) , (Ψ,P) , (Λ,V) , ...

 develop algorithms for the extensions of thermodynamic relations

NLE redux

• (mostly) natural system of units: $c = G = 4\pi\varepsilon_0 = 4\pi\mu_0 = 1$

- (mostly) natural system of units: $c = G = 4\pi\varepsilon_0 = 4\pi\mu_0 = 1$
- (mostly) 4-dimensional spacetimes

- (mostly) natural system of units: $c = G = 4\pi\varepsilon_0 = 4\pi\mu_0 = 1$
- · (mostly) 4-dimensional spacetimes
- two electromagnetic invariants:

$$\mathfrak{F} \equiv F_{ab}F^{ab} \quad \text{and} \quad \mathfrak{G} \equiv F_{ab} * F^{ab}$$

- (mostly) natural system of units: $c = G = 4\pi\varepsilon_0 = 4\pi\mu_0 = 1$
- · (mostly) 4-dimensional spacetimes
- two electromagnetic invariants:

$$\mathfrak{F} \equiv F_{ab}F^{ab} \quad \text{and} \quad \mathfrak{G} \equiv F_{ab} * F^{ab}$$

$$F \wedge *F = \frac{1}{2} \mathcal{F} *1$$
 $F \wedge F = \frac{1}{2} \mathcal{G} *1$

Maxwell's electrodynamics

· Maxwell's Lagrangian

$$\mathscr{L}^{(\mathsf{Max})} = -\frac{1}{4}\,\mathfrak{F}$$

Maxwell's electrodynamics

· Maxwell's Lagrangian

$$\mathscr{L}^{(\mathsf{Max})} = -\frac{1}{4}\,\mathfrak{F}$$

· source-free Maxwell's equations

$$dF = 0, \quad d*F = 0$$

Maxwell's electrodynamics

· Maxwell's Lagrangian

$$\mathscr{L}^{(\mathsf{Max})} = -\frac{1}{4}\,\mathfrak{F}$$

· source-free Maxwell's equations

$$dF = 0, \quad d*F = 0$$

energy-momentum tensor

$$T_{ab}^{(\mathrm{Max})} = \frac{1}{4\pi} \left(F_{ac} F_b^{\ c} - \frac{1}{4} g_{ab} \mathcal{F} \right)$$

Max Born, Leopold Infeld, Werner K. Heisenberg, Hans H. Euler

Max Born, Leopold Infeld, Werner K. Heisenberg, Hans H. Euler

• Max Born (1933), introducing an upper limit \emph{b} for the field strength

$$\mathscr{L}^{(\mathsf{Born})} = b^2 \left(1 - \sqrt{1 + \frac{\mathcal{F}}{2b^2}} \right)$$

· Born-Infeld (1934)

$$\mathscr{L}^{(BI)} = b^2 \left(1 - \sqrt{1 + \frac{\mathfrak{F}}{2b^2} - \frac{\mathfrak{G}^2}{16b^4}} \right)$$

· Born-Infeld (1934)

$$\mathcal{L}^{(BI)} = b^2 \left(1 - \sqrt{1 + \frac{\mathcal{F}}{2b^2} - \frac{\mathcal{G}^2}{16b^4}} \right)$$

· alternative route ("reverse engineering")

$$E = \frac{Q}{r^2} dr \rightarrow E = \frac{Q}{\sqrt{r^4 + (Q/b)^2}} dr \rightarrow \mathscr{L} = \dots$$

· Born-Infeld (1934)

$$\mathscr{L}^{(BI)} = b^2 \left(1 - \sqrt{1 + \frac{\mathcal{F}}{2b^2} - \frac{\mathcal{G}^2}{16b^4}} \right)$$

alternative route ("reverse engineering")

$$E = \frac{Q}{r^2} dr \rightarrow E = \frac{Q}{\sqrt{r^4 + (Q/b)^2}} dr \rightarrow \mathscr{L} = \dots$$

• Euler-Heisenberg (1935): one-loop QED corrections to Maxwell

$$\mathcal{L}^{(EH)} = -\frac{1}{4} \mathcal{F} + \frac{\alpha^2}{360 m_a^4} \left(4 \mathcal{F}^2 + 7 \mathcal{G}^2 \right) + O(\alpha^3)$$

· Bardeen's model (1968)

$$\mathscr{L} = \frac{3M}{g^3} \left(\frac{g\sqrt{2\mathfrak{F}}}{2 + g\sqrt{2\mathfrak{F}}} \right)^{5/2}$$

· Bardeen's model (1968)

$$\mathscr{L} = \frac{3M}{g^3} \left(\frac{g\sqrt{2\mathfrak{F}}}{2 + g\sqrt{2\mathfrak{F}}} \right)^{5/2}$$

