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HOW DOES NONLINEAR ELECTRODYNAMICS
MODIFY BLACK HOLE THERMODYNAMICS?



Black hole thermodynamics
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Going beyond Einstein and Maxwell

- identify intensive-extensive pairs:
(k,A), (2, J), (P,Q), (¥, P), (A, V), ..

- develop algorithms for the extensions of
thermodynamic relations
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- (mostly) natural system of units: ¢ = G = 4meg = bmpg = 1

- (mostly) 4-dimensional spacetimes

- two electromagnetic invariants:

F=F,uF® and G=F,*xF®
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Maxwell's electrodynamics

- Maxwell's Lagrangian
z(Max) _ _1 F
4

- source-free Maxwell's equations

dF =0, d*F=0

+ energy-momentum tensor
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Max Born, Leopold Infeld, Werner K. Heisenberg, Hans H. Euler

- Max Born (1933), introducing an upper limit b for the field

strength
F
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- Born-Infeld (1934)

/ & g2
@) —p2 (1 4[14 2 _ 2
< b ( * 20? 16b‘*)

- alternative route (“reverse engineering”)

Q Q
E=3dr - E=—e—=dr - %=...
2t V@
- Euler-Heisenberg (1935): one-loop QED corrections to Maxwell
(EH) 1 o’ 2 2 3
L= _—F4 (432 +79°) + 0()

47 7 360m4
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Proliferation of NLE models

- Bardeen’s model (1968)

5/2
M V2

g3

24+ gV25
“Bardeen’s black hole”: F =g sinfdf Ady

2Mr?

A’ | 2 gq2 =
I ) f('f') - ' (7,2 +gz)3/2

f(r)
[Fradkin, Tseytlin 1985] [Seiberg, Witten 1999] strings — Bl

ds® = —f(r)dt* +

- NLE zoo:
[Soleng: PRD 52 (1995)] % ~ In(1+ \F)
[Hassaine, Martinez: PRD 75 (2007)] £ ~ J*
[Hendi: JHEP 03 (2012)] .Z ~ exp(—F/B%) —1
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6 (EH) mié 18
Elightning ~ 10 V/m , ECI’ = ? ~ 10 V/m

- The Extreme Light Infrastructure project (E > 10"V /m)

- Born-Infeld:
b > 10?7 V/m [PRL 118 (2017)] via ATLAS
b> 107" V/m [EPJC 78 (2018)] via hydrogen’s ionization en.

remaining window 10" V/m < b <107 V/m [EPJC 78 (2018)]
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Experimental constraints on NLE

- power-Maxwell: |s — 1| <10~ [PRL 26 (1971)]

[Rev.Mod.Phys. 82 (2010)]

“..35-year-old result of Williams, Faller, and Hill remains the
landmark test of Coulomb’s Law ... Their limit is unsurpassed in
the substantiated (laboratory) literature”

- Fouché, Battesti and Rizzo: Limits on nonlinear electrodynamics
[PRD 93 (2016)]
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Basic elements of NLE

- general NLE Lagrangian . = Z(F,9)
- generalized Maxwell's equations
dF =0, d«Z=0

Zapy = —4( L5 Fop + Lo *Fp)

© energy-momentum tensor

) L
To = —425 Ta(ziw )k 4 Tgap
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Zeroth law(s)

- intensive variables: k, @, V¥, ...

- surface gravity of a Killing horizon H[K]

KWK £ kKo

* ZEROTH LAW: K z const.

proofs:

via Frobenius theorem (Carter 1972)

via DEC and Einstein EOM (Bardeen et al. 1973)
via bifurcation surface (Kay & Wald 1991)
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Electromagnetic scalar potentials

- Electric and magnetic 1-forms with respect to K
E=—ixF H = igxx2

dH = dik *Z = Lx*Z — igd*Z

- local condition, £xF =0, impliesdE =0 =dH
- global condition, Hlz ({{(M))) = 0, guarantees

E=-do H = —-dv¥
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Symmetry inheritance

- Basic setting:
smooth spacetime (M, gu, Fup)

..admitting a smooth Killing vector field K

£Kgab:O = £KFab: ?

£Kgab:O & 77 = Lx Fyp =0
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Basic trick (for minimally coupled fields)

Eab = 87TTab
LxEagp =0 > LTy =0
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Symmetry inheritance of the EM field in a nutshell

(1+1) £xF,p=0 BGS '17

(1+2) £xF,p =0 CDPS '16

(1+3) £xFu=axFy MW'75/ WY '76
>5 £x(Fu.F,°)=0 BGS'17

[PRD 95 (2017)] I. Barjasi¢, L. Gulin, I. S.
[CQG 33 (2016)] M. Cvitan, P. Dominis Prester, I. S.



Symmetry inheritance of NLE fields [PRD 95 (2017)]



Symmetry inheritance of NLE fields [PRD 95 (2017)]

- Symmetry inheritance at points with %5 # 0

;
LxFopy=axFo, +BF,, B= —Erf}(a%f



Symmetry inheritance of NLE fields [PRD 95 (2017)]

- Symmetry inheritance at points with %5 # 0

.
LxFopy=axFo, +BF,, B= —Erf}(a%f

- For £ = £(F) and a non-null field we have
£KFab =0

on the set { %5 # 0} N {F L5 # 0}.



Symmetry inheritance of NLE fields [PRD 95 (2017)]

- Symmetry inheritance at points with %5 # 0

.
LxFopy=axFo, +BF,, B= —Erf}(a%f

- For £ = £(F) and a non-null field we have
£KFab =0

on the set { %5 # 0} N {F L5 # 0}.

