Open-string T-duality and applications to non-geometric backgrounds

Erik Plauschinn

LMU Munich

Symmetries, Geometry and Quantum Gravity
Primošten, 21.06.2018

this talk ...

This talk is based on work together with F. Cordonier-Tello and D. Lüst ::

Open-string T-duality and applications to non-geometric backgrounds

[arXiv:1806.01308]

Dualities are an integral part of string theory.

introduction :: dualities

Dualities are an integral part of string theory.

T-duality ::

String-theory compactified on two T-dual circles cannot be distinguished.

- For flat backgrounds, CFT techniques give exact duality transformations.
- For curved backgrounds, one employs Buscher's procedure.

introduction :: buscher's procedure

The T-dual background can be obtained by following Buscher's procedure ::

- 1) Identify a global symmetry (isometry) of the world-sheet action.
- 2) Gauge the global symmetry by introducing a gauge field.
- 3) Integrate-out the gauge field.

The resulting transformation rules

- agree with the CFT expressions for flat backgrounds,
- but apply also to curved backgrounds.

introduction :: this talk

This talk :: 1) Discuss Buscher's procedure for open strings (including technical details).

Alvarez, Barbon, Borlaf - 1996

Dorn, Otto - 1996

Förste, Kehagias, Schwager - 1996

Albertsson, Lindström, Zabzine - 2004

2) Apply results to D-branes on non-geometric backgrounds.

- 1. introduction
- 2. t-duality closed string
- 3. t-duality open string
- 4. d-branes & non-geometry
- 5. summary

- 1. introduction
- 2. t-duality closed string
- 3. t-duality open string
- 4. d-branes & non-geometry
- 5. summary

The world-sheet action for the closed string takes the form (Σ is a 2d manifold with $\partial \Sigma = \varnothing$)

$$S = -\frac{1}{4\pi\alpha'} \int_{\Sigma} \left[G_{ij} dX^i \wedge \star dX^j - i B_{ij} dX^i \wedge dX^j \right].$$

For Buscher's procedure, one assumes that S is invariant under a global transformation

$$\delta_{\epsilon} X^i = \epsilon \, k^i(X) \,, \qquad \qquad \epsilon = \text{const.} \ll 1 \,.$$

The variation of the action vanishes provided that (for v a globally-defined one-form on Σ)

$$\mathcal{L}_k G = 0 \,, \qquad \qquad \mathcal{L}_k B = dv \,.$$

The global symmetry can be gauged by introducing a gauge field A (and a Lagrange multiplier χ) as

$$\hat{\mathcal{S}} = -\frac{1}{2\pi\alpha'} \int_{\Sigma} \left[\frac{1}{2} G_{ij} (dX^i + k^i A) \wedge \star (dX^j + k^j A) - \frac{i}{2} B_{ij} dX^i \wedge dX^j - i(v - \iota_k B + d\chi) \wedge A \right].$$

The local symmetry transformations take the form

$$\hat{\delta}_{\epsilon} X^{i} = \epsilon k^{i}, \qquad \qquad \hat{\delta}_{\epsilon} A = -d\epsilon, \qquad \qquad \hat{\delta}_{\epsilon} \chi = -\epsilon \iota_{k} v.$$

For multiple gauged (non-abelian) symmetries, additional restrictions apply.

The original action is obtained using the Lagrange multiplier. First, perform a Hodge decomposition as

$$d\chi = d\chi_{(0)} + \chi_{(m)}\omega^{m}$$

- with $\chi_{(0)}$ a globally-defined function on Σ ,
- ullet $\chi_{(\mathsf{m})} \in \mathbb{R}$ with $\mathsf{m} = 1, \dots, 2g$,
- $\bullet \omega^{\mathsf{m}} \in H^1(\Sigma,\mathbb{R}) \text{ a basis with } \int_\Sigma \omega^{\mathsf{m}} \wedge \omega^{\mathsf{n}} = J^{\mathsf{mn}} \in GL(2g,\mathbb{Z}) \text{.}$

The equation of motion for $\chi_{(0)}$ leads to

$$\delta_{\chi_{(0)}} \hat{\mathcal{S}} = -\frac{i}{2\pi\alpha'} \int_{\Sigma} \delta\chi_{(0)} dA \stackrel{!}{=} 0$$

$$F = dA = 0,$$

$$\longrightarrow A = da_{(0)} + a_{(m)} \omega^{m}.$$

Using the gauge symmetry the exact part of the gauge field can be set to $a_{(0)}=0$.

