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Goal and Motivation

Goal:

Obtain a formulation of sigma model for double field theory (DFT)

Motivation:

• Quantum gravity → departure from Riemannian geometry: TM

• Generalized geometry (N. Hitchin): TM
⊕

T ∗M (O(d , d)
symmetry)



Outline

B Introduction to double field theory (DFT)

B Our result: DFT sigma model (with an example)



Double Field Theory (DFT)



Introduction to double field theory

- A field theory, doubling the space of coordinates: contains both
coordinates conjugate to momentum modes, and dual coordinates
conjugate to winding modes of closed string
- O(d , d ; R)-covariant formulation of the low-energy sector of
string theory on a compact space
- T-duality (O(d , d ; Z) symmetry) is a symmetry of string theory
that relates winding modes in a given compact space with
momentum modes in another (dual) compact space.
- T-duality relates geometric and non-geometric fluxes

Hijk
Tk←→ fij

k Tj←→ Qi
jk Ti←→ R ijk ,

where Ti denotes a T-duality transformation along x i ∈ M.



Introduction to double field theory

Double field theory action (in doubled geometry),

SDFT =

∫
d2dX e−2ΦR ,

where the Ricci scalar

R =
1

8
HMN∂

MHKL(∂NHKL − 4∂LHKN)

−2∂MΦ ∂NHMN + 4HMN∂
MΦ ∂NΦ

is expressed in generalized metric HMN , and dilaton Φ where
e−2Φ =

√
|g |e−2φ with spacetime metric g .

M,N,K , L = 1, . . . , 2d



Introduction to double field theory

DFT action SDFT = S(HMN ,Φ), where generalized metric

HMN =

(
g ij −g ikBkj

Bikgkj gij − BikgklBlj

)
with metric gij and Kalb Ramond Bij field, i , j , k , l = 1, . . . , d .

(M. Gualtieri, arXiv:math/0401221 [math.DG])

HMN = ηMPηNQHPQ , where the raising and lowering metric is

ηMP = ηMP =

(
0 1
1 0

)
which is an O(d , d) metric.



Introduction to double field theory

Generalized diffeomorphisms:

Gauge transformation of the generalized metric results in the
action of a generalized Lie derivative,

δξHMN = LξHMN

= ξP∂PHMN + (∂Mξ
P − ∂PξM)HPN

+(∂Nξ
P − ∂PξN)HMP ,

where ∂M = (∂µ, ∂
µ = 0), µ = 1, . . . , d . ∂µ = 0 is a solution to a

condition called

Strong Constraint: ∂M(. . . )∂M(. . . ) = 0

The dilaton transforms as a scalar tensor density,
δξ(e−2Φ) = ∂M(ξMe−2Φ).



Introduction to double field theory

When the strong constraint is imposed: ∂µ = ∂
∂xµ

= 0

(supergravity frame), SDFT (=
∫

d2dX e−2ΦR) reduces to the
Neveu-Schwarz sector of supergravity action in d dimensions,

SNS =

∫
ddX
√

ge−2φ(R + 4∂µφ∂
µφ− 1

12
HµνλHµνλ) .

(Hull and Zwiebach, arXiv:0904.4664 [hep-th])



A structure in double field theory

The C-bracket of vectors in double field theory is

[[A,B]]J = (AK ∂KBJ − 1
2 AK ∂JBK − {A↔ B})

= 1
2 (LAB − LBA)J ,

where the generalized Lie derivative in DFT is
LAB = (AI ∂IB

J − B I ∂IA
J + BI ∂

JAI )eJ .
Property: For generalized Lie derivatives of DFT,(

[LC , LA]− L[[C ,A]]

)
B

= ηIK ηJM
(
BJ ∂KCM ∂IAL − BJ ∂KAM ∂ICL

+ 1
2 CM ∂KAJ ∂IBL − 1

2 AM ∂KC J ∂IBL
)

eL .

The right-hand side would vanish if we impose

ηIJ ∂I f ∂Jg = 0 , (0.1)

for all fields f , g of DFT. This condition (0.1) is known as the
strong constraint in DFT.



