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Membrane Actions

Nambu Goto—the simplest: On p-brane

SNG =
∫
M dp+1x

√
−detG Gµν = ∂µX

M∂νX
NgMN(X )

Higher form gauge field on the world volume

Sp−form = −
∫
M

1

(p + 1)!
εµ1...µp+1Cµ1...µp+1

Cµ1...µp+1 = ∂µ1X
M1 . . . ∂µp+1X

Mp+1CM1...Mp+1

We could add
• an anti-symmetric part to Gµν to get a Dirac-Born-Infeld action.
• extrinsic curvature terms.
Supersymmetric SNG exist only in 4, 5, 7 and 11 dim-spacetime.
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Membrane sigma models

The Membrane action, Polyakov form – sigma model

SNG = −T

2

∫
M

d3σ
√
−h
(
hαβ∂αX

M∂βX
NgMN − Λ

)
Choose Λ = 1 (rescale X a and T ).

Eliminating hµν

hαβ = ∂αX
M∂βX

NgMN = Gαβ

returns us to Nambu-Goto.

For p-branes set Λ = p − 1.
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Membranes in flat spacetime, gMN = ηMN and C3 = 0

For membrane topology R× Σ we can set h0i = 0 and
h00 = −4

ρdet(hij) .

The action becomes

S =
Tρ

4

∫
dt

∫
Σ
d2σ

(
ẊM ẊNηMN −

4

ρ2
det(hij)

)
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In 2-dim det(hij) can be rewritten using {f , g} = εij∂i f ∂jg as

S =
Tρ

4

∫
dt

∫
Σ
d2σ

(
ẊM ẊNηMN −

4

ρ2
{XM ,XN}2

)
and the constraints become

ẊM∂iXM = 0 =⇒ {ẊM ,XM} = 0

and ẊM ẊM = − 2

ρ2
{XM ,XN}{XM ,XN} .

Using lightcone coordinates with X± = (X 0 ± XD−1)/
√

2 with
X+ = τ we can solve the constraint for Ẋ− and Legendre
transform to the Hamiltonian to find

S = −T
∫ √

−G −→ H =

∫
Σ

(
1

ρT
PaPa +

T

2ρ
{X a,X b}2)

With the remaining constraint {Pa,X a} = 0.
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Noting for higher p-branes the procedure works the same and using

det(∂iX
a∂jX

bhab) =
1
p!{X

a1 ,X a2 . . . ,X ap}{X b1 ,X b2 . . . ,X bp}ha1b1ha2b2 . . . hapbp
{X a1 ,X a2 . . . ,X ap} := εj1,j2,...,jp∂j1X

a1∂j2X
a2 . . . ∂jpX

ap

and the Hamiltonian becomes

H =

∫
Σ
dpσ

(
1

ρT
PaPa +

4

p!ρ2
{X a1 ,X a2 . . . ,X ap}2

)
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Quantisation

A direct apporach, either Hamiltonian or path integral, has not yet
been successful.

Matrix membranes

Functions are approximated by N × N matrices, f → F, and∫
Σ f → TrF.

The Hamiltonian becomes

H = −1

2
∇2 − 1

4

D∑
a,b=1

Tr[X a,X b]2

restricted to U(N) singlet ”physical” states.

H describes a “fuzzy” membrane in D + 1 spacetime.

Much of the classical topology and geometry are lost.

At low energy, or the bottom of the potential [X a,X b] = 0.
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Once we have the Hamiltonian H we can consider thermal
ensembles of membranes whose partition function is given by

Z = Tr
Phys

(e−βH)

where the physical constraint means the states are U(N) invariant.

Path Integral version

Z =

∫
[dX ]e−

∫ β
0 dτ Tr( 1

2
(DτX a)− 1

4
[X a,X b]2)

Gauss law constraint

The projection onto physical states — the Gauss law constraint is
implemented by the gauge field with

DτX
a = ∂τX

a − i [A,X a].