The equations of motion for $\chi_{(m)}$ are determined as

$$\delta_{\chi_{(m)}} \hat{\mathcal{S}} = \frac{i}{2\pi\alpha'} \delta\chi_{(m)} J^{mn} a_{(n)} \stackrel{!}{=} 0 \qquad \qquad \mathbf{a}_{(m)} = 0.$$

Summary:: using χ , one can set A=0 and the original action is recovered.

Integrating-out the gauge field (with $k^i=(1,0,\ldots,0)$ and v=0) gives the dual action as

$$\tilde{S} = -\frac{1}{2\pi\alpha'} \int_{\Sigma} \left[-\frac{1}{2} \left(G_{mn} - \frac{G_{m1}G_{n1} - B_{m1}B_{n1}}{G_{11}} \right) dX^m \wedge \star dX^n + \frac{1}{2} \frac{\alpha'^2}{G_{11}} d\tilde{X}^1 \wedge \star d\tilde{X}^1 \pm \alpha' \frac{B_{m1}}{G_{11}} d\tilde{X}^1 \wedge \star dX^m \right] - \frac{i}{2} \left(B_{mn} - \frac{B_{m1}G_{n1} - G_{m1}B_{n1}}{G_{11}} \right) dX^m \wedge dX^n \mp i \alpha' \frac{G_{m1}}{G_{11}} dX^m \wedge d\tilde{X}^1 \mp i \alpha' dX^1 \wedge d\tilde{X}^1 \right]$$

Interpreting $d\tilde{X}^1 = \pm \frac{1}{\alpha'} d\chi$ as the dual coordinate, the Buscher rules can be read-off

$$\check{G}_{11} = \frac{\alpha'^2}{G_{11}},
\check{G}_{m1} = \pm \alpha' \frac{B_{m1}}{G_{11}},
\check{B}_{m1} = \pm \alpha' \frac{G_{m1}}{G_{11}},
\check{G}_{mn} = G_{mn} - \frac{G_{m1}G_{n1} - B_{m1}B_{n1}}{G_{11}},
\check{B}_{mn} = B_{mn} - \frac{B_{m1}G_{n1} - G_{m1}B_{n1}}{G_{11}}$$

Integrating-out the gauge field (with $k^i=(1,0,\ldots,0)$ and v=0) gives the dual action as

$$\tilde{S} = -\frac{1}{2\pi\alpha'} \int_{\Sigma} \left[-\frac{1}{2} \left(G_{mn} - \frac{G_{m1}G_{n1} - B_{m1}B_{n1}}{G_{11}} \right) dX^m \wedge \star dX^n + \frac{1}{2} \frac{\alpha'^2}{G_{11}} d\tilde{X}^1 \wedge \star d\tilde{X}^1 \pm \alpha' \frac{B_{m1}}{G_{11}} d\tilde{X}^1 \wedge \star dX^m \right] - \frac{i}{2} \left(B_{mn} - \frac{B_{m1}G_{n1} - G_{m1}B_{n1}}{G_{11}} \right) dX^m \wedge dX^n \mp i \alpha' \frac{G_{m1}}{G_{11}} dX^m \wedge d\tilde{X}^1 \mp i \alpha' dX^1 \wedge d\tilde{X}^1 \right]$$

Interpreting $d\tilde{X}^1 = \pm \frac{1}{\alpha'} d\chi$ as the dual coordinate, the Buscher rules can be read-off

$$\check{G}_{11} = \frac{\alpha'^2}{G_{11}},$$

$$\check{G}_{m1} = \pm \alpha' \frac{B_{m1}}{G_{11}},$$

$$\check{B}_{m1} = \pm \alpha' \frac{G_{m1}}{G_{11}},$$

$$\check{B}_{m1} = \pm \alpha' \frac{G_{m1}}{G_{11}},$$

$$\check{B}_{mn} = B_{mn} - \frac{B_{m1}G_{n1} - G_{m1}B_{n1}}{G_{11}}$$

For the original coordinate X^1 we perform the

- \blacksquare Hodge decomposition $dX^1=dX^1_{(0)}+X^1_{(\mathrm{m})}\omega^{\mathrm{m}}$.
- If X^1 is compact and free, then $X^1_{(m)} \in 2\pi\mathbb{Z}$ contain the momentum/winding numbers.

