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 What is the fate of Poincaré symmetry at the Planck scale?
It is widely believed that quantum gravity changes dramatically the spacetime structure 

at small distances, allowing for fluctuations of spacetime itself 

Spacetime quantum fluctuations ! Deformation of classical Poincaré symmetries 
??

☞ 1 possible candidate: kappa-Poincaré

An example of infinitesimal generators of the deformed group described by a Hopf algebra 

[Lukierski, Ruegg, Nowicki and Tolstoi ’91] [Majid, Ruegg ’94]

Has kappa-Poincaré anything to do with quantum spacetime symmetries? 
Previous results where a kappa-deformation of the Poincaré group appears:

A possible way relying on CS formulation was proposed in [Amelino-Camelia, Smolin, Starodubtsev ’03]

In 3-d quantum gravity coupled to matter fields in [Freidel, Livine ’05]

 Can quantum groups emerge from the dynamics of quantum geometry?
If this was the case, then…

➢ We are going to answer those questions in the context of Euclidean 3-dim gravity 



3-dim Quantum Gravity

[Witten ’89]: 

mix of path integral and canonical quantization techniques of Riemannian theory with a positive Λ

➥  link between Jones Polynomial, Chern-Simons theory and quantum gravity

[Turaev, Viro ’92]:

q-deformed version of Ponzano-Regge model

➥  Turev-Viro state sum: covariant quantization of 3-dim gravity with Λ > 0

[Noui, Perez ’05]: 

LQG canonical quantization of 2+1 gravity with Λ = 0

➥  relationship between physical inner product of 2+1 gravity and spin foam amplitudes of the Ponzano-Regge model

[Fock, Rosly ’98]  [Alekseev, Grosse, Schomerus 94]  [Meusburger, Schroers 03]:

combinatorial quantization with quantum groups used as regularization scheme

➥  fundamental role played by the theory of quantum groups in the construction of  3-manifolds invariants

➢ Chern-Simons formulation

[Reshetikhin, Turaev ’91]:

equivalence between the covariant and canonical quantization of the Chern-Simons formulation

➥  relationships between quantum gravity and the theory of knot invariants

➢ BF formulation
[Ponzano, Regge ‘68]: 

covariant quantization performed via the spin foam approach with Λ = 0

➥  Ponzano-Regge model: partition function for a triangulated compact 3-manifold 




✦ In the case Λ > 0:

Understanding the relationship between the Turaev-Viro invariants and 
quantum gravity requires the understanding the dynamical interplay 
between classical spin-network states and q-deformed amplitudes

➯Implementation of the dynamics “Emergence” of the quantum group structure

there are strong motivations to the idea that, in the context of LQG,

it should be possible to recover the Turaev-Viro amplitudes


as the physical transition amplitudes  between 

kinematical SU(2) spin network states of 2+1 gravity with Λ > 0

Bottom-up approach:



Classical Riemannian general relativity in 3-d
Metric formulation 

two generators of spacial diffeomorphisms one generator of dynamics 

D[N ] =

Z
d2xNa(x)Da(x) , H[N ] =

Z
d2xN(x)H(x)

{D[N ],D[M ]} = D[{N,M}]

{D[N ],H[M ]} = D[Na@aM ]

{H[N ],H[M ]} =

Z
d2x(N@aM �M@aN)det(h)hab

Db

If we take N, Na to be the components of the Killing vector fields associated to the maximally symmetric solutions 
of Einstein eq and substitute the corresponding metric, then the algebra of diffeo and Hamiltonian constraints 
becomes isomorphic to the isometry algebra of the given three-dimensional space of constant scalar curvature:

isu(2)

so(4)

so(3, 1)

for the Euclidean space E3 (of vanishing scalar curvature)

for the sphere S3 (of positive scalar curvature)

for the hyperbolic space H3 (of negative scalar curvature)

Locally, all the solutions to the Einstein eq look like one of these three spaces, depending on the sign of Λ

Space-time M = Σ × R :



Upon the standard 2+1 decomposition, the phase space variables are 
the 2-dim su(2) Lie algebra valued connection Aia and its conjugate 
momentum Ej

b = εbc ek
c ηjk . The symplectic structure is defined by

{Ai
a(x), E

b
j (y)} = �ba�

i
j�

(2)(x, y)

S[e,!] =

Z

M
tr[e ^ F (!) +

⇤

3
e ^ e ^ e]

The variation of the action with respect to these variables leads to two sets of smeared constraints 