"Bardeen's black hole": $F = g \sin \theta \, \mathrm{d} \theta \wedge \mathrm{d} \varphi$

$$ds^{2} = -f(r) dt^{2} + \frac{dr^{2}}{f(r)} + r^{2} d\Omega^{2}, \quad f(r) = 1 - \frac{2Mr^{2}}{(r^{2} + g^{2})^{3/2}}$$

· Bardeen's model (1968)

$$\mathcal{L} = \frac{3M}{g^3} \left(\frac{g\sqrt{2\mathfrak{F}}}{2 + g\sqrt{2\mathfrak{F}}} \right)^{5/2}$$

"Bardeen's black hole": $F = g \sin \theta \, d\theta \wedge d\varphi$

$$ds^{2} = -f(r) dt^{2} + \frac{dr^{2}}{f(r)} + r^{2} d\Omega^{2}, \quad f(r) = 1 - \frac{2Mr^{2}}{(r^{2} + g^{2})^{3/2}}$$

• [Fradkin, Tseytlin 1985] [Seiberg, Witten 1999] strings ightarrow BI

Bardeen's model (1968)

$$\mathscr{L} = \frac{3M}{g^3} \left(\frac{g\sqrt{2\mathfrak{F}}}{2 + g\sqrt{2\mathfrak{F}}} \right)^{5/2}$$

"Bardeen's black hole": $F = g \sin \theta \, d\theta \wedge d\varphi$

$$ds^{2} = -f(r) dt^{2} + \frac{dr^{2}}{f(r)} + r^{2} d\Omega^{2}, \quad f(r) = 1 - \frac{2Mr^{2}}{(r^{2} + g^{2})^{3/2}}$$

- \cdot [Fradkin, Tseytlin 1985] [Seiberg, Witten 1999] strings o BI
- · NLE zoo:

[Soleng: PRD **52** (1995)]
$$\mathscr{L} \sim \ln(1 + \lambda \mathfrak{F})$$

[Hassaine, Martínez: PRD **75** (2007)] $\mathscr{L} \sim \mathfrak{F}^s$

[Hendi: JHEP **o3** (2012)] $\mathscr{L} \sim \exp(-\mathcal{F}/\beta^2) - 1$

$$E_{\rm lightning} \sim 10^6 \, {\rm V/m} \; , \quad E_{\rm cr}^{\rm (EH)} = \frac{m_e^2 c^3}{e \hbar} \sim 10^{18} \, {\rm V/m} \; . \label{eq:elightning}$$

$$E_{
m lightning} \sim 10^6 \, {
m V/m} \; , \quad E_{
m cr}^{({
m EH})} = rac{m_e^2 c^3}{e \hbar} \sim 10^{18} \, {
m V/m}$$

• The Extreme Light Infrastructure project $(E>10^{15}\,\mathrm{V/m})$

$$E_{
m lightning} \sim 10^6 \, {
m V/m} \; , \quad E_{
m cr}^{({
m EH})} = rac{m_e^2 c^3}{e \hbar} \sim 10^{18} \, {
m V/m}$$

- The Extreme Light Infrastructure project $(E > 10^{15} \, \mathrm{V/m})$
- · Born-Infeld:

$$b > 10^{27} \, \text{V/m} \, [\text{PRL 118 (2017)}] \, \text{via ATLAS}$$

 $b>10^{21}\,\mathrm{V/m}$ [EPJC **78** (2018)] via hydrogen's ionization en.

$$E_{
m lightning} \sim 10^6 \, {
m V/m} \; , \quad E_{
m cr}^{({
m EH})} = rac{m_e^2 c^3}{e \hbar} \sim 10^{18} \, {
m V/m}$$

- The Extreme Light Infrastructure project $(E > 10^{15} \, \mathrm{V/m})$
- · Born-Infeld:

$$b > 10^{27} \, {
m V/m} \,$$
 [PRL **118** (2017)] via ATLAS $b > 10^{21} \, {
m V/m} \,$ [EPJC **78** (2018)] via hydrogen's ionization en. remaining window $10^{19} \, {
m V/m} \lesssim b \lesssim 10^{27} \, {
m V/m} \,$ [EPJC **78** (2018)]

 \cdot power-Maxwell: $|s-1| < 10^{-15} \; \; [{
m PRL} \; {
m 26} \; ({
m 1971})]$

• power-Maxwell: $|s-1| < 10^{-15}$ [PRL **26** (1971)]

[Rev.Mod.Phys. 82 (2010)]

"... 35-year-old result of Williams, Faller, and Hill remains the landmark test of Coulomb's Law ... Their limit is unsurpassed in the substantiated (laboratory) literature."