The path integral over X^1 takes the form

$$\int \frac{[\mathsf{D}X^1]}{\mathcal{V}_{\text{gauge}}} \exp\left(\frac{i}{2\pi\alpha'} \int_{\Sigma} dX^1 \wedge d\chi\right) \\
= \int \frac{[\mathsf{D}X^1_{(0)}]}{\mathcal{V}_{\text{gauge}}} \sum_{X^1_{(\mathsf{m})} \in 2\pi\mathbb{Z}} \exp\left(\frac{i}{2\pi\alpha'} \int_{\Sigma} X^1_{(\mathsf{m})} \omega^{\mathsf{m}} \wedge \chi_{(\mathsf{n})} \omega^{\mathsf{n}}\right) \\
= \sum_{k(\mathsf{m}) \in \mathbb{Z}} \delta\left(\frac{1}{2\pi\alpha'} J^{\mathsf{mn}} \chi_{(\mathsf{n})} - k^{(\mathsf{m})}\right) \qquad \qquad \qquad \qquad \chi_{(\mathsf{m})} \in 2\pi\alpha'\mathbb{Z}.$$

The dual coordinate $\tilde{X}^1 = \pm \frac{1}{\alpha'} \chi$ is therefore compact (and free).

Rocek, Verlinde - 1991

closed string :: summary

Summary ::

- Buscher's approach to T-duality transformations has been reviewed.
- A Lagrange multiplier allows to recover the original model.
- The dual model is obtained via integrating-out the gauge field.
- Non-trivial world-sheet topologies have been taken into account.

- 1. introduction
- 2. t-duality closed string
- 3. t-duality open string
- 4. d-branes & non-geometry
- 5. summary

- 1. introduction
- 2. t-duality closed string
- 3. t-duality open string
 - a) various actions
 - b) neumann
 - c) dirichlet
 - d) summary
- 4. d-branes & non-geometry
- 5. summary

- 1. introduction
- 2. t-duality closed string
- 3. t-duality open string
 - a) various actions
 - b) neumann
 - c) dirichlet
 - d) summary
- 4. d-branes & non-geometry
- 5. summary

open string :: world-sheet action

The world-sheet action for the open string takes the form (Σ is a 2d manifold with $\partial \Sigma \neq \varnothing$)

$$S = -\frac{1}{2\pi\alpha'} \int_{\Sigma} \left[\frac{1}{2} G_{ij} dX^{i} \wedge \star dX^{j} + \frac{i}{2} B_{ij} dX^{i} \wedge dX^{j} \right]$$
$$-\frac{1}{2\pi\alpha'} \int_{\partial \Sigma} \left[2\pi i \alpha' a_{i} dX^{i} \right].$$

The possible boundary conditions for X^i are

Dirichlet
$$0 = (dX^{\hat{i}})_{tan}$$
,

Neumann
$$0 = G_{ai} (dX^i)_{\text{norm}} + 2\pi \alpha' i \mathcal{F}_{ab} (dX^b)_{\text{tan}},$$

$$(dX^i)_{\mathrm{tan}} \equiv t^{\mathsf{a}} \, \partial_{\mathsf{a}} X^i \, ds \big|_{\partial \Sigma} \,,$$
 $(dX^i)_{\mathrm{norm}} \equiv n^{\mathsf{a}} \, \partial_{\mathsf{a}} X^i \, ds \big|_{\partial \Sigma} \,,$
 $2\pi \alpha' \mathcal{F} = 2\pi \alpha' F + B \,,$
 $F = da \,.$

The Hodge decomposition theorem for manifolds with boundaries can be expressed using

$$C^p = \{ \omega \in \Omega^p : d\omega = 0 \},\,$$

$$E^p = \{ \omega \in \Omega^p : \omega = d\eta, \, \eta \in \Omega^{p-1} \} \,,$$

$$CcC_N^p = \{ \omega \in \Omega^p : d\omega = 0, d^{\dagger}\omega = 0, \omega_{\text{norm}} = 0 \}.$$

For closed forms on then finds $C^p = E^p \oplus CcC_N^p$.

e.g. Capell, DeTurck, Gluck, Miller - 2005

This implies for Dirichlet directions $X^{\hat{i}}$ that $dX^{\hat{i}}$ is exact.