Matrix membrane models are the zero volume limit of Yang-Mills
compactified on a torus.
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Understanding gauged quantum matrix models

The simplest example of a quantum mechanical model with Gauss
Law constraint is a set of p gauged Gaussians. Their Euclidean
actions are

N

∫ β

0
Tr(

1

2
(DτX i )2 +

1

2
m2(X i )2)

DτX i = ∂τX
i − i [A,X i ].
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Properties of gauge gaussian models

The eigenvalues of X i have a Wigner semi-circle distribution.

At T = 0, we can gauged A away, while for large T we get a
pure matrix model with A one of the matrices.

The entry of A as an additional matrix in the dynamics signals
a phase transition. In the Gaussian case with p scalars it
occurs at

Tc =
m

ln p

The transition can be observed as centre symmetry breaking
in the Polyakov loop.

Bosonic matrix membranes are approximately gauge gaussian
models V. Filev and D.O’C. [1506.01366 and 1512.02536]. They
have however two phase transitions, very close in temperature.
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The BFSS model

S
SMembrane

=
∫ √
−G −

∫
C + Fermionic terms

The susy version only exists in 4, 5, 7 and 11 spacetime dimensions.

BFSS Model — The supersymmetric membrane à la Hoppe

H = Tr(
1

2

9∑
a=1

PaPa − 1

4

9∑
a,b=1

[X a,X b][X a,X b] +
1

2
ΘTγa[X a,Θ])

The model is claimed to be a non-perturbative 2nd quantised
formulation of M-theory.

A system of N interacting D0 branes.

Note the flat directions.
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Finite Temperature Model

The partition function and Energy of the model at finite
temperature is

Z = Tr
Phys

(e−βH) and E =
Tr

Phys
(He−βH)

Z
= 〈H〉
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The 16 fermionic matrices Θα = ΘαAt
A are quantised as

{ΘαA,ΘβB} = 2δαβδAB

The ΘαA are 28(N2−1) and the Fermionic Hilbert space is

HF = H256 ⊗ · · · ⊗ H256

with H256 = 44⊕ 84⊕ 128 suggestive of
the graviton (44), anti-symmetric tensor (84) and gravitino (128)
of 11− d SUGRA.

For an attempt to find the ground state see: J. Hoppe et al
arXiv:0809.5270
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Lagrangian formulation

.
The BFSS matrix model is also the dimensional reduction of ten
dimensional supersymmetric Yang-Mills theory down to one
dimension:

SBFSS =

∫
dτ Tr

{
1

2
(DτX i )2 − 1

4
[X i ,X j ]2

+
1

2
ΨTDτΨ +

1

2
ΨTΓi [X i ,Ψ]

}
,

where Ψ is a thirty two component Majorana–Weyl spinor, Γi are
gamma matrices of Spin(9).
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The gravity dual and its geometry

Gauge/gravity duality predicts that the strong coupling regime of
the theory is described by IIA supergravity, which lifts to
11-dimensional supergravity.

The bosonic action for eleven-dimensional supergravity is given by

S11D =
1

2κ2
11

∫
[
√
−gR − 1

2
F4 ∧ ∗F4 −

1

6
A3 ∧ F4 ∧ F4]

where 2κ2
11 = 16πG 11

N =
(2πlp)9

2π .
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The relevant solution to eleven dimensional supergravity for the
dual geometry to the BFSS model corresponds to N coincident D0
branes in the IIA theory. It is given by

ds2 = −H−1dt2 + dr2 + r2dΩ2
8 + H(dx10 − Cdt)2

with A3 = 0
The one-form is given by C = H−1 − 1 and H = 1 + α0N

r7 where
α0 = (2π)214πgs l

7
s .
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Including temperature

The idea is to include a black hole in the gravitational system.

The Hawking termperature provides the temperature of the system.

Hawking radiation

We expect difficulties at low temperatures, as the system should
Hawking radiate. It is argued that this is related to the flat
directions and the propensity of the system to leak into these
regions.
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The black hole geometry

ds2
11 = −H−1Fdt2 + F−1dr2 + r2dΩ2

8 + H(dx10 − Cdt)2

Set U = r/α′ and we are interested in α′ →∞
H(U) = 240π5λ

U7 and the black hole time dilation factor

F (U) = 1− U7
0

U7 with U0 = 240π5α′5λ. The temperature

T

λ1/3
=

1

4πλ1/3
H−1/2F ′(U0) =

7

24151/2π7/2
(
U0

λ1/3
)

5/2

.