• power-Maxwell: $|s-1| < 10^{-15}$ [PRL **26** (1971)]

[Rev.Mod.Phys. 82 (2010)]

"... 35-year-old result of Williams, Faller, and Hill remains the landmark test of Coulomb's Law ... Their limit is unsurpassed in the substantiated (laboratory) literature."

 Fouché, Battesti and Rizzo: Limits on nonlinear electrodynamics [PRD 93 (2016)]

Basic elements of NLE

• general NLE Lagrangian $\mathscr{L} = \mathscr{L}(\mathfrak{F}, \mathfrak{G})$

Basic elements of NLE

- general NLE Lagrangian $\mathscr{L}=\mathscr{L}(\mathfrak{F},\mathfrak{G})$
- generalized Maxwell's equations

$$\mathrm{d}F = 0 \; , \quad \mathrm{d}*Z = 0$$

$$Z_{ab} \equiv -4(\mathcal{L}_{\mathcal{F}}F_{ab} + \mathcal{L}_{\mathcal{G}}*F_{ab})$$

Basic elements of NLE

- general NLE Lagrangian $\mathscr{L}=\mathscr{L}(\mathfrak{F},\mathfrak{G})$
- · generalized Maxwell's equations

$$\mathrm{d}F=0\;,\quad \mathrm{d}*Z=0$$

$$Z_{ab}\equiv -4(\mathscr{L}_{\mathfrak{F}}F_{ab}+\mathscr{L}_{\mathfrak{G}}*F_{ab})$$

energy-momentum tensor

$$T_{ab} = -4\mathcal{L}_{\mathcal{F}} T_{ab}^{(\text{Max})} + \frac{1}{4} T g_{ab}$$

Zeroth law of BH thermodynamics

• intensive variables: κ , Φ , Ψ , ...

- intensive variables: κ , Φ , Ψ , ...
- surface gravity of a Killing horizon H[K]

$$K^b \nabla_{\!b} K^a \stackrel{H}{=} \kappa K^a$$

- intensive variables: κ , Φ , Ψ , ...
- \cdot surface gravity of a Killing horizon H[K]

$$K^b \nabla_{\!b} K^a \stackrel{H}{=} \kappa K^a$$

• ZEROTH LAW: $\kappa \stackrel{H}{=} \mathrm{const.}$

- intensive variables: κ , Φ , Ψ , ...
- surface gravity of a Killing horizon H[K]

$$K^b \nabla_b K^a \stackrel{H}{=} \kappa K^a$$

• ZEROTH LAW: $\kappa \stackrel{H}{=} \mathrm{const.}$

proofs:

via Frobenius theorem (Carter 1972) via DEC and Einstein EOM (Bardeen et al. 1973) via bifurcation surface (Kay & Wald 1991)

• Electric and magnetic 1-forms with respect to K^a

$$E \equiv -i_{\rm K}F$$
 $H \equiv i_{\rm K}*Z$

ullet Electric and magnetic 1-forms with respect to K^a

$$E \equiv -i_{K}F \qquad H \equiv i_{K}*Z$$

$$dE = -di_{K}F = -\pounds_{K}F + i_{K}dF$$

$$dH = di_{K}*Z = \pounds_{K}*Z - i_{K}d*Z$$

 \cdot Electric and magnetic 1-forms with respect to K^a

$$E \equiv -i_{K}F \qquad H \equiv i_{K}*Z$$

$$dE = -di_{K}F = -\pounds_{K}F + i_{K}dF$$

$$dH = di_{K}*Z = \pounds_{K}*Z - i_{K}d*Z$$

• local condition, $\pounds_{\mathbf{K}}F=0$, implies $\mathrm{d}E=0=\mathrm{d}H$

 \cdot Electric and magnetic 1-forms with respect to K^a

$$E \equiv -i_{K}F \qquad H \equiv i_{K}*Z$$

$$dE = -di_{K}F = -\pounds_{K}F + i_{K}dF$$

$$dH = di_{K}*Z = \pounds_{K}*Z - i_{K}d*Z$$

- · local condition, $\pounds_{\mathbf{K}}F=0$, implies $\mathrm{d}E=0=\mathrm{d}H$
- global condition, $H^1_{\mathrm{dR}}(\langle\langle M \rangle\rangle)=$ 0, guarantees

$$E = -\mathrm{d}\Phi$$
 $H = -\mathrm{d}\Psi$

· Basic setting:

 $\boldsymbol{\cdot}$ Basic setting:

smooth spacetime (M, g_{ab}, F_{ab})