For Buscher's procedure, one assumes that the action is invariant under a global transformation

$$\delta_{\epsilon} X^i = \epsilon \, k^i(X) \,, \qquad \qquad \epsilon = \text{const.} \ll 1 \,.$$

The variation of the action vanishes provided that

$$\mathcal{L}_k G = 0,$$

$$\mathcal{L}_k B = dv,$$

$$2\pi\alpha'\mathcal{L}_k a\big|_{\partial\Sigma} = (-v + d\omega)\big|_{\partial\Sigma}.$$

v globally-defined one-form on Σ ,

 ω globally-defined function on $\partial \Sigma$,

The global transformation is not compatible with Dirichlet boundary condition $\left.\delta X^{\hat{i}}\right|_{\partial\Sigma}=0$.

The global symmetry can be gauged by introducing a gauge field A (and a Lagrange multiplier χ)

$$\hat{\mathcal{S}} = -\frac{1}{2\pi\alpha'} \int_{\Sigma} \left[\frac{1}{2} G_{ij} (dX^i + k^i A) \wedge \star (dX^j + k^j A) - \frac{i}{2} B_{ij} dX^i \wedge dX^j - i(v - \iota_k B + d\chi) \wedge A \right] - \frac{1}{2\pi\alpha'} \int_{\partial \Sigma} \left[2\pi i \alpha' a_a dX^a - i \Omega_{\partial \Sigma} \right].$$

The local symmetry transformations take the form

$$\hat{\delta}_{\epsilon} X^i = \epsilon k^i, \qquad \hat{\delta}_{\epsilon} A = -d\epsilon, \qquad \hat{\delta}_{\epsilon} \chi = -\epsilon \iota_k v.$$

The possible boundary conditions for the gauge field are

Dirichlet
$$0=A_{\tan}\big|_{\partial\Sigma}\,,$$
 Neumann
$$0=G_{ai}k^iA_{\rm norm}+2\pi\alpha'i\mathcal{F}_{ab}k^bA_{\tan}\big|_{\partial\Sigma}\,.$$

For Dirichlet boundary conditions the variation parameter satisfies $\epsilon|_{\partial\Sigma}=0$ and one finds $\Omega_{\partial\Sigma}=0$.

For Neumann boundary conditions a second Lagrange multiplier is needed and

$$\Omega_{\partial\Sigma} = (\chi + \phi + \omega - 2\pi \alpha' \iota_k a) A,$$

 χ globally-defined function on $\partial \Sigma$,

 ϕ constant function on $\partial \Sigma$.

open string :: back to original action

For Dirichlet boundary conditions

$$lacktriangle$$
 equation of motion for χ

$$F = dA = 0,$$

$$0 = A_{\mathsf{tan}} \big|_{\partial \Sigma}$$
 .

For Neumann boundary conditions

$$lack$$
equation of motion for χ

$$lacktriangle$$
 equation of motion for ϕ

$$F = dA = 0,$$

$$0 = A_{\mathsf{tan}} \big|_{\partial \Sigma}$$
 .

Using Hodge decomposition for manifolds with boundary the original action is recovered via ($\omega^{\sf m} \in CcC_N^1$)