G[↵] =

Z

⌃
↵iGi =

Z

⌃
↵iDaE

a
i = 0

C⇤[N ] =

Z

⌃
NiC

i
⇤ =

Z

⌃
Ni(F

i(A) +
⇤

2
✏ijkEjEk) = 0

{C(N), C(M)} = ⇤ G([N,M ])

{G(↵), G(�)} = G([↵,�])

{C(N), G(↵)} = C([N,↵])

✧ Constraints algebra: Ni ! Na, N :

NiC
i
⇤ = Na

Da +NH

One can perform a transformation

These algebras, for various signs of Λ, have an immediate geometric interpretation as the isometric algebras of the 
3-d spaces of constant scalar curvature listed above (this is particularly explicit in the Chern-Simons formulation).

➥ The algebra of gauge constraints is the algebra of local spacetime symmetries

Employ this identification on the quantum level, in order to study the symmetries of 
quantum de Sitter and flat Euclidean spaces

Connection formulation 



so(4)

su(2)⊕ su(2)

suq(2)⊕ suq−1(2)

soq(4)

P

Q

⇤→ 0

The logical steps

•  Introduction of a positive cosmological 
constant Λ (playing the role of an IR regulator)

• Study of the algebra of quantum constraints 
using LQG techniques (this is where the 
quantum group structure emerges) and show 
how the Turaev-Viro invariant can be recovered 
from a canonical approach

• We make an Inonu-Wigner contraction of the 
deformed isometry algebra sending Λ → 0, while 
keeping ℏ finite, in order to investigate the 

symmetries of quantum flat Euclidean spacetime



Let us define a new non-commutative connection: A±i
a = Ai

a ±
p
⇤✏abE

b
i

such that the Gauss and curvature constraints can be expressed as

C⇤[N ] =
1

2

�
H

+[N ] +H
�[N ]

�

G[N ] =
1

2
p
⇤

�
H

+[N ]�H
�[N ]

�
H

±[N ] ⌘
Z

⌃
NiF

i(A±)

where

{H±[N ], H±[M ]} = ±2
p
⇤ H

±[[N,M ]]

{H+[N ], H�[M ]} = 0

algebra of the new, equivalent 
set of constraints:

so(4) ' su(2)� su(2)

local isometry

H
± [N ] = lim

✏!0

X

p2�⌃

tr
⇥
Np Wp

�
A

±�⇤ = 0

candidate background independent regularization of the curvature constraint CΛ[N]

quantization of the holonomy of general non-commutative A�

)

Physical scalar product (Λ>0)

☞

Wp

ε

Σ

✶ Introduction of a regulator:

cellular decomposition ΔΣ of Σ

Wp(A±) = 1 + ✏2F (A±) + o(✏2)
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where



quantization of each term in the series 
expansion of           in powers of λ

quantization of products of E operators 
potentially ill-defined due to factor 

ordering ambiguities 
➥

➢ Quantization of on the kinematical Hilbert space of 2+1 LQGh⌘[A�] = Pe�
R
⌘ A+�E

● Flux of E across the curve η: E(⌘) =

Z
Ea

i ⌧
inadt , na ⌘ ✏ab

d⌘a

dt

Ê(⌘) � [A] =
1

2
~
⇢

o(p)⌧i � [A] if � ends at ⌘
o(p) � [A]⌧i if � starts at ⌘

,

o(p) = ±1 orientation of the intersection 

● Action on the vacuum: simply creates a Wilson line excitationĥ⌘[A�]|0i = ĥ⌘[A]|0i =  ⌘[A]

● Action on a transversal Wilson line in the fundamental representation: ĥ⌘[A�]ĥ� [A�]|0i

ĥ⌘[A�]

�
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● First order term: E acts as LIV on γ source, as RIV on γ target no ambiguity

QD[EjEk] = QS �
✓
1 +

1

12
@i@i + · · ·

◆
[EjEk]

=
1

2
(⌧j⌧k + ⌧k⌧j) +

1

6
�jk

● Third order term proportional to the first order and so on 

● Second order term: action of two flux operators at the same point Duflo map* to write!

⌘�

⌘�

➯

q = A2 = e
i~�
2Kauffman’s q-deformed binor identities for [Noui, Perez, DP ’11]

= +z +
z2

2
+
z3

3!
+ . . .

graphical notation:

z = �io~� ⌘�

*See also [Freidel, Majid ‘07] for another application of the Duflo map in the context of 2+1 quantum gravity



✪ The recovering of the Kauffman bracket related to the q-deformed crossing identity is a non-trivial 
result since it was obtained starting from the standard SU(2) kinematical Hilbert space of LQG and 
combining the flux operators representation of the theory together with a mathematical input 
coming from the Duflo isomorphism.