From black hole entropy we obtain the prediction for the Energy

S =
A

4GN
∼
(

T

λ1/3

)9/2

=⇒ E

λN2
∼
(

T

λ1/3

)14/5
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Checks of the predictions

We found excellent agreement with this prediction V. Filev and
D.O’C. [1506.01366 and 1512.02536].
The best current results (Berkowitz et al 2016) consistent with
gauge gravity give

1

N2

E

λ1/3
= 7.41

(
T
λ1/3

) 14
5 − (10.0± 0.4)

(
T
λ1/3

) 23
5

+ (5.8± 0.5)T
29
5 + . . .

−5.77T
2
5 +(3.5±2.0)T

11
5

N2 + . . .
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Membranes on other backgrounds

There are many options for background geometries:

PP-Wave backgrounds

Two options that lead to massive deformations of the BFSS model

N=1*

Breaks susy down to 4 remaining.

BMN model

Preserves all 16 susys and has
SU(4|2) symmetry.
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The BMN or PWMM

The supermembrane on the maximally supersymmetric plane wave
spacetime

ds2 = −2dx+dx−+dxadxa+dx idx i−dx+dx+((
µ

6
)2(x i )2+(

µ

3
)2(xa)2)

with
dC = µdx1 ∧ dx2 ∧ dX 3 ∧ dx+

so that F123+ = µ. This leads to the additional contribution to the
Hamiltonian

∆Hµ =
N

2
Tr
(

(
µ

6
)2(X a)2 + (

µ

3
)2(X i )2

+
2µ

3
iεijkX

iX jX k +
µ

4
ΘTγ123Θ

)
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The BMN model

The BMN action

SBMN =

∫ β

0
dτ Tr

{
1

2
(DτX i )2 + (

µ

6
)2(X a)2 + (

µ

3
)2(X i )2

+ΨTDτΨ +
µ

4
ΨT iγ123Ψ

−1

4
[X i ,X j ]2 +

2µ

3
iεijkX

iX jX k +
1

2
ΨTΓi [X i ,Ψ]

}
,
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Large mass expansion

For large µ the model becomes the supersymmetric Gaussian model

Finite temperature Euclidean Action

SBMN =
1

2g2

∫ β

0
dτ Tr

{
(DτX i )2 + (

µ

6
)2(X a)2 + (

µ

3
)2(X i )2

ΨTDτΨ +
µ

4
ΨTγ123Ψ

}
This model has a phase transition at Tc = µ

12 ln 3

The non-perturbative physics of membrane matrix models—a phase diagram for the BMN model



Perturbative expansion in large µ.

Three loop result of Hadizadeh, Ramadanovic, Semenoff and
Young [hep-th/0409318]

Tc =
µ

12 ln 3

{
1 +

26 × 5

34

λ

µ3
− (

23× 19927

22 × 37
+

1765769 ln 3

24 × 38
)
λ2

µ6
+ · · ·

}
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Perturbative expansion in large µ.

Three loop result of Hadizadeh, Ramadanovic, Semenoff and
Young [hep-th/0409318]

Tc =
µ

12 ln 3

{
1 +

26 × 5

34

λ

µ3
− (

23× 19927

22 × 37
+

1765769 ln 3

24 × 38
)
λ2

µ6
+ · · ·

}

2 4 6 8 10
μ

0.2

0.4

0.6

0.8

T

Large μ-predicted-phase diagram

Passes through zero at µ = 13.4.
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Gravity prediction at small µ

Costa, Greenspan, Penedones and Santos, [arXiv:1411.5541]

lim
λ
µ2→∞

TSUGRA
c

µ
= 0.105905(57) .

The prediction is for low temperatures and small µ the transition
temperature approaches zero linearly in µ.