$$\underline{dA = 0}$$

$$A = da_{(0)} + a_{(m)}\omega^{m}$$

$$A_{\mathsf{tan}} = 0$$

$$a_{(\mathsf{m})} = 0$$

$$\hat{\delta}_{\epsilon}A$$

$$a_{(0)} = 0$$

Integrating-out the gauge field (with $k^i = (1, 0, \dots, 0)$) gives the action

$$\tilde{\mathcal{S}} = -\frac{1}{2\pi\alpha'} \int_{\Sigma} \left[-\frac{1}{2} \left(G_{mn} - \frac{G_{m1} G_{n1} - \tilde{B}_{m1} \tilde{B}_{n1}}{G_{11}} \right) dX^m \wedge \star dX^n + \frac{1}{2} \frac{1}{G_{11}} d\chi \wedge \star d\chi + \frac{\tilde{B}_{m1}}{G_{11}} d\chi \wedge \star dX^m \right. \\
\left. - \frac{i}{2} \left(B_{mn} - \frac{\tilde{B}_{m1} G_{n1} - G_{m1} \tilde{B}_{n1}}{G_{11}} \right) dX^m \wedge dX^n - i \frac{G_{m1}}{G_{11}} dX^m \wedge d\chi + i dX^1 \wedge (d\chi + v) \right] \\
- \frac{1}{2\pi\alpha'} \int_{\partial \Sigma} \left[2\pi i \alpha' a_a dX^a \right],$$

with components $ilde{B}_{m1}=B_{m1}-v_m$.

The variation on the boundary introduces a constraint

Dirichlet
$$\varnothing$$
,

Neumann
$$0 = 2\pi\alpha' \iota_k a - (\chi + \phi + \omega) \Big|_{\partial \Sigma}.$$

- 1. introduction
- 2. t-duality closed string
- 3. t-duality open string
 - a) various actions
 - b) neumann
 - c) dirichlet
 - d) summary
- 4. d-branes & non-geometry
- 5. summary

- 1) Integrating-out the gauge field ::
 - The boundary constraint can be implemented in the path integral through

$$\delta(\phi - \tilde{\chi})_{\partial \Sigma}$$
, $\tilde{\chi} = \chi + \omega - 2\pi\alpha' \iota_k a$.

 \blacksquare The Neumann boundary condition for A becomes $\left. 0 = d\tilde{\chi} \right|_{\partial \Sigma}$.

- 2) Integrating-out the Lagrange multiplier ϕ ::
 - The path-integral takes the form

$$\mathcal{Z} = \int \frac{[\mathcal{D}X^i][\mathcal{D}\chi]}{\mathcal{V}_{\text{gauge}}} \int [\mathcal{D}\phi] \, \delta(\phi - \tilde{\chi})_{\partial\Sigma} \, \exp\left(\check{\mathcal{S}}[X^i, \chi]\right),$$

lacktriangle and integration over ϕ is trivially performed.

- 3) Integrating-out the original coordinate ::
 - The relevant terms in the action read (with $k^i = (1, 0, ..., 0)$)

$$+\frac{i}{2\pi\alpha'}\int_{\Sigma}(d\chi+v)\wedge dX^{1}-\frac{i}{2\pi\alpha'}\int_{\partial\Sigma}2\pi\alpha'a_{1}dX^{1}=+\frac{i}{2\pi\alpha'}\int_{\partial\Sigma}\tilde{\chi}\,dX^{1}.$$

 \blacksquare Expand $dX^1=dX^1_{(0)}+X^1_{(\mathrm{m})}\omega^{\mathrm{m}}$. For X^1 compact and free $X^1_{(\mathrm{m})}\in 2\pi\mathbb{Z}$, and

$$\begin{split} &\int \frac{[\mathcal{D}X^1]}{\mathcal{V}_{\text{gauge}}} \exp\left[\frac{i}{2\pi\alpha'} \int_{\partial\Sigma} \tilde{\chi} \, dX^1\right] \\ &= \int \frac{[\mathcal{D}X^1_{(0)}]}{\mathcal{V}_{\text{gauge}}} \sum_{X^1_{(\mathsf{m})} \in 2\pi\mathbb{Z}} \exp\left[\frac{i}{2\pi\alpha'} \int_{\partial\Sigma} \tilde{\chi} \, X^1_{(\mathsf{m})} \, \omega^{(\mathsf{m})}\right] \\ &= \sum_{m_{(\mathsf{m})} \in \mathbb{Z}} \delta\left[\frac{1}{2\pi\alpha'} \tilde{\chi} - m_{(\mathsf{m})}\right]_{\partial\Sigma} & \qquad \qquad \qquad \qquad \qquad \tilde{\chi} \, \big|_{\partial\Sigma} \in 2\pi\alpha'\,\mathbb{Z} \,. \end{split}$$

ightharpoonup The dual coordinate $\tilde{X}^1=\pm \frac{1}{\alpha'}\tilde{\chi}$ is quantized on the boundary and thus compact.

