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this talk ...

This talk is based on work together with F. Cordonier-Tello and D. LUst ::

Open-string T-duality and applications to
non-geometric backgrounds [arXiv:1806.01308]
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introduction :: t-duality

T-duality :: = String-theory compactified on two T-dual circles cannot be distinguished.

" CE
R

= [or flat backgrounds, CFT techniques give exact duality transformations.

= [or curved backgrounds, one employs Buscher's procedure.



introduction :: buscher's procedure

The T-dual background can be obtained by following Buscher's procedure ::

1) ldentify a global symmetry (isometry) of the world-sheet action.
2) Gauge the global symmetry by introducing a gauge field.
3) Integrate-out the gauge field.

The resulting transformation rules

= agree with the CFT expressions for flat backgrounds,

= put apply also to curved backgrounds.



introduction :: this talk

This talk :: 1) Discuss Buscher's procedure for open strings (including technical details).

Alvarez, Barbon, Borlaf - 1996

Dorn, Otto - 1996

Forste, Kehagias, Schwager - 1996
Albertsson, Lindstrom, Zabzine - 2004

2) Apply results to D-branes on non-geometric backgrounds.
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closed string :: world-sheet action

The world-sheet action for the closed string takes the form ( > is a 2d manifold with 9% = &)

S = /{GijdXZ/\*de—Z.Bf,;jdXz/\de}.
>

Ao

For Buscher's procedure, one assumes that § Is invariant under a global transformation

6. X" = ek (X)), e = const. < 1.

he variation of the action vanishes provided that (for v a globally-defined one-form on X2 )



closed string :: gauged action

The global symmetry can be gauged by introducing a gauge field A (and a Lagrange multiplier X ) as

1

2o

S =

/E {%Gij(dxi + k"A) A*(dX? + K A)

— %deXz/\de —i(U—LkB—FdX)/\A} .

The local symmetry transformations take the form

>

0. X" = ek’ : 0 A = —de, 0eX = —€LLU.

For multiple gauged (hon-abelian) symmetries, additional restrictions apply.



closed string :: back to original action |

The original action is obtained using the Lagrange multiplier. First, perform a Hodge decomposition as

dx = dx ) + Xmw" = with X(0) a globally-defined function on ¥ |
" X(m) c Rwthm=1,...,2g,
= 0" ¢ H'(X,R) abasis with [, w™Aw" = J™ € GL(2¢,Z).

The equation of motion for X (o) leads to

(

0. S =

X (0) 2mo

/<u@dAéo » F=dA=0,
by

> A= da(o) T Q(m) w .



closed string :: back to original action |

Using the gauge symmetry the exact part of the gauge field can be setto a) = 0.

he equations of motion for X(m) are determined as

(

S mn !
5X(m)8 — 5X(m)J A(n) = 0 > A(m) =

2ma’

summary :: using X, one can set A = 0 and the original action is recovered.



closed string :: dual action |

Integrating-out the gauge field (with £ = (1,0,...,0) and v = 0) gives the dual action as

< 1 1 Gml Gnl _ Bml Bnl 1 04/2 1 1 / Bml 1
S = ~ (G, dX™ A *dX™ + = dXP A xdX! + dX1t A xdX™
270//2 { 2 ( G11 ) i " 2 G11 i ) G "
' B,1G,1 — G,.,1B, G, . | -
2 (an Ll = 1) AXTANAX" Tio/ L dX™ AdXY Tio/ dXE A dX?
2 (11 G11
Interpreting dX?! = +- dx as the dual coordinate, the Buscher rules can be read-off
5 0/2
& —
~ B 1 ~ G 1
Gm = T / il , Bm — I ! ik ,
: G : G
; G.1G,1 — By B, . B, 1G.1 — G.1B,,
Gmn — Gmn 1 1 1 1 7 an _ an 1 1 1 1
(11 G11

Buscher - 1987, 1988



closed string :: dual action |

Integrating-out the gauge field (with £ = (1,0,...,0) and v = 0) gives the dual action as