Our proposal of a sigma model for DFT

Strategy:
From the well-known case of a Courant sigma model

(Liu, Weinstein and Xu, arXiv:dg-ga/9508013)

(Alexandrov, Kontsevich, Schwarz and Zaboronsky,
arXiv:hep-th/9502010)

Double
↓

Split
↓

Project



A large Courant algebroid in generalized geometry

Step 1: Doubling the target space

Consider a target space T ∗M, instead of M.

Definition.
Let E

π→ T ∗M be a vector bundle.
Let [·, ·]E : Γ(E )× Γ(E )→ Γ(E ).
Let 〈·, ·〉E : Γ(E )× Γ(E )→ C∞(M) be a symmetric
C∞(M)-bilinear non-degenerate form.
Anchor map ρ : E → T (T ∗M).

⇒ (E , [·, ·]E , 〈·, ·〉E , ρ) defines a large Courant algebroid. The
structures satisfy certain properties (Leibniz rule, . . . ).

The vector bundle we consider is,

E = T (T ∗M)⊕ T ∗(T ∗M) .



Introduction to a graded 2 manifold

A QP2-manifold is defined by (M = T ∗[2]T [1]M, ω,Q):

P-structure, ω: degree 2 symplectic structure
Q-structure, Q: degree 1 vector field (cohomological when Q2 = 0)
these structures satisfy the compatibility condition: LQω = 0

• Q gives rise to a degree 3 Hamiltonian function Θ ∈ C∞(M) as
Q = {Θ, · }, with Poisson bracket of degree −2
• Q2 = 0 implies the classical master equation

{Θ,Θ} = 0

⇓

canonical Courant algebroid: (E , ρ, [·, ·]E , 〈·, ·〉E )

(Roytenberg, arXiv:math.SG/0203110)
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Courant algebroid - QP2-manifold correspondence

On M = T ∗[2]T [1]T ∗M with a doubled target space, introduce
local Darboux coordinates:

degree 0 function, XI : even

degree 1 AÎ = (AI , ÃI ): odd (anticommuting)
degree 2 FI : even

where I = 1, . . . , 2d and Î = 1, . . . , 4d .

Graded Poisson bracket (degree −2):

{FI , f (X)} = ∂I f , {AÎ ,AĴ} = η Î Ĵ , otherwise zero ,

therefore the degree 2 symplectic structure,

ω = dFI ∧ dXI +
1

2
ηÎ Ĵ dAÎ ∧ dAĴ .



Courant algebroid - QP2-manifold correspondence

The most general Hamiltonian function Θ given in these
coordinates is a 3-degree,

Θ = ρI Î (X) FI AÎ − 1

3!
TÎ ĴK̂ (X) AÎ AĴ AK̂ , (0.2)

which gives

{Θ,Θ} = (η Î Ĵ ρI Î ρ
J
Ĵ) FIFJ

+
(
ρI Î ∂Iρ

J
Ĵ − ρ

I
Ĵ ∂Iρ

J
Î − η

K̂ L̂ ρJ K̂ TL̂Î Ĵ

)
AÎAĴFJ

−
(1

3
ρI L̂ ∂ITÎ ĴK̂ +

1

4
ηM̂N̂ TM̂L̂Î TĴK̂ N̂)AL̂AÎAĴAK̂ .

{Θ,Θ} = 0 ⇒ Courant algebroid properties in local expressions



From algebroid structure to a worldvolume description I

The large Courant sigma model is

S [X,A,F] =

∫
Σ3

(
FI ∧ dXI + 1

2 ηÎ Ĵ AÎ ∧ dAĴ − ρI Î (X) AÎ ∧ FI

+ 1
6 TÎ ĴK̂ (X) AÎ ∧ AĴ ∧ AK̂

)
,

where the map
X : Σ3 −→ T ∗M ,

with local coordinates (x i , pi ) in the target space T ∗M.
The components of this map are

X = (XI ) = (Xi ,Xi ) =: (X i , X̃i ) ,

where the fields X i and X̃i are identified with the pullbacks of the
coordinate functions, X i = X∗(x i ) and X̃i = X∗(pi ), with
i = 1, . . . , d , I = 1, . . . , 2d and Î = 1, . . . , 4d .