Summary ::

- T-duality along a Neumann direction results in a T-dual Dirichlet direction.
- A Wilson loop along X^1 shifts the dual coordinate as $\tilde{X}^1 = \pm \frac{1}{\alpha'} (\chi + \omega 2\pi \alpha' a_1)$.
- Momentum modes of X^1 determine winding modes via $\tilde{X}^1|_{\partial\Sigma} \in 2\pi\mathbb{Z}$.

■ The dual metric and B-field can be identified as (contain open-string gauge flux)

$$\check{G}_{11} = \frac{{\alpha'}^2}{G_{11}},
\check{G}_{m1} = \pm {\alpha'} \frac{\tilde{B}_{m1}}{G_{11}},
\check{B}_{m1} = \pm {\alpha'} \frac{G_{m1}}{G_{11}},
\check{G}_{mn} = G_{mn} - \frac{G_{m1}G_{n1} - \tilde{B}_{m1}\tilde{B}_{n1}}{G_{11}},
\check{B}_{mn} = B_{mn} - \frac{\tilde{B}_{m1}G_{n1} - G_{m1}\tilde{B}_{n1}}{G_{11}}.$$

■ The dual gauge field reads $\check{a} = a_m dX^m$.

- 1. introduction
- 2. t-duality closed string
- 3. t-duality open string
 - a) various actions
 - b) neumann
 - c) dirichlet
 - d) summary
- 4. d-branes & non-geometry
- 5. summary

- 1) Integrating-out the gauge field ::
 - The Dirichlet condition for A becomes a Neumann condition for $\tilde{X}^1 = \pm \frac{1}{\alpha'} \chi$

$$0 = \check{G}_{1i} (d\tilde{X}^i)_{\text{norm}} + i \check{B}_{1i} (d\tilde{X}^i)_{\text{tan}}.$$

No boundary constraint to be imposed.

2) Integrating-out the Lagrange multiplier ϕ :: not present.

- 3) Integrating-out the original coordinate ::
 - The relevant term in the action reads (with $k^i = (1, 0, ..., 0)$ and v = 0)

$$-\frac{i}{2\pi\alpha'}\int_{\Sigma}dX^{1}\wedge d\chi = -\frac{i}{2\pi\alpha'}\int_{\partial\Sigma}2\pi\alpha'\left[\frac{X^{1}|_{\partial\Sigma}}{2\pi\alpha'}d\chi\right].$$

■ Expand $d\chi = d\chi_{(0)} + \chi_{(m)}\omega^{m}$, and for X^{1} compact perform the path-integral

$$\begin{split} &\int \frac{[\mathcal{D}X^1]}{\mathcal{V}_{\text{gauge}}} \, \exp\left[-\frac{i}{2\pi\alpha'} \int_{\partial\Sigma} X^1|_{\partial\Sigma} \, d\chi\right] \\ &= \int \frac{[\mathcal{D}X^1_0]}{\mathcal{V}_{\text{gauge}}} \, \sum_{n_{\partial\Sigma} \in \mathbb{Z}} \, \exp\left[-\frac{i}{2\pi\alpha'} \int_{\partial\Sigma} \left(X^1_0|_{\partial\Sigma} + 2\pi \, n_{\partial\Sigma}\right) \, d\chi\right] \\ &= \sum_{m_{\mathrm{ch}} \in \mathbb{Z}} \delta\left[\frac{1}{2\pi\alpha'} \, \chi_{(\mathrm{m})} - m_{(\mathrm{m})}\right] \, \exp\left[-\frac{i}{2\pi\alpha'} \int_{\partial\Sigma} 2\pi\alpha' \, \frac{X^1_0|_{\partial\Sigma}}{2\pi} \, \frac{d\chi}{\alpha'}\right] & \qquad \qquad \chi_{(\mathrm{m})} \in 2\pi\alpha'\mathbb{Z} \,. \end{split}$$

ightarrow Wilson loop and quantized momenta for the dual coordinate $ilde{X}^1=\pm rac{1}{lpha'}\chi$.