1 2 3 4 5
μ

0.1

0.2

0.3

0.4

0.5

T

Small μ-gravity-prediction-phase diagram

2 4 6 8 10
μ

0.2

0.4

0.6

0.8

T

Small and large μ-prediction-phase diagram
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Padé approximant prediction of Tc

Tc =
µ

12 ln 3

{
1 + r1

λ

µ3
+ r2

λ2

µ6
+ · · ·

}
with r1 = 26×5

3 and r2 = −( 23×19927
22×3

+ 1765769 ln 3
24×32 )

Using a Padé Approximant: 1 + r1g + r2g
2 + · · · → 1 + 1+r1g

1− r2
r1
g

=⇒ TPadé
c =

µ

12 ln 3

{
1 +

r1
λ
µ3

1− r2
r1

λ
µ3

}
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Now we can take the small µ limit

lim
λ
µ2→∞

TPadé
c

µ
' 1

12 ln 3
(1− r2

1

r2
) = 0.0925579

lim
λ
µ2→∞

TSUGRA
c

µ
= 0.105905(57) .

2 4 6 8 10
μ

0.2

0.4

0.6

0.8

T

Padé resummed-phase diagram
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A non-perturbative phase diagram from the Polyalov
Loop.

2 4 6 8 10
μ

0.2

0.4

0.6

0.8

T

Polyakov Loop-phase diagram
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μ
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Myers observable-phase diagram
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Nonperturbative-phase diagram

Green Myers transition
Blue Polyakov loop transition
Purple Padé prediction for the transition
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(μ,T)-phase diagram
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4-parameter Lattice discretisation

The bosonic lattice Laplacian

∆Bose = ∆ + rba
2∆2 , where ∆ =

2− eaDτ − e−aDτ

a2
.

Lattice Dirac operator

DLat = Ka116 − i
µ

4
γ567 + Σ123Kw , where Σ123 = iγ123 .

Ka = (1−r)
eaDτ − e−aDτ

2a
+r

e2aDτ − e−2aDτ

4a
lattice derivative

Kw = r1f a∆ + r2f a
3∆2 the Wilson term
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Lattice Dispersion relations
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4 (blue parabola),

∆Bose + µ2

4 light green,
Σ89 splitting red and orange curves.
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Observables

500 1000 1500 2000 2500 3000
tmc

0.2

0.4

0.6

0.8

1.0

Rii
2

Rii
2 vs simulation time for μ=6.0, T=0.69, N=8

5000 10000 15000
tmc

0.2

0.4

0.6

0.8

1.0

1.2

Rii
2

Rii
2 vs simulation time for μ=6.0, T=0.365, N=8

-2 -1 0 1 2 3
θ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ρ

Eigenvalue density of A for μ=6.0, T=0.69, N=8, Λ=24

-2 -1 0 1 2 3
θ

0.1

0.2

0.3

0.4

ρ

Eigenvalue density of A for μ=6.0, T=0.465, N=8, Λ=24

The non-perturbative physics of membrane matrix models—a phase diagram for the BMN model



0.5 1.0 1.5 2.0
T

0.2

0.4

0.6

0.8

1.0

<|P|>

Polyakov loop , μ=6.0, N=8

0.5 1.0 1.5 2.0
T

0.5

1.0

1.5

Myers

Myers term, μ=6.0, N=8

0.5 0.6 0.7 0.8 0.9 1.0
T0

1

2

3

4

E

E vs T for μ=6.0, N=8

The non-perturbative physics of membrane matrix models—a phase diagram for the BMN model



Small µ
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Non-monotonic Polyakov loop
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Where do we go from here

Study the bosonic BMN model—its phase diagram,
theoretical predictions.

Implications of SU(4|2) symmetry.

M2-branes.

Probe BMN with D4-branes—already coded.

N = 1∗ model — at coding stage.

N = 2 models.

Black dual geometries?

M5-brane matrix models?
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Conclusions

Bosonic membranes quantised a la Hoppe are well
approximated as massive gauged gaussian models.

Tests of the BFSS model against non-perturbative studies are
in excellent agreement.

It is useful to have probes of the geometry.

The mass deformed model, i.e. the BMN model is more
complicated. Initial phase diagrams indicate agreement with
gravity predictions

But ...

More work is needed. A study of non-spherical type IIA black
holes would be very useful.
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Thank you for your attention!
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