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Introduction

How to describe quatum structure of space-time? In
particular:

Can space-time events be observed with arbitrary
precision ?
Is there a fundamental and elementary length scale
in nature ?

These issues are related to the quantum structure of
space-time relevant at the Planck scale.

Noncommutative Geometry is one of the candidates for
describing physics at that regime.
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Space-time UR

Heisenberg’s Principle
+ =⇒ Space-time uncertainty relations

Einstein’s Theory

Measuring a space-time coordinate with an accuracy δ

causes and uncertainty in the momentum ∼ 1

δ
.

Neglecting rest mass, an energy of the order 1

δ
is

transmitted to the system and concentrated for some
time in the localization region. The associated
energy-momentum tensor generates a gravitational
field.

The smaller the uncertainties in the measurement of
coordinates, the stronger will be the gravitational field
generated by the measurement.
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Space-time UR

To probe physics at Planck Scale lp, the Compton
wavelength 1

M
of the probe must be less than lp, hence

M > 1

lp
, i.e. Planck mass.

When this field becomes so strong as to prevent light or
other signals from leaving the region in question, an
operational meaning can no longer be attached to the
localization.

Similarly, observations of very short time scales also
require very high energies. Such observations can also
limit spatial resolutions leading to a relation of the form

∆t∆x ≥ L2, L = fundamental length

.
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Space-time UR

Based on these arguments, Doplicher, Fredenhagen and
Roberts (1994) arrived at uncertainty relations between
the coordinates, which they showed could be deduced
from a commutation relation of the type

[qµ, qν ] = iQµν

where qµ are self-adjoint coordinate operators, µ, ν run
over space-time coordinates and Qµν is an antisymmetric
tensor, with the simplest possibility that it commutes with
the coordinate operators.

NC geometry as a model of a quantum space-time.
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Introduction

Noncommutative geometry is a beautiful idea by itself,
supported by string theory, certain formulations of
quantum gravity, DFT and so on

What can be observational consequences of this
framework?

We will discuss a toy model which will illustrate the
possibility of such consequences

Our proposal is based on properties of gravitational
waves
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Introduction

The first direct detection of gravitational waves from
black hole mergers took place in 2015.

The frequencies associated with the gravitational waves
arising from an astrophysical event approximately 1.4
billion years ago were detected on earth.

This discovery has ushered in a new field of
gravitational wave astronomy.

It is now possible to think of the of detection of
gravitational waves from the primordial sources.

These waves can in principle carry signatures of
quantum structure of space-time.

It is thus important to ask how quantum structure of
space-time can affect the gravitational wave spectrum.
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Model

To study gravitational waves in NC spacetime, we have three
possibilities :

NC geometry probed by a NC field

NC geometry probed by commutative field

Commutative geometry probed by a NC field

We have chosen the third possibility for our analysis.

This is in the similar spirit of a given classical geometry being
probed by different type of fields to extract physical
information.
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Model

We consider the action

S =

∫

d4x
√
−g gµν (∂µφ ⋆ ∂νφ)

The noncommutativity is chosen to be given by the
κ-deformed algebra

[x̂µ, x̂ν ] = i(aµx̂ν − aνx̂µ)

where we shall choose a0 =
1
κ
≡ a and ai = 0.

The κ-deformed algebra naturally appears in the NC
description of a large class of black holes and in certain
NC versions of cosmology. This motivates our choice.
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Model

Operators x̂µ can be realized in terms of the operators xµ and pµ(= i∂µ) defined as

x̂µ = xαϕ
α
µ(p)

From now on, we work upto the first order in the deformation parameter a. Demanding
consistency of the realization with the algebra gives

ϕα
µ = δαµ [1 + α(a · p)] + βaαpµ + γpαaµ, α, β, γ ∈ R, γ − α = 1

Upto the first order, the action is given by

S = S0 +

∫

d4x

(

Aαβγδ

∂2φ

∂xα∂xβ

∂2φ

∂xγ∂xδ

)

,

where S0 is the commutative action and

Aαβγδ = i
√
−g gβδ (αxαaγ + β(a · x)ηαγ + γaαxγ)
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Model

We shall next find the equation of motion to the first order
in a. This is in general very complicated and to simplify it,
we use the long wavelength approximation and keep
terms only upto the lowest order in derivatives.