Summary ::

- T-duality along a Dirichlet direction results in a T-dual Neumann direction.
- The position of $X^1|_{\partial\Sigma}$ determines a Wilson loop for \tilde{X}^1 .
- \blacksquare Winding modes of X^1 determine momentum modes of \tilde{X}^1 .

■ The dual metric and B-field can be identified as

$$\check{G}_{11} = \frac{{\alpha'}^2}{G_{11}},
\check{G}_{m1} = \pm {\alpha'} \frac{B_{m1}}{G_{11}},
\check{B}_{m1} = \pm {\alpha'} \frac{G_{m1}}{G_{11}},
\check{G}_{mn} = G_{mn} - \frac{G_{m1}G_{n1} - B_{m1}B_{n1}}{G_{11}},
\check{B}_{mn} = B_{mn} - \frac{B_{m1}G_{n1} - G_{m1}B_{n1}}{G_{11}}.$$

 \blacksquare The dual gauge field reads $\check{a}=\frac{X_0^1|_{\partial\Sigma}}{2\pi}\,d\tilde{X}^1+a_mdX^m$.

outline

- 1. introduction
- 2. t-duality closed string
- 3. t-duality open string
 - a) various actions
 - b) neumann
 - c) dirichlet
 - d) summary
- 4. d-branes & non-geometry
- 5. summary

open string :: summary

Summary ::

Neumann boundary conditions

- momentum modes
- Wilson loop

Dirichlet boundary conditions

- winding modes
- D-brane position

Here ::

- CFT results are reproduced for curved backgrounds.
- T-duality along Dirichlet directions.
- Inclusion of non-trivial world-sheet topologies.

outline

- 1. introduction
- 2. t-duality closed string
- 3. t-duality open string
- 4. d-branes & non-geometry
- 5. summary

non-geometry :: t-duality group

The duality group for toroidal compactifications is $O(D, D; \mathbb{Z})$ — which is generated by ::

■ A-transformations ($A \in GL(D, \mathbb{Z})$)

$$\mathcal{O}_{\mathsf{A}} = \left(\begin{array}{cc} \mathsf{A}^{-1} & 0 \\ 0 & \mathsf{A}^{T} \end{array} \right)$$
 diffeomorphisms

■ B-transformations (B_{ij} an anti-symmetric matrix)

$$\mathcal{O}_{\mathsf{B}} = \left(\begin{array}{cc} \mathbb{1} & 0 \\ \mathsf{B} & \mathbb{1} \end{array}\right) \longrightarrow$$

gauge transformations $b \rightarrow b + \alpha' B$

■ β -transformations (β^{ij} an anti-symmetric matrix)

$$\mathcal{O}_eta = \left(egin{array}{ccc} \mathbb{1} & eta \ 0 & \mathbb{1} \end{array}
ight)$$

• factorized duality (E_i with only non-zero $E_{ii} = 1$)

$$\mathcal{O}_{\pm i} = \begin{pmatrix} \mathbb{1} - E_{i} & \pm E_{i} \\ \pm E_{i} & \mathbb{1} - E_{i} \end{pmatrix} \longrightarrow$$

T-duality transformations $g_{\rm ii}
ightarrow rac{{lpha'}^2}{g_{\rm ii}}$

(Non-geometric) torus fibrations can be specified by

$$G_{ij} = \begin{pmatrix} G_{\mathsf{ab}}(x) & 0\\ 0 & R_3^2 \end{pmatrix}$$

$$B_{ij} = \begin{pmatrix} B_{\mathsf{ab}}(x) & 0\\ 0 & 0 \end{pmatrix}$$

The standard example for a non-geometric background is a \mathbb{T}^2 -fibration ::

 \mathbb{T}^3 with H-flux

- patch with B-transform
- non-triviality via *H*-flux

 \longleftrightarrow

 \mathbb{T}^3

- patch with A-transform
- non-triviality via F-flux

T-fold

- patch with β -transform
- non-triviality via Q-flux

The open-string boundary conditions can be expressed using (restriction to $\partial \Sigma$ is understood)

$$\begin{pmatrix} \mathsf{D} \\ \mathsf{N} \end{pmatrix} = \begin{pmatrix} \alpha' & 0 \\ 2\pi\alpha'\mathcal{F} & G \end{pmatrix} \begin{pmatrix} i\left(dX\right)_{\mathsf{tan}} \\ \left(dX\right)_{\mathsf{norm}} \end{pmatrix}.$$