X 1 1 Gml Gnl _ Bml Bnl 1 04/2 1 1 / Bml 1
S = — | Goun dX™ ANxdX" + — dX  NxdX =+ dX " NxdX™
sz/z { 2 ( G ) e * “on
' B,,1G.1 — G1 By, G, . , N
_ 2 (an Ll = 1) AX™AdX" Tia =L ax™ AdX Tia/ dXE A dXE
2 (11 G11
Interpreting dX?! = +- dx as the dual coordinate, the Buscher rules can be read-off
5 0/2
& —
~ B 1 ~ G 1
Gm — ::O/ il , Bm — I ! ik ,
: G : G
; G.1G,1 — By B, . B, 1G.1 — G.1B,,
Gmn — Gmn 1 1 1 1 7 an _ an 1 1 1 1

Buscher - 1987, 1988



closed string :: dual action |l

For the original coordinate X* we perform the
= Hodge decomposition dX*' = dX ) + X, w™ .

» [f X'is compact and free, then X(lm) c 2w/ contain the momentum/winding numbers.

The path integral over X' takes the form

[DX] Z / |
dX  Nd
/ Vauge “AP 2ma’ [ X

[DX(lO)] z 1 m n
:/ Vgauge Z eXP (27_‘_0/ /ZX(m)w /\X(n)CU)

X1 )627TZ

(m

1 mn m
— Z o) (27‘_0/ J X(n) — ]C< >> > X(m) - 2ra’ 7. .

kE(meZ Rocek, Verlinde - 1991

The dual coordinate X' = +-1 x is therefore compact (and free).



closed string :: summary

Summary :: = Buscher's approach to T-duality transformations has been reviewed.
= A [Lagrange multiplier allows to recover the original model.

= [he dual model is obtained via integrating-out the gauge field.

= Non-trivial world-sheet topologies have been taken into account.
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open string :: world-sheet action

The world-sheet action for the open string takes the form ( > is a 2d manifold with 9% # @ )

1 1 | = -
S = ~GiidXA %dX9 + L BydX A dX?
szfz 9 i XAAT T 5 P _

1 ) .
/ 2mia a; d X | .
0> L _

2mo!

The possible boundary conditions for X* are

Dirichlet

Neumann

0= (dX")

tan’

0= G (dX") +2ma/i Fop(dX")

tan’

(dX"), =120, X" ds|aZ ,

tan

(dXi) =n20,X" ds‘az,

norm

27’ F = 2w’ F + B,
F=da.



open string :: hodge decomposition

The Hodge decomposition theorem for manifolds with boundaries can be expressed using

» closed forms C?P ={we QP :dw=0},
= exact forms EP={weQP :w=dnnec QP 1},
m closed & co-closed, vanishing normal part CcCr ={w e QP 1 dw =0, d'w = 0, Wyorm = 0}.

For closed forms on then finds C? = EP & CcCy; .
e.g. Capell, DeTurck, Gluck, Miller - 2005

his implies for Dirichlet directions X' that dX' is exact.




open string :: gauged action |

For Buscher's procedure, one assumes that the action is invariant under a global transformation

6. X" = ek'(X), e = const. < 1.

The variation of the action vanishes provided that

LG =0,

v globally-defined one-formon I,
[,k B = dv ,

w globally-defined function on 032,

2o’ Lra }82 = (—v + alc,u)|(92 .

The global transformation is not compatible with Dirichlet boundary condition 5X° 0.

}az —



open string :: gauged action |l

The global symmetry can be gauged by introducing a gauge field A (and a Lagrange multiplier X))

1

2mo!

S = / [%Gij(dxi + K" A) A x(dX7 + K7 A)
b

— L B;; dX' NdX? —i(v—LkB%—dx)/\A}
1

2o

/ {ZWia'aadX“ — iQag} .
0

The local symmetry transformations take the form

S

0. X" = ek’ SGA:—de,

€X — —€ Lkv .

The possible boundary conditions for the gauge field are

Dirichlet 0= Aian

' / - b
Neumann 0= Ga,z' kA norm 1 2T Zfabk Atan ‘82 .
Albertsson, Lindstrom, Zabzine - 2004



open string :: gauged action |l

For Dirichlet boundary conditions the variation parameter satisfies €|sx = 0 and one finds Qs = 0.