From algebroid structure to a worldvolume description II

The large Courant sigma model

S [X,A,F] =

∫
Σ3

(
FI ∧ dXI + 1

2 ηÎ Ĵ AÎ ∧ dAĴ − ρI Î (X) AÎ ∧ FI

+ 1
6 TÎ ĴK̂ (X) AÎ ∧ AĴ ∧ AK̂

)
,

for I = 1, . . . , 2d and algebroid index Î = 1, . . . , 4d .

The sections of the bundle, Γ(E ): (AÎ ) = (AI , ÃI ) = (Ai ,Ai , Ãi , Ãi ),
where A = AV + AF := AI ∂I + ÃI dXI .
The basis vectors on T ∗M: (∂I ) = (∂/∂X i , ∂/∂X̃i ) =: (∂i , ∂̃

i )
The basis forms on T ∗M: (dXI ) := (dX i , dX̃i )
For the anchor ρI Ĵ , the components are (ρI J , ρ̃

IJ).

∴ Defined in terms of the structures of large Courant algebroid: ρ,
[·, ·]E , 〈·, ·〉E



From algebroid structure to a worldvolume description III

The large Courant sigma model

S [X,A,F] =

∫
Σ3

(
FI ∧ dXI + 1

2 ηÎ Ĵ AÎ ∧ dAĴ − ρI Î (X) AÎ ∧ FI

+ 1
6 TÎ ĴK̂ (X) AÎ ∧ AĴ ∧ AK̂

)
,

for I = 1, . . . , 2d and Î = 1, . . . , 4d .

Worldvolume 1-form A ∈ Ω1
(
Σ3,X∗

(
T (T ∗M)⊕ T ∗(T ∗M)

))
.

Auxiliary worldvolume 2-form F ∈ Ω2(Σ3,X∗T ∗(T ∗M)).
The twist is decomposed as

TÎ ĴK̂ :=

(
AIJK BIJ

K

CI
JK D IJK

)
.

Note: The large Courant sigma model has an O(2d , 2d)
metric, while double field theory has an O(d , d) metric.



Introduce a decomposition

Step 2: Splitting the bundle

Recall that (AÎ ) = (AI , ÃI ), and ρI Ĵ = (ρI J , ρ̃
IJ).

Decompose the sections of the bundle, basis, and anchor in

AI
± = 1

2

(
AI ± ηIJ ÃJ

)
, e±I = ∂I ± ηIJ dXJ ,

(ρ±)I J = ρI J ± ηJK ρ̃ IK ,

where an O(d , d) metric η is employed.
∴ The vector bundle is found to decompose as

E = T (T ∗M)⊕ T ∗(T ∗M) = L+ ⊕ L− ,

where L± is the bundle whose space of sections, AI
± is spanned

locally by e±I .

Anchors (ρ±)I J : L± → T (T ∗M) on the doubled space.



Introduce a decomposition

When the large Courant sigma model

S [X,A,F] =

∫
Σ3

(
FI ∧ dXI + 1

2 ηÎ Ĵ AÎ ∧ dAĴ − ρI Î (X) AÎ ∧ FI

+ 1
6 TÎ ĴK̂ (X) AÎ ∧ AĴ ∧ AK̂

)
is expressed in terms of AI

± and (ρ±)I J ,

=

∫
Σ3

(
FI ∧ dXI + ηIJ

(
AI

+ ∧ dAJ
+ − AI

− ∧ dAJ
−
)

−
(
(ρ+)I K AK

+ + (ρ−)I K AK
−
)
∧ FI

+ 1
6 TIJK AI

+ ∧ AJ
+ ∧ AK

+ + 1
2 T ′IJK AI

− ∧ AJ
+ ∧ AK

+

+ 1
2 T ′′IJK AI

+ ∧ AJ
− ∧ AK

− + 1
6 T ′′′IJK AI

− ∧ AJ
− ∧ AK

−

)
,

where the components of T ,T ′,T ′′,T ′′′ are combinations of the
twist components AIJK ,BIJ

K ,CI
JK ,D IJK in TÎ ĴK̂ .



Double field theory sigma model

Step 3: Projecting to a subbundle

• Project with the map p+ : E −→ L+, i.e. AI
− = 0, (ρ−)I J = 0.