A particular type of D-brane is selected using a projection operator

$$\Pi = \begin{pmatrix} \Delta & 0 \\ 0 & 1 - \Delta \end{pmatrix}, \qquad \Delta^2 = \Delta.$$

Question:: are D-branes globally well-defined on non-geometric backgrounds?

The coordinate differentials behave under transformations $\mathcal{O} \in O(D, D; \mathbb{Z})$ as

$$\begin{pmatrix} i \begin{pmatrix} dX \end{pmatrix}_{\text{tan}} \\ (dX)_{\text{norm}} \end{pmatrix} \longrightarrow \begin{pmatrix} i \begin{pmatrix} d\tilde{X} \\ d\tilde{X} \end{pmatrix}_{\text{norm}} \end{pmatrix} = \Omega \begin{pmatrix} i \begin{pmatrix} dX \\ dX \end{pmatrix}_{\text{norm}} \end{pmatrix},$$

where

$$\mathbb{T}^3$$
 with H -flux

twisted
$$\mathbb{T}^3$$

$$\Omega_{\mathsf{B}} = \left(egin{array}{cc} \mathbb{1} & 0 \ 0 & \mathbb{1} \end{array}
ight),$$

$$\Omega_{\mathsf{A}} = \left(\begin{array}{cc} \mathsf{A}^{-1} & 0 \\ 0 & \mathsf{A}^{-1} \end{array}\right),\,$$

$$\Omega_{\beta} = \begin{pmatrix} \mathbb{1} + 2\pi\beta\mathcal{F} & \frac{1}{\alpha'}\beta G \\ \frac{1}{\alpha'}\beta G & \mathbb{1} + 2\pi\beta\mathcal{F} \end{pmatrix}.$$

Remark: for the T-fold, tangential and normal part are mixed.

Boundary conditions for previous examples are well-defined using $O(D, D; \mathbb{Z})$ transformations

$$\begin{pmatrix} \mathsf{D} \\ \mathsf{N} \end{pmatrix}_{x+2\pi} = \begin{pmatrix} \alpha' & 0 \\ 2\pi\alpha'\mathcal{F} & G \end{pmatrix}_{x+2\pi} \begin{pmatrix} i\left(dX\right)_{\mathsf{tan}} \\ \left(d\tilde{X}\right)_{\mathsf{norm}} \end{pmatrix}$$

$$= \mathcal{O}_{\star} \begin{pmatrix} \alpha' & 0 \\ 2\pi\alpha'\mathcal{F} & G \end{pmatrix}_{x} \Omega_{\star}^{-1} \begin{pmatrix} i\left(d\tilde{X}\right)_{\mathsf{tan}} \\ \left(d\tilde{X}\right)_{\mathsf{norm}} \end{pmatrix}$$

$$= \mathcal{O}_{\star} \begin{pmatrix} \mathsf{D} \\ \mathsf{N} \end{pmatrix}_{x}, \qquad \qquad \star = (\mathsf{B}, \mathsf{A}, \beta) \, .$$

The projection onto a particular D-brane has to be performed after the transformation

$$\Pi\left[\begin{pmatrix}\mathsf{D}\\\mathsf{N}\end{pmatrix}_{x+2\pi}\right] = \Pi\left[\mathcal{O}_{\star}\begin{pmatrix}\mathsf{D}\\\mathsf{N}\end{pmatrix}_{x}\right].$$

outline

- 1. introduction
- 2. t-duality closed string
- 3. t-duality open string
- 4. d-branes & non-geometry
- 5. summary

Summary ::

- Open-string T-duality via Buscher's procedure has been discussed,
- taking into account non-trivial world-sheet topologies.

- Using T-duality, D-branes on various flux-backgrounds are obtained.
- Boundary conditions are well-defined using $O(D, D; \mathbb{Z})$ transformations.