· Basic setting:

smooth spacetime (M, g_{ab}, F_{ab})

...admitting a smooth Killing vector field K^a

· Basic setting:

smooth spacetime (M, g_{ab}, F_{ab})

...admitting a smooth Killing vector field K^a

$$\pounds_{\mathbf{K}} g_{ab} = 0 \quad \Rightarrow \quad \pounds_{\mathbf{K}} F_{ab} = ?$$

· Basic setting:

smooth spacetime (M,g_{ab},F_{ab})

...admitting a smooth Killing vector field K^a

$$\pounds_{\mathbf{K}} g_{ab} = 0 \quad \Rightarrow \quad \pounds_{\mathbf{K}} F_{ab} = ?$$

$$\pounds_{\mathbf{K}} g_{ab} = 0 \quad \& \quad ?? \quad \Rightarrow \quad \pounds_{\mathbf{K}} F_{ab} = 0$$

Basic trick (for minimally coupled fields)

$$\mathcal{L}_{K}E_{ab} = 0 \qquad \qquad \mathcal{L}_{K}T_{ab} = 0$$

$$\mathcal{L}_{K}T_{ab} = 0$$

$$\mathcal{L}_{K}\psi^{a...}_{b} = \cdots$$

Symmetry inheritance of the EM field in a nutshell

$$\begin{array}{lll} \text{(1+1)} & \pounds_{\mathbf{K}}F_{ab} = 0 & \text{BGS '17} \\ \\ \text{(1+2)} & \pounds_{\mathbf{K}}F_{ab} = 0 & \text{CDPS '16} \\ \\ \text{(1+3)} & \pounds_{\mathbf{K}}F_{ab} = \alpha *F_{ab} & \text{MW '75 / WY '76} \\ \\ \geq 5 & \pounds_{\mathbf{K}}(F_{ac}F_{b}{}^{c}) = 0 & \text{BGS '17} \\ \end{array}$$

[PRD **95** (2017)] I. **B**arjašić, L. **G**ulin, I. **S**.

[CQG **33** (2016)] M. **C**vitan, P. **D**ominis **P**rester, I. **S**.

Symmetry inheritance of NLE fields [PRD 95 (2017)]

• Symmetry inheritance at points with $\mathscr{L}_{\mathfrak{F}} \neq 0$

$$\pounds_{\mathbf{K}} F_{ab} = \alpha * F_{ab} + \beta F_{ab} , \quad \beta = -\frac{1}{2\mathscr{L}_{\mathfrak{F}}} \pounds_{\mathbf{K}} \mathscr{L}_{\mathfrak{F}}$$

Symmetry inheritance of NLE fields [PRD 95 (2017)]

• Symmetry inheritance at points with $\mathscr{L}_{\mathfrak{F}} \neq 0$

$$\pounds_{\mathbf{K}} F_{ab} = \alpha * F_{ab} + \beta F_{ab} , \quad \beta = -\frac{1}{2\mathscr{L}_{\mathfrak{T}}} \pounds_{\mathbf{K}} \mathscr{L}_{\mathfrak{T}}$$

• For $\mathscr{L}=\mathscr{L}(\mathfrak{F})$ and a non-null field we have

$$\pounds_{\mathbf{K}}F_{ab}=0$$

on the set $\{\mathscr{L}_{\mathfrak{F}} \neq 0\} \cap \{\mathfrak{F}\mathscr{L}_{\mathfrak{F}\mathfrak{F}} \neq 0\}$.

Symmetry inheritance of NLE fields [PRD 95 (2017)]

• Symmetry inheritance at points with $\mathscr{L}_{\mathfrak{F}} \neq 0$

$$\pounds_{\mathbf{K}} F_{ab} = \alpha * F_{ab} + \beta F_{ab} , \quad \beta = -\frac{1}{2\mathscr{L}_{\mathfrak{T}}} \pounds_{\mathbf{K}} \mathscr{L}_{\mathfrak{T}}$$

• For $\mathscr{L}=\mathscr{L}(\mathfrak{F})$ and a non-null field we have

$$\pounds_{\mathbf{K}}F_{ab}=0$$

on the set $\{\mathscr{L}_{\mathfrak{F}} \neq 0\} \cap \{\mathfrak{F}\mathscr{L}_{\mathfrak{F}\mathfrak{F}} \neq 0\}.$

• stealth examples \rightarrow [I.S.: PRD **97** (2018)]

· via Einstein field equation [Carter 1973]

$$R(K, K) \stackrel{H}{=} 0$$

$$E^a E_a + B^a B_a = 8\pi T(K, K)$$

$$E^a E_a - B^a B_a = K^a K_a \mathcal{F}$$

[NLE \rightarrow Rasheed hep-th/9702087]