• Identify AI
+ = AI and FI = FI .

We obtain the O(d , d) invariant DFT membrane sigma model
(topological sector),

S [X,A,F ] =

∫
Σ3

(
FI ∧ dXI + ηIJ AI ∧ dAJ − (ρ+)I J AJ ∧ FI

+ 1
6 TIJK AI ∧ AJ ∧ AK

)
,

where I = 1, . . . , 2d . The O(d , d) metric is

ηIJ =

(
0 δ j

i

δij 0

)
.



Double field theory sigma model

Summary:

p+ : E −→ L+ , (AV ,AF ) 7−→ A+ := A ,

∴ p+(A) = A+ = AI
+ e+

I .

A is identified as the pullback of a DFT vector.
DFT sigma model,

S [X,A,F ] =

∫
Σ3

(
FI ∧ dXI + ηIJ AI ∧ dAJ − (ρ+)I J AJ ∧ FI

+ 1
6 TIJK AI ∧ AJ ∧ AK

)
.



Fluxes in Double Field Theory



DFT fluxes

Given the components of the anchor in the Kalb-Ramond 2-form
field B and the bivector field β,

(ρ+)I J =

(
δi j βij

Bij δi
j + βjk Bki

)
, (0.3)

where the anchor satisfies (ρ+)K I η
IJ (ρ+)LJ = ηKL, we can derive

DFT fluxes from the topological part of the DFT sigma model
(with an untwisted C-bracket),

S =

∫
Σ3

(
FI ∧ (dXI − (ρ+)I J AJ) + ηIJ AI ∧ dAJ

)
.

Taking the equation of motion for the auxiliary 2-form FI , we
obtain dXI = (ρ+)I J AJ which implies

AI = (ρ+)J
I dXJ .



DFT fluxes

Eliminating FI , the action becomes∫
∂Σ3

(
ηIJ (ρ+)K

I AJ ∧ dXK
)

+

∫
Σ3

ηIM (ρ+)LK (ρ+)N
M ∂L(ρ+)NJ AI ∧ AJ ∧ AK .

The three-dimensional term in this action encodes the DFT fluxes
T̂ which satisfy

2 ρK [L ∂Kρ
I
M] − ρK [L ∂

IρKM] = ρI J η
JK T̂KLM , (0.4)

where ρ = ρ+ in notation.



DFT fluxes

Recall/Check that the 4 types of fluxes (H, f ,Q,R) which are
related by T-duality, in a holonomic frame read as

Hijk = 3 ∂[iBjk] + 3 B[i l ∂̃
lBjk] ,

fij
k = ∂̃kBij + βkl Hlij ,

Qk
ij = ∂kβ

ij + Bkl ∂̃
lβij + 2βl [i ∂̃j]Blk + βil βjm Hlmk ,

R ijk = 3 ∂̃[iβjk] + 3β[i l ∂lβ
jk]

+ 3 Blm β
[i l ∂̃mβjk] + 3β[i l βjm ∂̃k]Blm + βil βjm βkn Hlmn .



Bianchi identities for DFT fluxes (from gauge invariance)

DFT topological sigma model,

S [X,A,F ] =

∫
Σ3

(
FI ∧ (dXI − ρI J AJ) + ηIJ AI ∧ dAJ

+ 1
3 T̂IJK AI ∧ AJ ∧ AK

)
.

Consider the infinitesimal gauge transformations,

δεX
I = ρI J(X) εJ , δεA

I = dεI + ηIJ T̂JKL(X) AK εL ,

where ε is a gauge parameter (a function only of the worldvolume
coordinates on Σ3). Let the worldvolume derivative

DXI = dXI − ρI J(X) AJ ,

it transforms as

δεDXI = εJ ∂Kρ
I
J DXK +

(
2ρK [L ∂Kρ

I
M] − ρI J ηJK T̂KLM

)
AL εM

= εJ ∂Kρ
I
J DXK + ρK [L ∂

IρKM] AL εM .

The derivative transforms covariantly if the last term vanishes.



