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Goal and Motivation

Goal:
Obtain a formulation of sigma model for double field theory (DFT)

Motivation:

e Quantum gravity — departure from Riemannian geometry: TM

e Generalized geometry (N. Hitchin): TM @ T*M (O(d, d)
symmetry)



Outline

> Introduction to double field theory (DFT)

> Our result: DFT sigma model (with an example)



Double Field Theory (DFT)



Introduction to double field theory

- A field theory, doubling the space of coordinates: contains both
coordinates conjugate to momentum modes, and dual coordinates
conjugate to winding modes of closed string

- O(d, d; R)-covariant formulation of the low-energy sector of
string theory on a compact space

- T-duality (O(d, d;Z) symmetry) is a symmetry of string theory
that relates winding modes in a given compact space with
momentum modes in another (dual) compact space.

- T-duality relates geometric and non-geometric fluxes

T:

T J Ql_jk T; Rilk
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where T; denotes a T-duality transformation along x' € M.



Introduction to double field theory

Double field theory action (in doubled geometry),
SprT = /dde e_2¢7€ ,

where the Ricci scalar

1
R = gHMNaMHKL(aNHKL—ZIaLHKN)

—20M& ONH pun + AH OV OV D

is expressed in generalized metric Hpy, and dilaton ® where
e 2® = | /|gle 2% with spacetime metric g.
M,N,K,L=1,...,2d



Introduction to double field theory

DFT action Sprr = S(Hmn, P), where generalized metric
gl —8"By )
Hiy = .
N <Bikng gj — Bwg"'Bj;
with metric g and Kalb Ramond Bj; field, i,j, k,/ =1,...,d.
(M. Gualtieri, arXiv:math/0401221 [math.DG])

HMN — nMPnNQHPQ, where the raising and lowering metric is

_.mp_ (01

which is an O(d, d) metric.



Introduction to double field theory

Generalized diffeomorphisms:

Gauge transformation of the generalized metric results in the
action of a generalized Lie derivative,

557'[/\4/\/ = Lng/\//N
= PopHmn + (OmE" — 0P Em)Hen
+(oneP — P en)Hume |

where Oy = (9, 0" =0),p=1,...,d. 0" =0 is a solution to a
condition called

[ Strong Constraint:  Iy(...)oM(...) =0

The dilaton transforms as a scalar tensor density,
(55(6_2¢) — 8M(§Me_2¢).



Introduction to double field theory

When the strong constraint is imposed: 9 = -2- =0

Oxy,
(supergravity frame), Sper (= [ d??X e72®R) reduces to the
Neveu-Schwarz sector of supergravity action in d dimensions,

Sns = / d9X\/ge*?(R + 40,0 0"¢ — 1—12HWHW) .

(Hull and Zwiebach, arXiv:0904.4664 [hep-th])



A structure in double field theory
The C-bracket of vectors in double field theory is

[A,B)Y = (AfokB!-1AKd/ Bk — {A« B})
= L(LaB - LgA),

where the generalized Lie derivative in DFT s
LaB = (A'9,;BY — B! 9,A7 + B; 87 Al)e,.
Property: For generalized Lie derivatives of DFT,

(ILc,La]l = Lyc.ap) B

= KM (BJ aKcM alAL o BJ 6KAM 8/ CL

+icMokAl !Bt — 1AM C!9'B) e, .

The right-hand side would vanish if we impose
n"ofo,g=0, (0.1)

for all fields f, g of DFT. This condition (0.1) is known as the
strong constraint in DFT.



Our proposal of a sigma model for DFT

Strategy:
From the well-known case of a Courant sigma model
(Liu, Weinstein and Xu, arXiv:dg-ga/9508013)

(Alexandrov, Kontsevich, Schwarz and Zaboronsky,
arXiv:hep-th/9502010)

Double
N
Split
N

Project



A large Courant algebroid in generalized geometry

Step 1: Doubling the target space

Consider a target space T*M, instead of M.

Definition.

Let E " T*M be a vector bundle.

Let [,-]e : T(E) x T(E) — T(E).

Let (-,-)g : T(E) x T(E) — C*°(M) be a symmetric
C*>°(M)-bilinear non-degenerate form.

Anchor map p: E — T(T*M).

= (E,[,"]g, (-, ")E, p) defines a large Courant algebroid. The
structures satisfy certain properties (Leibniz rule, ...).

The vector bundle we consider is,

E=T(T*M)& T*(T*M) .