· via Einstein field equation [Carter 1973]

$$R(K, K) \stackrel{H}{=} 0$$

$$E^a E_a + B^a B_a = 8\pi T(K, K)$$

$$E^a E_a - B^a B_a = K^a K_a \mathcal{F}$$

[NLE \rightarrow Rasheed hep-th/9702087]

· via bifurcation surface [Gao: PRD 68 (2003)]

via Frobenius condition (staticity or circularity)
 [I.S. 2012, 2014; I. Barjašić, L. Gulin and I.S. 2017]

$$[k, m] = 0 , \quad k \wedge m \wedge dk = k \wedge m \wedge dm = 0$$
$$k = \partial_t , \quad m = \partial_\varphi$$
$$i_k \mathcal{L}_m - i_m \mathcal{L}_k = i_k i_m d - di_k i_m + i_{[k,m]} / F, *Z$$
$$\Rightarrow \quad k \wedge m \wedge F = 0 = k \wedge m \wedge *Z$$

via Frobenius condition (staticity or circularity)
 [I.S. 2012, 2014; I. Barjašić, L. Gulin and I.S. 2017]

$$[k,m] = 0 , \quad k \wedge m \wedge dk = k \wedge m \wedge dm = 0$$

$$k = \partial_t , \quad m = \partial_\varphi$$

$$i_k \mathcal{L}_m - i_m \mathcal{L}_k = i_k i_m d - di_k i_m + i_{[k,m]} / F, *Z$$

$$\Rightarrow \quad k \wedge m \wedge F = 0 = k \wedge m \wedge *Z$$

• on $H[\chi]$ generated by $\chi^a = k^a + \Omega_{\mathsf{H}} m^a$

$$(m^a m_a) \chi \wedge d\Phi \stackrel{H}{=} 0 , \quad (m^a m_a) \chi \wedge d\Psi \stackrel{H}{=} 0$$

Smarr formula

Euler-Gibbs-Duhem relation

A constraint between the energy E, the temperature T, the entropy S and the rest of the pairs $\{(x_i, X^i)\}$ of the conjugate intensive/extensive thermodynamic quantities

$$E = TS + x_i X^i$$

Euler-Gibbs-Duhem relation

Eulerian proof:

Euler-Gibbs-Duhem relation

Eulerian proof:

* assume that the energy $E=E(S;\{X^i\})$ is a smooth homogeneous function of $degree\ 1$

Euler-Gibbs-Duhem relation

Eulerian proof:

- * assume that the energy $E=E(S;\{X^i\})$ is a smooth homogeneous function of $degree\ 1$
- use the Euler's homogeneous function theorem: $kf(\mathbf{X}) = \mathbf{X} \cdot \nabla f(\mathbf{X})$ holds for any smooth homogeneous function $f: (\mathbb{R}^n)^\times \to \mathbb{R}$ of degree k

$$\Rightarrow E = \frac{\partial E}{\partial S} S + \frac{\partial E}{\partial X^i} X^i$$

Euler-Gibbs-Duhem relation

Eulerian proof:

- * assume that the energy $E=E(S;\{X^i\})$ is a smooth homogeneous function of $degree\ 1$
- use the Euler's homogeneous function theorem: $kf(\mathbf{X}) = \mathbf{X} \cdot \nabla f(\mathbf{X})$ holds for any smooth homogeneous function $f: (\mathbb{R}^n)^{\times} \to \mathbb{R}$ of degree k

$$\Rightarrow \quad E = \frac{\partial E}{\partial S} S + \frac{\partial E}{\partial X^i} X^i$$

 partial derivatives can be extracted from the first law of thermodynamics

Smarr formula (1973)

· Mass of the Kerr-Newman black hole

$$M(A_{\rm H}, J, Q^2) = \left(\frac{A_{\rm H}}{16\pi} + \frac{4\pi J^2}{A_{\rm H}} + \frac{Q^2}{2} + \frac{\pi Q^4}{A_{\rm H}}\right)^{1/2}$$

Smarr formula (1973)

· Mass of the Kerr-Newman black hole

$$M(A_{\rm H}, J, Q^2) = \left(\frac{A_{\rm H}}{16\pi} + \frac{4\pi J^2}{A_{\rm H}} + \frac{Q^2}{2} + \frac{\pi Q^4}{A_{\rm H}}\right)^{1/2}$$

$$M = 2T_{\mathsf{H}}S + 2\Omega_{\mathsf{H}}J + \Phi_{\mathsf{H}}Q \;, \quad S = \frac{\mathcal{A}_{\mathsf{H}}}{\mathcal{A}}$$