Bianchi identities for DFT fluxes (from gauge invariance)

The gauge variation of the sigma model gives

δεS =

∫
Σ3

(
ηIJ dε

I ∧ dAJ + ρK [L ∂
IρKM] ε

M FI ∧ AL

+ δεFK ∧ DXK + εJ (∂Kρ
I
J FI − ∂K T̂ILJ AI ∧ AL) ∧ DXK

+ εL (ηMN T̂MJK T̂ILN + ρMI ∂M T̂KJL + 1
3 ρ

M
L ∂M T̂IJK )

AI ∧ AJ ∧ AK
)
.

The first term is a total derivative.
To cancel the second term, one may impose the following
constraint:

ρKL ∂
IρKM εM FI ∧ AL

= ρKL ∂iρ
K
M εM F i ∧ AL + ρKL ∂̃

iρKM εM Fi ∧ AL

= 0 . (0.5)

This requirement is related to the strong constraint.



Bianchi identities for DFT fluxes (from gauge invariance)

The second line in δεS vanishes by postulating the gauge variation
of the auxiliary 2-form FI as

δεFK = −εJ
(
∂Kρ

I
J FI − ∂K T̂ILJ AI ∧ AL

)
.

An additional requirement is the vanishing of the last term in δεS :

3 ηMN T̂M[JK T̂I ]LN + 3 ρM [I ∂M T̂KJ]L + ρML ∂M T̂IJK= 0 ,

which can be rewritten into

3 ηMN T̂M[JK T̂IL]N + 4 ρM [I ∂M T̂KJL] = 0 . (0.6)

This requirement gives the Bianchi identities in DFT.



Bianchi identities for DFT fluxes (from gauge invariance)

Substitution into (0.6) of the DFT fluxes (H, f ,Q,R) together
with the anchor

(ρ+)I J =

(
δi j βij

Bij δi
j + βjk Bki

)
leads to

D[iHjkl ] = 3
2 Hm[ij fkl ]

m ,

D[i fjk]
l − 1

3 D̃
lHijk = Q[i

lm Hjk]m − f[ij
m fk]m

l ,

D[iQj]
kl + D̃[k fij

l ] = 1
2 fij

m Qm
kl + 1

2 Hijm Rmkl − 2 Q[i
m[k fj]m

l ] ,

D̃[iQl
jk] − 1

3 DlR
ijk = flm

[i R jk]m − Qm
[ij Ql

k]m ,

D̃[iR jkl ] = 3
2 Rm[ij Qm

kl ] ,

where

Di = ∂i + Bji ∂̃
j and D̃i = ∂̃ i + βji Dj .



The strong constraint for gauge invariance I

Recall the imposition of the following constraint for the DFT sigma
model to be gauge invariant,

ρKL ∂
IρKM εM FI ∧ AL

= ρKL ∂iρ
K
M εM F i ∧ AL + ρKL ∂̃

iρKM εM Fi ∧ AL

= 0 .

This can be solved by having ∂̃i = 0 and F i = 0, i.e. eliminating
dual coordinates. Or alternatively, ∂i = 0 and Fi = 0, or other
mixed choice.

The solutions can be noticed from the combinations below:
(i) The strong constraint required for the closure of the C-bracket,
[LC , LA] = L[[C ,A]]:

ηIJ∂I f ∂Jg = 0 = δ j
i ∂̃

i f ∂jg + δij∂i f ∂̃
jg .

This is solved by having either ∂̃ i = 0 or ∂i = 0.



The strong constraint for gauge invariance I

(ii) Recall one of the conditions from the graded manifold

correspondence to Courant algebroid: η Î Ĵ ρI Î ρ
J
ĴFIFJ = 0.

After projections, we get eventually(
ρK I η

IJ ρLJ
)

FK FL = ηKL FK FL =: FK FK .

For this to vanish, it is solved by either F i = 0 or Fi = 0.

Note that in DFT,
ρK I η

IJ ρLJ = ηKL ,

it is non-vanishing on the right hand side. This can be checked

explicitly from the choice of anchor (ρ+)I J =

(
δi j βij

Bij δi
j + βjk Bki

)
that parametrizes the DFT fluxes.