For Neumann boundary conditions a second Lagrange multiplier is needed and

X globally-defined function on 90X,
Qo = (X—I—gb—l—w — QW&/Lka)A,
¢ constant function on 0% .



open string :: back to original action

For Dirichlet boundary conditions
= cqguation of motion for X F=dA=0,

= poundary condition 0 = Atan | 5y -

For Neumann boundary conditions
= equation of motion for X F=dA=0,

= equation of motion for ¢ 0 = Atan | 5y -

Using Hodge decomposition for manifolds with boundary the original action is recovered via (w™ € CcC'y, )

dA =0 g A — da(o) _I_ a/(m) wm Atan =0 . a(m) p— O

0. A
> CL(()) = (




open string :: dual action

Integrating-out the gauge field (with £* = (1,0,...,0)) gives the action

> 1 1 Gml Gnl — Bml Bnl 1 1 Bml
S = — | Gon dX™ N*xdX" + — ——dv N *dy - dy N\ *dX™
27'('04//2 |: 2 ( Gll ) x * 2 Gll X * X Gll X *
' B,,1G,1 — G..1B,, G
— 2 By — S I XA dX — i L X A dy i dX A (dy + )
2 G11 G11

1
// {QWiOé/aaan},
2T o

with components B,,; = By,1 — U .

The variation on the boundary introduces a constraint

Dirichlet g,

Neumann 0=2ma"tra— (x + ¢ +w) .
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open string :: neumann |

1) Integrating-out the gauge field ::
= [he boundary constraint can lbe implemented in the path integral through
5(¢—5{)82, Y =xX+w—2ma" 1ia.

= The Neumann boundary condition for A becomes 0 = dx| .-

2) Integrating-out the Lagrange multiplier ¢ ::

= [he path-integral takes the form

Z:/[DXi] Dx| /[DQb](S(gb_)Z)az exp(S[Xi,X]),

Vga uge

= and integration over ¢ s trivially performed.



open string :: neumann ll

3) Integrating-out the original coordinate ::

= The relevant terms in the action read (with k' = (1,0,...,0))
| X! ora’a1dX* = A / vdX*.
ZWQ’L(dX+U)/\d v /az Ta'ard Y asz

» Expand dX' = dX + X, w™. For X' compact and free Xy € 27Z, and

DX! 1 .
/ | | exp { / / XXm}
Vgauge 27-‘-0( 82

[ (1())} ( 1
_ E v (m)
/ DX exp |:27TCV/ /@z X X ()W }

Y
SN X} e2nz

1
m(mZ)EZ 2ma ™ 5)> g X‘az € 2ra L.

— The dual coordinate X' = ::555 IS quantized on the boundary and thus compact.



open string :: neumann |l

Summary :: = [-duality along a Neumann direction results in a T-dual Dirichlet direction.

= A Wilson loop along X shifts the dual coordinate as X' = + 1 (x + w — 2ma’a).

= Momentum modes of X! determine winding modes via X!|sx € 277 .

= [he dual metric and B-field can be identified as (contain open-string gauge flux)

5 &/2

G = ,
11 Gll
~ E 1 ~ G 1
Gm = +qa' ik , Bm = +a' = 9
e ! G
. G,.1G.1— B, 1B, . B,.1G.1 — G, 1B,
Gmn — Gmn 1 1 1 1 7 an _ an 1 1 1 1

= [he dual gauge field reads & = a,,d X" .
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open string :: dirichlet |

1) Integrating-out the gauge field ::

= The Dirichlet condition for A becomes a Neumann condition for X! = -

= No boundary constraint to be imposed.