•
$$H[\chi]$$
 generated by $\chi^a = k^a + \Omega_H m^a$

- $H[\chi]$ generated by $\chi^a = k^a + \Omega_H m^a$
- · Komar mass and angular momentum

$$M_{\rm S} = -\frac{1}{8\pi} \int_{\rm S} *\mathrm{d}k \;, \quad J_{\rm S} = \frac{1}{16\pi} \int_{\rm S} *\mathrm{d}m \;$$

- $H[\chi]$ generated by $\chi^a = k^a + \Omega_H m^a$
- · Komar mass and angular momentum

$$M_{\rm S} = -\frac{1}{8\pi} \int_{\rm S} *\mathrm{d}k \;, \quad J_{\rm S} = \frac{1}{16\pi} \int_{\rm S} *\mathrm{d}m$$

 Bardeen-Carter-Hawking mass formula (for 4D Einstein field equation)

$$M = \frac{\kappa \mathcal{A}_{\mathsf{H}}}{4\pi} + 2\Omega_{\mathsf{H}}J - 2\int_{\Sigma} \left(*T(\chi) - \frac{1}{2}T *\chi \right)$$

$$\hbox{ key idea: using $E=-i_\chi F$ and $H=i_\chi*Z$,}$$

$$\hbox{ } *(E\wedge*Z+H\wedge F)=32\pi\,\mathscr{L}_{\mathcal{F}}\,T^{(\mathrm{Max})}(\chi)$$

$$E\wedge*Z+H\wedge F=-\mathrm{d}(\Phi*Z+\Psi F)$$

$$\hbox{ key idea: using $E=-i_\chi F$ and $H=i_\chi*Z$,}$$

$$\hbox{ } *(E\wedge *Z+H\wedge F)=32\pi\,\mathscr{L}_{\mathcal{F}}\,T^{(\mathrm{Max})}(\chi)$$

$$E\wedge *Z+H\wedge F=-\mathrm{d}(\Phi*Z+\Psi F)$$

generalized Komar charges

$$Q_{S} = \frac{1}{4\pi} \int_{S} *Z , \quad P_{S} = \frac{1}{4\pi} \int_{S} F$$

$$M = \frac{\kappa \mathcal{A}_{\mathsf{H}}}{4\pi} + 2\Omega_{\mathsf{H}}J + \Phi_{\mathsf{H}}Q_{\mathsf{H}} + \Psi_{\mathsf{H}}P_{\mathsf{H}} + \Delta$$

$$\Delta = \frac{1}{2} \int_{\Sigma} T * \chi$$

• For which $\mathcal{L}(\mathfrak{F},\mathfrak{G})$ the Smarr formula is still linear?

• For which $\mathcal{L}(\mathfrak{F},\mathfrak{G})$ the Smarr formula is still linear?

$$2 d(\Phi *Z) = *R(\chi) + 2(\mathcal{L} - 2\mathcal{L}_{\mathfrak{F}}\mathcal{F} - 2\mathcal{L}_{\mathfrak{G}}\mathcal{G}) *\chi$$
$$2 d(\Psi F) = *R(\chi) + 2\mathcal{L} *\chi$$

• For which $\mathcal{L}(\mathcal{F}, \mathcal{G})$ the Smarr formula is still linear?

$$2 d(\Phi *Z) = *R(\chi) + 2(\mathcal{L} - 2\mathcal{L}_{\mathfrak{F}}\mathcal{F} - 2\mathcal{L}_{\mathfrak{G}}\mathcal{G}) *\chi$$
$$2 d(\Psi F) = *R(\chi) + 2\mathcal{L} *\chi$$

• at pts w/ $\mathcal{F} \neq$ 0 we would need $\mathscr{L} = \mathcal{F}^a \, \alpha(\mathcal{G}/\mathcal{F})$

• For which $\mathcal{L}(\mathcal{F}, \mathcal{G})$ the Smarr formula is still linear?

$$2 d(\Phi *Z) = *R(\chi) + 2(\mathcal{L} - 2\mathcal{L}_{\mathfrak{F}}\mathcal{F} - 2\mathcal{L}_{\mathfrak{G}}\mathcal{G}) *\chi$$
$$2 d(\Psi F) = *R(\chi) + 2\mathcal{L} *\chi$$

- at pts w/ $\mathcal{F} \neq$ 0 we would need $\mathscr{L} = \mathcal{F}^a \, \alpha(\mathcal{G}/\mathcal{F})$
- at pts w/ $\mathfrak{G} \neq 0$ we would need $\mathscr{L} = \mathfrak{G}^a \, \alpha(\mathfrak{F}/\mathfrak{G})$