Introduction to a graded 2 manifold

A QP2-manifold is defined by (M = T*[2]T[1]M,w, Q):
P-structure, w: degree 2 symplectic structure

Q-structure, Q: degree 1 vector field (cohomological when Q2% = 0)
these structures satisfy the compatibility condition: Low = 0

e Q gives rise to a degree 3 Hamiltonian function © € C*°(M) as
Q = {©, -}, with Poisson bracket of degree —2
e Q2=0 implies the classical master equation

(0,0} =0



Introduction to a graded 2 manifold

A QP2-manifold is defined by (M = T*[2]T[1]M,w, Q):
P-structure, w: degree 2 symplectic structure

Q-structure, Q: degree 1 vector field (cohomological when Q2% = 0)
these structures satisfy the compatibility condition: Low = 0

e Q gives rise to a degree 3 Hamiltonian function © € C*°(M) as
Q = {©, -}, with Poisson bracket of degree —2
e Q2=0 implies the classical master equation

{6,6} =0
4
canonical Courant algebroid: (E, p, [, ], (-, )E)

(Roytenberg, arXiv:math.SG/0203110)



Courant algebroid - QP2-manifold correspondence

On M = T*[2]T[1] T*M with a doubled target space, introduce
local Darboux coordinates:

degree 0 qunction, X!: even

degree 1 Al = (A/,A)): odd (anticommuting)
degree 2 F;: even

where I =1,...,2d and | = 1,...,4d.

Graded Poisson bracket (degree —2):
{Fi, f(X)} =o)f, {Ai,Aj} = 1773 , otherwise zero ,
therefore the degree 2 symplectic structure,

1 ~ ~
w=dFy AdX' + 2y dAT A AT



Courant algebroid - QP2-manifold correspondence

The most general Hamiltonian function © given in these
coordinates is a 3-degree,

which gives

{6,6} = (o507 FIF,
J

{6,606} =0 = Courant algebroid properties in local expressions



From algebroid structure to a worldvolume description |

The large Courant sigma model is
SIX,AF] = / (Fr AdX! + Ly AT A dAT — () AT A
px
+% TnR(X) AI A\ AJ A AK) R

where the map
X:X3—T'M,

with local coordinates (x', p;) in the target space T*M.
The components of this map are

X = (X') = (X', %) = (X', X;) ,

where the fields X’ and )~<,- are identified with the pullbacks of the
coordinate functions, X' = X*(x') and X; = X*(p;), with
i=1,...,d,1=1,...,2dand I =1,...,4d.



From algebroid structure to a worldvolume description Il

The large Courant sigma model
SIX,AF] = / (Fr AdX! + Ly AT A dAT — () AT A
33
+% TnR(X) A7 VAN Aj VAN AR) R

for I =1,...,2d and algebroid index ] = 1,...,4d.

The sections of the bundle, T(E): (A!) = (A!,A;) = (A, A;, A, A7),
where A = Ay + Ag := Al 9 + A dX. N

The basis vectors on T*M: (9;) = (9/0X',0/8X;) =: (8;,9")

The basis forms on T*M: (dX) := (dX',dX;)

For the anchor ,0’3, the components are (p', ).

.. Defined in terms of the structures of large Courant algebroid: p,

[.7 .]E7 <.7 '>E



From algebroid structure to a worldvolume description 11l
The large Courant sigma model
SIX,AF] = /z (Fi AdX! + Ly AT A dAT — () AT A
3
+1 T () AT A AT A AKY

for/=1,...,2d and 1 =1,...,4d.

Worldvolume 1-form A € Q' (X3, X*(T(T*M) & T*(T*M))).
Auxiliary worldvolume 2-form F € Q2(Z3, X* T*(T*M)).
The twist is decomposed as

T Ak B
19k =\ ¢ K plK ) -

Note: The /arge Courant sigma model has an O(2d, 2d)
metric, while double field theory has an O(d, d) metric.



Introduce a decomposition

Step 2: Splitting the bundle

Recall that (A') = (A’,A), and p; = (o' 1, 5.
Decompose the sections of the bundle, basis, and anchor in

AL =LA £9"A)), e =0 £myadx?,

(p=)'s=p'y £k p™,
where an O(d, d) metric 1 is employed.
.. The vector bundle is found to decompose as

E=T(T*"M)® T*(T*M) = Ly & L_ |

where Ly is the bundle whose space of sections, AQE is spanned
locally by e,i.
Anchors (p+)'j: Ly — T(T*M) on the doubled space.



Introduce a decomposition
When the large Courant sigma model
SIX,AF] = /z (Fi AdX! + Ly AT A dAT — s (X) AT A
3
+1 T (X) AT A AT A AK)
is expressed in terms of Al and (p+)'},
_ /z (Fi nax!+my (AL A dAL — AL A da?)
3

—((p) k A+ (p-) K AZ) AFy
+ 2 Tk ALANALAAS + 3T AL AAL AAY
+ 3 Ti AL A AL AAK LT AL AAL AR

where the components of T, T/, T"”, T" are combinations of the
twist components Ak, B/JK, C/JK, DMK in Tnk.