- stealth examples — [I.S.: PRD 97 (2018)]
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Zeroth law of BH electrodynamics

- via Einstein field equation [Carter 1973]

R(K,K)Z0
E°E, + B°B, = 87T (K, K)
E°E, — B°B, = K"K, F

[NLE — Rasheed hep-th/9702087]

- via bifurcation surface [Gao: PRD 68 (2003)]
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- via Frobenius condition (staticity or circularity)
[1.S. 2012, 2014; |. Barjasic, L. Gulin and 1.S. 2017]
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Zeroth law of BH electrodynamics

- via Frobenius condition (staticity or circularity)
[1.S. 2012, 2014; |. Barjasic, L. Gulin and 1.S. 2017]

[k,m]=0, kAmAdk=kAmAdn =0
k:at, m:ap
Zkfm—mekzlklmd—dlklm+l[k7m] /F, YA
= kAMAF=0=kAmA=xZ

- on HJy] generated by x® = k* + Qum®

(mmg) x A dP Zo, (mmg) x A d¥ Z0
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Euler-Gibbs-Duhem relation

A constraint between the energy E, the temperature
T, the entropy S and

the rest of the pairs {(z;, X*)} of the conjugate
intensive/extensive thermodynamic quantities

E=TS+zX"
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homogeneous function f : (R")* — R of degree k
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Euler-Gibbs-Duhem relation

Eulerian proof:

- assume that the energy £ = FE(S;{X'}) is a smooth
homogeneous function of degree 1

- use the Euler's homogeneous function theorem:
kf(X)=X-Vf(X) holds for any smooth
homogeneous function f : (R")* — R of degree k

OFE OF

E— |
- 35> T ax

- partial derivatives can be extracted from the first law
of thermodynamics
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- Mass of the Kerr-Newman black hole

1/2
M(An, J, Q%) = (ﬁ pam & ”Qq)

MIZTHS—I—ZQHJ—FCI)HQ’ S =
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Generalized NLE Smarr

- H[x] generated by xy* = k* + Qym*

- Komar mass and angular momentum

1 1
Mg = dk Jg = —
8 *dr S~ 167 s

- d
a7 Js *dm

- Bardeen-Carter-Hawking mass formula
(for 4D Einstein field equation)

;
M:ﬂ+2QHJ—2/ (*T(X)——T*X>
Lr > 2
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Generalized NLE Smarr

- key idea: using E = —i, F' and H =i, xZ,
*(EAN*Z + HAF) =321 Ly TM™)(y)

ENxZ+HANF =—-d(®%Z + VF)

- generalized Komar charges

1 1
Qs = /*Z Ps=—[F

b b Jg
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Generalized NLE Smarr [L. Gulin and 1.S. 2018]

A
M:u+ZQHJ+(I>HQH+\I!HPH+A

L
A1/T
= = >k
7
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- For which Z(F,9) the Smarr formula is still linear?

2d(®+Z) = *R(x) + 2(L — 2.L5F — 2.259) *x
2d(VF) = *R(x) + 2.2 *x

- at pts w/ F # 0 we would need .Z = F*a(G/9)
- at pts w/ § # 0 we would need .Z = §* a(F/9)
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- power-Maxwell, & = CF* :
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Generalized NLE Smarr [Gulin and 1.S. 2018]

- power-Maxwell, & = CF* :

A 1 1
M ="M 00T + - 0u0n + (2——) Uy Py
L S S

- Euler-Heisenberg for a spherically symm. black hole:

] a?

437% 4762
27 360m? /E( +757) %

e

..for a spherically symmetric black hole:

o 320

Ary — — 20
BT 360ms 5%

+ 0(a?)
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Correction as a product of a conjugate pair?

-if Z(8,5,9) = B87'Z2(BF,59) then
50

"=~ 4T~ 4G =—f 5

..In this case we can write

1 0L
A= - [z
s, ¢ Zﬂ/zaﬁ o

- ambiguity:
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Main approaches

- “equilibrium state version”
[Bardeen et al. 1973, Wald et al. 1993- ]

- “physical state version” [Wald and Gao 2001]
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- for diff-invariant gravitational Lagrangians

SL[¢] = E[¢]66 +dO[6,69], Je = © — icL ~ Qe

5H:/ 5Qe — ic®
[2)>
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Covariant phase space approach

- for diff-invariant gravitational Lagrangians

OL[¢] = E[¢]0¢ +dO[¢,d¢] , Je =0 —icL ~ dQ¢
0H = 0Q¢ — 10O
[

- Wald’s entropy formula

oL

S =-2r
B afgabcd

€ab €cd €

- generalization for gravitational Chern-Simons terms
[Tachikawa 2007; Bonora et al. 2010-2013; Azeyanagi,
Loganayagam, Ng 2013-2017]



First law with NLE



First law with NLE

- Rasheed [hep-th/9702087]
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First law with NLE

- Rasheed [hep-th/9702087]

SM = 8£5A+QH5J+®H5Q+@H5P
s
- Zhang and Gao [1610.01237] for Z(F,{5:})
SM = £5A+QH§J+®H5Q+\I/H6P+2Ki5ﬁi
8 -

1 [0z
" 16m Jx 0B

*X
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Open questions

- generalize 1st law with Z(F, G, {5:})

- generalize NLE Smarr with A, D =3, D > 5, etc.

- physical interpretation of NLE conjugate pair(s)

- BH thermodynamics in the presence of NC EM fields?

- symmetry inheritance of D > 5 EM fields
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