2) Integrating-out the Lagrange multiplier ¢ :: not present.



open string :: dirichlet Il

3) Integrating-out the original coordinate ::

» The relevant term in the action reads (with £ = (1,0,...,0) and v = 0)
. : -Xl 7

: / dX' N dy = ’ / 2ol o5 dy| .
2o Js 2ma ) o5  2ma

= Expand dx = dx (o) + xmw™, and for X' compact perform the path-integral

DX'] { . | }
eXPp X |a§; dX
/Vgauge 2ol 0
:/ [DX(H Z exp{ 2 / (X5|az_|_27rnaz) dx}
Veauge ez o’ J s
1 1 Xllag dX
— 5 m) — m 2 ! 0 >
E:GZ {27?0/ X(m) =TT )} exp{ 2ma’ /52 e 2 o
T (m)

— Wilson loop and quantized momenta for the dual coordinate X! = =X .



open string :: dirichlet Il

Summary ::

= [-duality along a Dirichlet direction results in a T-dual Neumann direction.

» The position of X'|sx determines a Wilson loop for X*.

= Winding modes of X! determine momentum modes of X! .

m [he dual metric and B-field can be identified as

04/2

Gll 7
. B, . i
G = Fa i : B, =
1 @ G 1
. G1Gn1 — Bl By, §
Gmn — Gmn . . . - 9 an —
Gll

» The dual gauge field reads a = Xglfz dX' + a,dX™
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open string :: summary

Summary ::

Here ::

Neumann boundary conditions
= momentum modes
= \Vilson loop

<

T-duality

>

Dirichlet boundary conditions
= winding modes
= D-jorane position

= CFT results are reproduced for curved backgrounds.

= [-duality along Dirichlet directions.

= |nclusion of non-trivial world-sheet topologies.
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non-geometry :: t-duality group

The duality group for toroidal compactifications is O(D, D;Z).



non-geometry :: t-duality group

The duality group for toroidal compactifications is O(D, D;Z) — which is generated by ::

= A-transformations ( A € GL(D, 7))

A1 0
Oa = ( 0 AT> - difffomorphisms

= B-transformations ( B;; an anti-symmetric matrix)

1 0
O = ( B 1 > g gauge transformations b — b + o'B

= 3-transformations ( 5%/ an anti-symmetric matrix)
(15
%= (0 1)

» factorized duality ( £, with only non-zero E; = 1)

2

1 — Ei ::Ei - : o
O4i = ( B 1-E > > T-duality transformations gii — =




non-geometry :: torus fibrations |

(Non-geometric) torus fibrations can be specified by

O(D,D;7)

N

)<< >> @(

m (M) 7/
Vi

X

(Gaba Bab)(w + 27 Gaba Bab)(m)




non-geometry :: torus fibrations |l

The standard example for a non-geometric background is a T*-fibration ::

= patch wit
= NON-trivia

T with H-flux

N B -trans

ity via H-f

‘orm

UX

@

Og

twisted T

= patch with A-transform

= non-triviality via F-flux

@

Oa

T-fold
= patch wit
m NoN-trivia

N G-transf

ity via Q-f

Oorm
UX

@

Op




non-geometry :: boundary conditions

he open-string boundary conditions can be expressed using (restriction to 0> is understood)

(n) = (amar ) () )

A particular type of D-brane is selected using a projection operator

A0
_ 2
H‘(o 1—A>’ A

n
>

Question :: are D-branes globally well-defined on non-geometric backgrounds?



non-geometry :: transformations |

The coordinate differentials behave under transformations O € O(D, D;7Z) as

where

(e

norm

T with H-flux

twisted T

T-fold

norm

-
@
|

Remark :: for the T-fold, tangential and normal part are mixed.

i (dX)

— () )=

14278 F

tan >
) 9
norm

2 BG
14205 F

).



non-geometry :: transformations I

Boundary conditions for previous examples are well-defined using O(D, D; Z)transformations

D o’ 0 i(d )tan
N - 2na’ F G T 4 27 (dX)norm
o 0 oy (i(dX),
Ox ( 2na’ F G >x b ( (dX)t >

D
(9*<N>x, *= (B, A, ).

he projection onto a particular D-brane has to be performed after the transformation

o[(2)...] (2
N xr -+ 27 N xT
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summary

Summary :: = Open-string T-duality via Buscher's procedure has lbeen discussed,

= taking into account non-trivial world-sheet topologies.

= Using T-duality, D-branes on various flux-backgrounds are obtained.

= Boundary conditions are well-defined using O(D, D; Z) transformations.