Double field theory sigma model

Step 3: Projecting to a subbundle

e Project with the map p, : E — L, i.e. AL =0,(p_); =0.
o |dentify A’+ =A and F; = F.

We obtain the O(d, d) invariant DFT membrane sigma model
(topological sector),

S[X,A F] = / (FrnaX! +ny AT A AT — (1) S A A F
23
—|—% T[JKAI /\AJ/\AK) R

where I =1,...,2d. The O(d, d) metric is



Double field theory sigma model

Summary:

p+ZE—>L+, (AV,AF)’—>A+::A,
L pr(A)=Ap =Al et .

A is identified as the pullback of a DFT vector.
DFT sigma model,

SIX,A F] = / (FrndX! +ny AT AdAT — (py)! AT A F
33

+% T/_/KAI A A /\AK) .



Fluxes in Double Field Theory



DFT fluxes

Given the components of the anchor in the Kalb-Ramond 2-form
field B and the bivector field 3,

ey Bl
(p+)'y = <Bij 5 +Bjk By) (0.3)

where the anchor satisfies (p )%/ n™ (p4)t; = nt, we can derive
DFT fluxes from the topological part of the DFT sigma model
(with an untwisted C-bracket),

S= [ (FA(@X = (o) s A) + iy AT A dAY)
23

Taking the equation of motion for the auxiliary 2-form F;, we
obtain dX' = (p4)'; A which implies

Al = (py), ax? .



DFT fluxes

Eliminating F;, the action becomes

/ (s (p+ )K" AT A dXF)

o3

+ /z i (p+) k()™ Do)V 5 AT A AT A AR
3

The three-dimensional term in this action encodes the DFT fluxes
T which satisfy

2051 0kp' vy — P ' 0"y = 0 o Traum (0.4)

where p = p4 in notation.



DFT fluxes

Recall/Check that the 4 types of fluxes (H, f, Q, R) which are
related by T-duality, in a holonomic frame read as

Hijx = 30;Bj+ 3B 0'By ,
fik = 0By + B Hy ,
QI = 0BT+ By d'BY + 28T I By + B B Hie
Rik — 3 5[iﬁjk] +3 5["1 a/ﬂjk]
138, fliLdmai 4 38l gim Gkl g, o gil gim gkn gy



Bianchi identities for DFT fluxes (from gauge invariance)

DFT topological sigma model,
S[X,A F] = /z (Fr A (@X! = p! y AT) + iy AT A dA
3 +1 Tk AT A AT A AKY
Consider the infinitesimal gauge transformations,
6 X =pl (X!, G A =del + M Ty (X) AR €L

where € is a gauge parameter (a function only of the worldvolume
coordinates on X3). Let the worldvolume derivative

DX' = ax! — p! y(x) A7,
it transforms as
5.DX!" = el okp' ; DXK + (2PK[L aKP'M] —pl ' ?-KLI\/I) AL M
= ¢ 8KpIJ DXK + PKIL (9IpKM] AL M

The derivative transforms covariantly if the last term vanishes.



Bianchi identities for DFT fluxes (from gauge invariance)

The gauge variation of the sigma model gives

0.S = / (77[_/ de' A dAT + PKIL 6IpKM] M Fi A AL
23

+ 0 Fi N DXK + EJ (aKpIJ F — 0k ?-[LJ AI VAN AL) VAN DXK
+ e (MY Tk Tiew + o™ 0 Tror + 3 oML O Tik)
AN AT A AR
The first term is a total derivative.

To cancel the second term, one may impose the following
constraint:

prr 0 pK M Fp A AL
oL Oip"m eM FIA AL + o O p" M Fin AL
0. (0.5)

This requirement is related to the strong constraint.



Bianchi identities for DFT fluxes (from gauge invariance)

The second line in 6.5 vanishes by postulating the gauge variation
of the auxiliary 2-form F; as

deFi = —¢ (Okp' y F1 — Ok Ty A" A AL)
An additional requirement is the vanishing of the last term in .5:
30MY Thapk T + 30 om Ty + ML oM Tiuk= 0,
which can be rewritten into
30N Tok Tign +4 0™y Om Ty =0 (0.6)

This requirement gives the Bianchi identities in DFT.



Bianchi identities for DFT fluxes (from gauge invariance)

Substitution into (0.6) of the DFT fluxes (H,f, Q, R) together
with the anchor

1 (8 B >
(p-‘r)J—(BU 6rl+/81k8ki

leads to
DiiHpp = 3 Hugii i)™
D[ifjk]l - %ﬁIHUk = Q[ilm Hixjm — 1™ fk]ml )
DyQ; Wy plkg = L £ Qo + 1 Hy R™ — 2 Q[im[k ’S']ml] 7

DiQM — IDRH = f,ll RMIm — @l @™
S[i pikl mlij o ki
pli ikl _ 3R 0 QK

where

D;:8;+Bj,~&’ and 'ﬁi:5i—|—,3ﬁ'Dj .