= �A2 �A�2

✪ However, the full link between the role of quantum groups in 3d gravity with Λ≠0 and its canonical 
quantization can only be established if the dynamical input from the implementation of the curvature 
constraints is brought in: Reidermeister moves and quantum dimension (                          ) are only to 
be found through dynamical considerations.



Temperley-Lieb Algebra and Recoupling Theory
Kauffman’s bracket polynomial [Kauffmann, Lins ‘94] provides a tangle-theoretic interpretation of the 
Temperley-Lieb algebra and a combinatorial approach to the construction of 3-manifold topological 
invariants, such as the Turaev-Viro state sum model

Given an unoriented link diagram K, a state S of K is a choice of smoothing for each crossing in K, 
where for the smoothing there are two possibilities labelled by               . Thus S appears as a 
disjoint set of Jordan curves in the plane decorated with labels at the site of each smoothing.

A,A�1 2 C

bracket polynomial: 

number of disjoint curves

product of the state labels of S

hKi =
X

S

hK|Sid||S||, d = �A2 �A�2

satisfying the following properties:

(i)

(ii) h tKi = d hKi

Properties (i) and (ii) are called Kauffman brackets and they guarantees that the bracket 
polynomial is an invariant of regular isotopy of link diagrams, i.e. it satisfies the Reidemeister moves 
of type II and III (plus underlying graphical changes induced by homeomorphisms of the plane)

smoothing possibilities



Chromatic evaluation = standard way to apply the Temperley-Lieb recoupling 
theory to trivalent spin networks evaluations

a link of color n (with n = 2j, j being the spin Irrep associated with the link) 
represents n parallel lines and a symmetrizer, or projector operator

an

�0 = 1 , �1 = d , �n+1 = d�n ��n�1

where

= (�1)n
✓
qn+1 � q�(n+1)

q � q�1

◆

= (�1)n(n+ 1) SU(2)

SUq(2)

q = A2 is a 2r-th primitive root of 
unity, i.e. qr = −1, q = exp iπ/r

Since a trivalent spin network is obtained by joining several trivalent vertices by their edges, 
through this construction, a trivalent spin network determines a closed tangle. One can now 

use the Kauffman bracket relations (i)-(ii) for the (chromatic) evaluation of this tangle.

Contractions of intertwiners can therefore be computed as chromatic evaluations of colored diagrams➥

Definition of the trace of an n tangle 
as the bracket polynomial 



Constraint Algebra

In order to be able to implement the dynamics correctly, we first need to make sure that the quantum constraint 
algebra properly closes. From the classical algebra we see that this amounts to having the action of the commutator 

of any two operators                                 to vanish on a gauge invariant state

✧ we need to introduce also the dual complex        with plaquettes              dual top⇤ 2 �⌃⇤�⌃⇤ p 2 �⌃ :

Cyl(�⌃⇤) ⇢ Cyl

with this regularization, one can see that the commutator between Wilson 
loops on different plaquettes gives immediately zero; therefore, we only need 

to consider the case of two operators defined on the same plaquette.

a similar calculation for the state in a generic spin-j representation leads to

Ĥ
±[Np] = tr[Np Ŵp

�
A

±�]

�Ĥ+[Np], Ĥ+[Mp]� � �� 1
2
�

�Ĥ+[Np], Ĥ+[Mp]� � ��j� =



definition of a physical scalar product by means of a 
projector operator into the kernel of C0[N]: path integral 
representation of the theory from the canonical picture

background independence and 
anomaly-free 


quantum constraints algebra
➥

the commutator on a gauge invariant state doesn’t vanish unless 
the infinitesimal loop evaluates to the spin-1/2 quantum dimension➥ = �(A2 +A�2)

1/2

P = “
Y

x2⌃

�(F̂ (A(x))” =

Z
D[N ]exp

✓
i

Z

⌃
Tr[NF̂ (A)]

◆
✧ Projection operator:

< s, s0 >ph=< Ps, s0 > := lim
✏!0

<
Y

p

�(Wp)s, s
0 >

= lim
✏!0

X

jp

(2jp + 1) <
Y

p

�jp(Wp) s, s
0 >

✧ Physical scalar product:

➥ Ponzano-Regge amplitudes

  In analogy to the Λ=0 case:



Physical Transition Amplitudes

✧ Physical scalar product:

Physical amplitudes between classical kinematical spin network states:


replace every link-j in s, s’ with a corresponding n-symmetrizer (n = 2j) and, by correctly 
joining all the strands at each intertwiner, the two closed spin network graphs 
associated to the states s, s’ can then be expressed as a combination of products of loops

To recover the bracket polynomial we simply need to show 
that the physical transition amplitude between products of 
loops is equal to the products of the quantum dimensions 
in the spin-j representations coloring the respective loops

➥

j n

=

�s, s′�ph−⇤ = �P ⇤s, s′� ∶= lim
✏→0

��
p

�(W +
p )s, s′�

= lim
✏→0

�
jp

[2jp + 1]q��
p

�jp(W +
p ) s, s′�

hP ⇤;, i = lim
✏!0

Z  Y

h

dgh

!
Y

n

�kn(gn)
Y

p

X

jp

[2jp + 1]q �jp(W
⇤
p )1N lim

✏→0
� ��

h

dgh��
n

�kn(gn)�
p
�
jp

[2jp + 1]q �jp(W +
p ) = N�

n=1[2kn + 1]q

= �(A2 +A�2)

➥ Turaev-Viro amplitudes



The R-matrix

� � =
p

Not gauge-invariant state 

�Ĥ±[Np], Ĥ±[Mp]� � � = ±⇤ �A2 +A−2� Ĥ
±[[Np,Mp]]� � ,

�Ĥ±[Np], Ĥ∓[Mp]� � � = 0

At the quantum level the algebra of constraints is deformed. We know already from the q-deformed 
skein relations that the new symmetry replacing the classical su(2) one is the quantum group SLq(2) 

To unravel the quantum group symmetry encoded in the constraint algebra of 2+1 LQG,  
the relevant structure to look at is the R-matrix structure behind the crossing properties 
of two non-commutative holonomies defining the constraints. We want to show explicitly 
that the q-deformed crossing identity can be represented in terms of the SLq(2) R-matrix

✶ Particles picture: The action of the R-matrix 
represents an isometry of the physical Hilbert 
space of gravity coupled to point particles

R

. . . . . .. . . . . .
→R



Since each link-1/2 carries a representation vector space V = C2, we can derive the form of the R-matrix associated 
to the generators            by studying the action of the crossing operators on the tensor product vector space V ⊗ V Ĥ

+[Np]

= �(A2 +A�2)
Given an orthonormal basis of V = 
C2 formed by the vectors v1 , v2 , 
we demand compatibility with

☞ v1 ⊗ v1 → Av1 ⊗ v1

v1 ⊗ v2 → A−1v2 ⊗ v1

v2 ⊗ v1 → A−1v1 ⊗ v2 +A−1(A2 −A−2)v2 ⊗ v1

v2 ⊗ v2 → Av2 ⊗ v2

Action of the crossing :



We now want to show that the action above of the crossing operator corresponds exactly 
to the action of the SLq(2) R-matrix in the spin-1/2 (2-dim) representation on C2 ⊗ C2 

Let q = eh and let SLq (2) be the algebra generated by X+ , X- , ehH with relations

X+X− −X−X+ = e2hH − e−2hH
q − q−1 , ehHX+ = qX+ehH , ehHX− = q−1X−ehH

We then obtain a bi-algebra 
given the co-products

and co-units

e(X+) = e(X−) = 0 , e(ehH) = 1
This gives a quasi-triangular bi-algebra with R ∈ SLq(2) ⊗ SLq(2) given by 

R = ∞�
n=0

q
n
2 (n+1)(1 − q−2)n

[n]q! e2h(H⊗H)Xn+ ⊗Xn− where [n]q = qn − q−n
q − q−1

If we now use the 2-dim representation ρ of SLq(2), in which X+ , X- , H act as linear transformations on C2 to compute

⇢(R)(v ⊗ v′) =�
ij

RijS(⇢(Gi)v ⊗ ⇢(Gj)v′) =�
ij

Rij⇢(Gj)v′ ⊗ ⇢(Gi)v ∈ V ′ ⊗ V

�X+ =X+ ⊗ ehH + e−hH ⊗X+
�X− =X− ⊗ e−hH + ehH ⊗X−
�ehH = ehH ⊗ ehH

➥ A = eh
2 , h = i�h

√
⇤

2
for

In the case of          , one recovers 
the SLq(2) R-matrix for 

Ĥ−[Np]

h = −i�h
√
⇤

2



We have explicitly shown how the introduction of a regulator, in the form of a discrete structure, required by 
the LQG quantization scheme leads to a quantum deformation of the local su(2)⊕su(2) symmetry generated 
by the classical constraint algebra. At the quantum level, the local isometry becomes SLq(2)⊕SL−q(2). 