• power-Maxwell, $\mathscr{L} = C\mathfrak{F}^s$:

$$M = \frac{\kappa \mathcal{A}_{\mathsf{H}}}{4\pi} + 2\Omega_{\mathsf{H}}J + \frac{\mathsf{1}}{s}\,\Phi_{\mathsf{H}}Q_{\mathsf{H}} + \left(2 - \frac{\mathsf{1}}{s}\right)\Psi_{\mathsf{H}}P_{\mathsf{H}}$$

• power-Maxwell, $\mathscr{L} = C\mathfrak{F}^s$:

$$M = \frac{\kappa \mathcal{A}_{\mathsf{H}}}{4\pi} + 2\Omega_{\mathsf{H}}J + \frac{1}{s}\Phi_{\mathsf{H}}Q_{\mathsf{H}} + \left(2 - \frac{1}{s}\right)\Psi_{\mathsf{H}}P_{\mathsf{H}}$$

• Euler-Heisenberg for a spherically symm. black hole:

$$\Delta_{\mathsf{EH}} = -\frac{1}{2\pi} \frac{\alpha^2}{360 m_e^4} \int_{\Sigma} (4 \mathcal{F}^2 + 7 \mathcal{G}^2) * \chi$$

• power-Maxwell, $\mathscr{L} = C\mathcal{F}^s$:

$$M = \frac{\kappa \mathcal{A}_{\mathsf{H}}}{4\pi} + 2\Omega_{\mathsf{H}}J + \frac{1}{s}\,\Phi_{\mathsf{H}}Q_{\mathsf{H}} + \left(2 - \frac{1}{s}\right)\Psi_{\mathsf{H}}P_{\mathsf{H}}$$

• Euler-Heisenberg for a spherically symm. black hole:

$$\Delta_{\mathsf{EH}} = -\frac{1}{2\pi} \frac{\alpha^2}{360 m_e^4} \int_{\Sigma} (4 \mathcal{F}^2 + 7 \mathcal{G}^2) * \chi$$

...for a spherically symmetric black hole:

$$\Delta_{\mathsf{EH}} = -\frac{\alpha^2}{360m_e^4} \frac{32Q^4}{5r_+^5} + O(\alpha^3)$$

Correction as a product of a conjugate pair?

• if
$$\mathscr{L}(\beta, \mathfrak{F}, \mathfrak{G}) = \beta^{-1} \widetilde{\mathscr{L}}(\beta \mathfrak{F}, \beta \mathfrak{G})$$
 then

$$\pi T = \mathcal{L} - \mathcal{L}_{\mathfrak{F}} \mathfrak{F} - \mathcal{L}_{\mathfrak{G}} \mathfrak{G} = -\beta \frac{\partial \mathcal{L}}{\partial \beta}$$

Correction as a product of a conjugate pair?

• if
$$\mathscr{L}(\beta, \mathfrak{F}, \mathfrak{G}) = \beta^{-1} \widetilde{\mathscr{L}}(\beta \mathfrak{F}, \beta \mathfrak{G})$$
 then
$$\pi T = \mathscr{L} - \mathscr{L}_{\mathfrak{F}} \mathfrak{F} - \mathscr{L}_{\mathfrak{G}} \mathfrak{G} = -\beta \, \frac{\partial \mathscr{L}}{\partial \beta}$$

...in this case we can write

$$\Delta = \mathcal{C}\beta \; , \quad \mathcal{C} \equiv -\frac{1}{2\pi} \int_{\Sigma} \frac{\partial \mathcal{L}}{\partial \beta} * \chi$$

Correction as a product of a conjugate pair?

• if $\mathscr{L}(\beta, \mathfrak{F}, \mathfrak{G}) = \beta^{-1} \widetilde{\mathscr{L}}(\beta \mathfrak{F}, \beta \mathfrak{G})$ then

$$\pi T = \mathcal{L} - \mathcal{L}_{\mathfrak{F}} \mathfrak{F} - \mathcal{L}_{\mathfrak{G}} \mathfrak{G} = -\beta \frac{\partial \mathcal{L}}{\partial \beta}$$

...in this case we can write

$$\Delta = \mathcal{C}\beta \; , \quad \mathcal{C} \equiv -\frac{1}{2\pi} \int_{\Sigma} \frac{\partial \mathcal{L}}{\partial \beta} * \chi$$

· ambiguity:

$$\beta = b^{\lambda} \quad \Rightarrow \quad \Delta = \frac{\mathcal{C}}{\lambda} b$$

First law of BH thermodynamics

Main approaches

Main approaches

"equilibrium state version"[Bardeen et al. 1973, Wald et al. 1993-]