The strong constraint for gauge invariance |

Recall the imposition of the following constraint for the DFT sigma
model to be gauge invariant,

prr 0 pK M Fp A AL
oL 0ip" m eV A AL + pi 07" eV Fp A AL
= 0.
This can be solved by having ' = 0 and F' = 0, i.e. eliminating

dual coordinates. Or alternatively, 9; = 0 and F; = 0, or other
mixed choice.

The solutions can be noticed from the combinations below:
(i) The strong constraint required for the closure of the C-bracket,

[Lc,Lal = Lic.ap:
nMofo,g =0=25]0'fo;g +60ifdg .

This is solved by having either &' = 0 or d; = 0.



The strong constraint for gauge invariance |

(ii) Recall one of the conditions from the graded manifold

correspondence to Courant algebroid: 77” p's p?4FiF, = 0.

After projections, we get eventually
(p*1mM pty) F FL=n"" F FL = F¥ Fyc .

For this to vanish, it is solved by either F' =0 or F; =0.
Note that in DFT,
pfin pty=n"
it is non-vanishing on the right hand side. This can be checked

i i
explicitly from the choice of anchor (p1); = (ZJ 5 +ﬁﬁjk B}()
ij i i

that parametrizes the DFT fluxes.



The strong constraint for gauge invariance |l

Prewously the reqwrement that

3ngM TM[JK T,L]N + 4 pM (1 Om TKJL] = 0 for gauge invariance,
gives Bianchi identities for the fluxes. There is an indication of
strong constraint.

We could impose
30N Thauk Tign + 40 0w Ty = 2k

where Z is a 4-form. We substitute the DFT flux expression,
251 0kp" My — Pk 0 0%y = 0 s Tiim Upon contracting
with AANAAAA A, and using pK M pt; = nKE, we get

Zik A ATARAR = 3 oy por (OmpM k) (OMpQL) Al AT AL AK

in contracted derivatives. This term vanishes if we impose the
strong constraint: n™ 0,f 9, = 0.



Dynamics in the double field theory sigma model



Closed string dynamics in the boundary of the open membrane

We add a symmetric boundary term to the topological doubled
sigma model,
S, A F] = / (Fr AdX! gy AT A AT — (p2) 3 AV A F)
33

-I-/ %TUKAI/\AJ/\AK
33

+ / Lgy(X) Al A #AY (0.7)
0%3

. AV
where in general (p+)'s= jl A= (@' pi)
Pij  Pi

Hijx i gi &’
TIJK:< gk Rik |+ 8= g &)

The worldsheet theories for the 4 T-dual closed string backgrounds
with constant H-, f-, Q- and R-fluxes can be derived from the
DFT sigma model.



Example: NS—-NS (Neveu-Schwarz) flux

To describe the geometric H-flux frame on the 3-torus, we choose
the data

50 Hi O 0 0
I _ itk _

where g¥ denotes a constant metric with inverse gij- Then the
membrane action becomes

ST = / (F,/\dX’+qf/\dp;+p;Adqi—q’/\F;
23
+éHfjkq"quAqk)+/az 1&g pinxp;. (0.8)
3

We are interested in the on-shell membrane theory. The equation
of motion for F; yields two relations, one from F; and the other
from F', giving

g =dXx’ and dX; = 0 (.. dual coordinates removed) .



Example: NS—NS flux

The on-shell action takes the form

/ (p,-AdX"+;g"fp,-A*pj)+/ 3 HigedX' A dXI A dxE
823 z3

After integrating out p; using %> = 1, it becomes

Su[X] = /82 ég,-jdx"A*dfor/z L HyedX A dXI A dXK
3 3

for the closed string sigma model on 9% 3 with 3-torus target space
and NS-NS flux.



On the strong constraint in DFT

e Its imposition preserves the gauge invariance of the DFT
membrane sigma model, giving also Bianchi identities for the
fluxes.

e Learned from the C-bracket in DFT: it facilitates the closure of
generalized Lie derivatives, hence the closure of gauge
transformations.

e |t controls the violation of two of the axioms in Courant
algebroid, i.e. homormorphism and Jacobi identity.



Conclusions

> Method of Doubling-Splitting-Projecting:

strong constraint
—

Large Courant algebroid P Double field theory
canonical Courant algebroid

- geometric origin of double field theory

D> Fluxes and their Bianchi identities in double field theory can be
derived from the sigma model.

> A double field theory sigma model that upon choosing an
anchor p and flux T, and adding a suitable symmetric term in the
boundary of the membrane, captures geometric and non-geometric
flux background descriptions, and motion of a closed string in the
boundary.



Thank You

Q>