From SLq(2) to SOq(4) 

We started with the classical algebra:

[Ba, Bb] = ⇤ ✏ c
ab Rc

[Ra, Rb] = ✏ c
ab Rc

[Ba, Rb] = ✏ c
ab Bc

su(2)⊕ su(2) � so(4)

[A±a, A±b ] = ✏ c
ab A±c[A±a, A∓b ] = 0

A±a = 1

2
(Ra ± 1√

⇤
Ba)with the definition

[Hi, Hj] = 0[Hi, X±j] = ±�ij X±j[X+i, X−j] = �ij Hj

➥➥

i = 1,2

In the quantum theory:

[Hi,Hj] = 0,[Hi,X±j] = ±�ijX±j ,
[X+i,X−j] = �ij sinh (2hiHi)

sinh (hi)

with

➥

where h1 = −h2 = h = iz , z =√⇤�
 = 2��h

soq (4) translations, boosts 
and rotation in 3D 

N1 = B1,

N2 = B2,

E =√⇤B3,

P2 = −√⇤R1,

P1 =√⇤R2,

M = R3

[E,Pi] = −⇤Ni,

[P1, P2] = ⇤ sinh (zM)
sin (z) cosh �zE�√⇤� ,

[Ni,E] = −Pi,

[Ni, Pj] = �ij√⇤ sinh �zE�√⇤�
sin (z) cosh (zM) ,

[N1,N2] = sinh (zM)
sin (z) cosh �zE�√⇤� ,

[M,Ni] = ✏ j
i Nj , [M,Pi] = ✏ j

i Pj , [M,E] = 0



From SOq(4) to κ-Poincaré
Having obtained the deformed symmetry algebra for the case of the Euclidean de Sitter 
quantum gravity in 3D, we now want to make the contraction Λ → 0, to obtain a symmetry 
that replaces the standard Poincaré symmetry in the case of quantum spacetime. 

To do this, we perform the Inonu-Wigner contraction by taking the limit 
√
⇤, z → 0

while keeping finite.z�√⇤ = �h�2
We get:

[E,Pi] = [P1, P2] = 0,[Ni,E] = −Pi,[Ni, Pj] = �ij sinh (E�) ,[N1,N2] =M cosh (E�) ,
[M,Ni] = ✏ j

i Nj , [M,Pi] = ✏ j
i Pj , [M,E] = 0

�E = E ⊗ 1 + 1⊗E ,

�M =M ⊗ 1 + 1⊗M ,

�Pi = Pi ⊗ e
1
2E� + e− 1

2E� ⊗ Pi

�N1 = N1 ⊗ e
1
2E� + e− 1

2E� ⊗N1 − 1

2
P2 ⊗ e

1
2E�M + 1

2
e− 1

2E�M ⊗ P2

�N2 = N2 ⊗ e
1
2E� + e− 1

2E� ⊗N2 + 1

2
P1 ⊗ e

1
2E�M − 1

2
e− 1

2E�M ⊗ P1

S (M) = −M, S (E) = −E,

S (Pi) = −Pi, S (Ni) = −Ni − 1


Pi

Antipodes Algebra

Co-products (2+1)-D κ-Poincaré algebra in standard 
basis and Euclidean signature 

If we had h1 = h2 = h, the 
co-products of the boosts 
Ni would be diverging 



Concluding remarks

➢  We have shown that the local isometry so(4) ≃ su(2) ⊕ su(2) of classical 3-d gravity with a 
positive cosmological constant is deformed at the quantum level, where the space-time local 
symmetry becomes the quantum group soq(4). It is remarkable that the primary reason for the 
emergence of the deformed Hopf structure in the theory is anomaly cancellation.

➢  By making the contraction Λ → 0, the symmetry algebra of flat quantum Euclidean spacetime 
in 3D turns out to be the κ-Poincaré algebra.

➢  The physical scalar product of the theory is a straightforward generalization of the Λ = 0 
case and we have shown how this allows us to recover the Turaev-Viro state-sum amplitudes. This 
represents a highly non-trivial test for the loop approach to quantum gravity, showing complete 
agreement with other well defined quantization schemes.

 Relevance for the 4D case: In the presence of an inner boundary, the boundary theory is 
effectively a 3D theory. In certain cases, the phase space and the set of constraints can 
resemble those of 2+1 gravity with Λ, e.g. for a spherically symmetric isolated horizon

➯   Horizon entropy with LQG methods [Sahlmann, DP ’15]