The strong constraint for gauge invariance II

Previously, the requirement that
3 ηMN T̂M[JK T̂IL]N + 4 ρM [I ∂M T̂KJL] = 0 for gauge invariance,
gives Bianchi identities for the fluxes. There is an indication of
strong constraint.

We could impose

3 ηMN T̂M[JK T̂IL]N + 4 ρM [I ∂M T̂KJL] = ZIJKL ,

where Z is a 4-form. We substitute the DFT flux expression,
2 ρK [L ∂Kρ

I
M] − ρK [L ∂

IρKM] = ρI J η
JK T̂KLM . Upon contracting

with A ∧ A ∧ A ∧ A, and using ρK I η
IJ ρLJ = ηKL, we get

ZIJKLAIAJALAK = 3 ρNJ ρQI (∂Mρ
N
K ) (∂MρQL) AIAJALAK

in contracted derivatives. This term vanishes if we impose the
strong constraint: ηIJ ∂I f ∂Jg = 0.



Dynamics in the double field theory sigma model



Closed string dynamics in the boundary of the open membrane

We add a symmetric boundary term to the topological doubled
sigma model,

S [X,A,F ] =

∫
Σ3

(
FI ∧ dXI + ηIJ AI ∧ dAJ − (ρ+)I J AJ ∧ FI

)
+

∫
Σ3

1
6 TIJK AI ∧ AJ ∧ AK

+

∫
∂Σ3

1
2 gIJ(X) AI ∧ ∗AJ , (0.7)

where in general (ρ+)I J =

(
ρi j ρij

ρij ρi
j

)
, AI = (qi , pi ) ,

TIJK =

(
Hijk fij

k

Qi
jk R ijk

)
, gIJ =

(
gij gi

j

g i
j g ij

)
.

The worldsheet theories for the 4 T-dual closed string backgrounds
with constant H-, f -, Q- and R-fluxes can be derived from the
DFT sigma model.



Example: NS–NS (Neveu-Schwarz) flux

To describe the geometric H-flux frame on the 3-torus, we choose
the data

(ρ+)I J =

(
δi j 0
0 0

)
,TIJK =

(
Hijk 0

0 0

)
, gIJ =

(
0 0
0 g ij

)
,

where g ij denotes a constant metric with inverse gij . Then the
membrane action becomes

SDFT =

∫
Σ3

(
FI ∧ dXI + qi ∧ dpi + pi ∧ dqi − qi ∧ Fi

+ 1
6 Hijk qi ∧ qj ∧ qk

)
+

∫
∂Σ3

1
2 g ij pi ∧ ∗pj . (0.8)

We are interested in the on-shell membrane theory. The equation
of motion for FI yields two relations, one from Fi and the other
from F i , giving

qi = dX i and dX̃i = 0 (∴ dual coordinates removed) .



Example: NS–NS flux

The on-shell action takes the form∫
∂Σ3

(
pi ∧ dX i + 1

2 g ij pi ∧ ∗pj

)
+

∫
Σ3

1
6 Hijk dX i ∧ dX j ∧ dX k .

After integrating out pi using ∗2 = 1, it becomes

SH [X ] :=

∫
∂Σ3

1
2 gij dX i ∧ ∗dX j +

∫
Σ3

1
6 Hijk dX i ∧ dX j ∧ dX k

for the closed string sigma model on ∂Σ3 with 3-torus target space
and NS–NS flux.



On the strong constraint in DFT

• Its imposition preserves the gauge invariance of the DFT
membrane sigma model, giving also Bianchi identities for the
fluxes.
• Learned from the C-bracket in DFT: it facilitates the closure of
generalized Lie derivatives, hence the closure of gauge
transformations.
• It controls the violation of two of the axioms in Courant
algebroid, i.e. homormorphism and Jacobi identity.



Conclusions

B Method of Doubling-Splitting-Projecting:

Large Courant algebroid
p+−→ Double field theory

strong constraint−→
canonical Courant algebroid

- geometric origin of double field theory

B Fluxes and their Bianchi identities in double field theory can be
derived from the sigma model.

B A double field theory sigma model that upon choosing an
anchor ρ and flux T , and adding a suitable symmetric term in the
boundary of the membrane, captures geometric and non-geometric
flux background descriptions, and motion of a closed string in the
boundary.



Thank You