Main approaches

"equilibrium state version"[Bardeen et al. 1973, Wald et al. 1993-]

• "physical state version" [Wald and Gao 2001]

Covariant phase space approach

• for diff-invariant gravitational Lagrangians

$$\delta L[\phi] = E[\phi] \,\delta\phi + d\Theta[\phi, \delta\phi] \,, \quad J_{\xi} = \Theta - i_{\xi}L \approx dQ_{\xi}$$
$$\delta H = \int_{\partial \Sigma} \delta Q_{\xi} - i_{\xi}\Theta$$

Covariant phase space approach

for diff-invariant gravitational Lagrangians

$$\delta L[\phi] = E[\phi] \, \delta \phi + d\Theta[\phi, \delta \phi] \,, \quad J_{\xi} = \Theta - i_{\xi} L \approx dQ_{\xi}$$

$$\delta H = \int_{\partial \Sigma} \delta Q_{\xi} - i_{\xi} \Theta$$

Wald's entropy formula

$$S = -2\pi \int_{\mathcal{B}} \frac{\partial L}{\partial R_{abcd}} \, \epsilon_{ab} \, \epsilon_{cd} \, \hat{\epsilon}$$

Covariant phase space approach

for diff-invariant gravitational Lagrangians

$$\delta L[\phi] = E[\phi] \,\delta\phi + d\Theta[\phi, \delta\phi] \,, \quad J_{\xi} = \Theta - i_{\xi}L \approx dQ_{\xi}$$
$$\delta H = \int_{\partial \Sigma} \delta Q_{\xi} - i_{\xi}\Theta$$

Wald's entropy formula

$$S = -2\pi \int_{\mathcal{B}} \frac{\partial L}{\partial R_{abcd}} \, \epsilon_{ab} \, \epsilon_{cd} \, \hat{\epsilon}$$

 generalization for gravitational Chern-Simons terms [Tachikawa 2007; Bonora et al. 2010–2013; Azeyanagi, Loganayagam, Ng 2013–2017]

First law with NLE

· Rasheed [hep-th/9702087]

$$\delta M = \frac{\kappa}{8\pi} \, \delta \mathcal{A} + \Omega_{\mathsf{H}} \, \delta J + \Phi_{\mathsf{H}} \, \delta Q + \Psi_{\mathsf{H}} \, \delta P$$

First law with NLE

Rasheed [hep-th/9702087]

$$\delta M = \frac{\kappa}{8\pi} \, \delta \mathcal{A} + \Omega_{\mathsf{H}} \, \delta J + \Phi_{\mathsf{H}} \, \delta Q + \Psi_{\mathsf{H}} \, \delta P$$

- Zhang and Gao [1610.01237] for $\mathscr{L}(\mathfrak{F},\{\beta_i\})$

$$\delta M = \frac{\kappa}{8\pi} \, \delta \mathcal{A} + \Omega_{\mathsf{H}} \, \delta J + \Phi_{\mathsf{H}} \, \delta Q + \Psi_{\mathsf{H}} \, \delta P + \sum_{i} K_{i} \, \delta \beta_{i}$$

$$K_i = \frac{1}{16\pi} \int_{\Sigma} \frac{\partial \mathcal{L}}{\partial \beta_i} * \chi$$

- generalize 1st law with $\mathscr{L}(\mathfrak{F},\mathfrak{G},\{\beta_i\})$

- generalize 1st law with $\mathscr{L}(\mathfrak{F},\mathfrak{G},\{\beta_i\})$
- generalize NLE Smarr with Λ , D=3, $D\geq 5$, etc.

- generalize 1st law with $\mathscr{L}(\mathfrak{F},\mathfrak{G},\{\beta_i\})$
- generalize NLE Smarr with Λ , D= 3, $D\geq$ 5, etc.
- physical interpretation of NLE conjugate pair(s)

- generalize 1st law with $\mathscr{L}(\mathfrak{F},\mathfrak{G},\{\beta_i\})$
- generalize NLE Smarr with Λ , D= 3, $D\geq$ 5, etc.
- physical interpretation of NLE conjugate pair(s)
- BH thermodynamics in the presence of NC EM fields?

- generalize 1st law with $\mathscr{L}(\mathfrak{F},\mathfrak{G},\{\beta_i\})$
- generalize NLE Smarr with Λ , D= 3, $D\geq$ 5, etc.
- physical interpretation of NLE conjugate pair(s)
- BH thermodynamics in the presence of NC EM fields?
- symmetry inheritance of $D \ge 5$ EM fields

Thank you for the attention!

This research has been supported by the

Croatian Science Foundation under the project No. 8946.