We choose the classical geometry to be given by a
massive spinless BTZ black hole. This is a simple
background for which the quasi-normal modes can be
studied analytically in the commutative case. This
motivates the choice of the background.
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EOM- Scalar

The massive spinless BTZ black hole is described by the
metric

gµν =











r2

l2
−M 0 0

0 − 1
r2

l2
−M

0

0 0 −r2











,

We start with a massive spinless BTZ black hole and a κ-type
NC scalar field. The equations of motion are derived from

Ŝ =

∫

d4x
√
−g gµν (∂µφ ⋆ ∂νφ) .

where the NC star product has been defined before.
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EOM - Scalar

Using the decomposition

φ(r, θ, t) = R(r)e−iωteimθ

the radial equation of motion upto first order in the NC
parameter is

r

(

8GM − r2

l2

)

∂2R

∂r2
+

(

8GM − 3r2

l2

)

∂R

∂r

+

(

m2

r
− ω2 r

r2

l2
− 8GM

− aβω
8r

l2

3r2

2l2
− 8GM

r2

l2
− 8GM

)

R = 0
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EOM - Scalar

Using

z = 1− Ml2

r2
,

we get

z(1− z)
d2R

dz2
+ (1− z)

dR

dz
+

(

A

z
+ B +

C

1− z

)

R = 0,

A =
ω2l2

4M
+ aβω, B = −m2

4M
, C = 3aβω.

These equations have very special features and we shall
discuss those shortly.

K.S.Gupta, SGQG-2018, Primosten – p. 16



QNM - Scalar

Using the ansatz

R(z) = zλ1(1− z)λ2F (a, b, c, z)

we get

z(1− z)
d2F

dz2
+ [c− (1 + a+ b)z]

dF

dz
− abF = 0.

where

a = λ1 + λ2 + i
√
−B, b = λ1 + λ2 − i

√
−B c = 2λ1 + 1

λ1 = −i
√
A λ2 =

1

2
(1−

√
1− 4C)
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QNM - Scalar

The quasinormal modes are defined as solutions which are purely ingoing at the horizon,
and which vanish at infinity. We have two linearly independent solutions F (a, b, c, z) and
z1−cF (a− c+ 1, b− c+ 1, 2− c, z) near the horizon z = 0. Thus, the solution which has
ingoing flux at the horizon is given by

R(z) = zλ1(1− z)λ2F (a, b, c, z)

This is valid only in some neighborhood of the horizon, for the infinity, z = 1, we use analytic
continuation

R(z) = zλ1 (1− z)λ2+c−a−b Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
F (c− a, c− b, c− a− b+ 1, 1− z)

+zλ1 (1− z)λ2
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F (a, b, a+ b− c+ 1, 1− z),

Using the QNM boundary conditions we get

c− a = −n, or c− b = −n,

and n = 0, 1, 2... These conditions determine the frequencies of the quasinormal modes.
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QNM - Scalar

The NC QNM frequencies are given by

ωL,R = ±m

l
+ aβ

2M

l2
(6n+ 5)− 2i

[√
M

l
(n+ 1)∓ 3aβ

m

l2

√
M

]

n = 0, 1, 2...

The gravity waves in principle provide an opportunity to
observe quantum gravity effects as described by NC
physics.
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NC Duality

We started with a massive spinless BTZ black hole
probed by a massless NC scalar field.

The equation of motion that we got corresponds to that of
a massive spinning BTZ black hole probed by a massive
commutative scalar field.

Within our scheme of approximation, this is a new kind of
duality.

Thus we have
M f = M f(a,M), Jf = Jf (a,M), µf = µf (a,M)

where M f and Jf are the mass and spin of the dual black
hole and µf is the mass of the scalar field.
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NC Duality

Now we determine the parameters of the dual black hole?

For that, we first calculate the entropy of the original black
hole with mass M using the brick wall method and get

SNC =
2πl

√
M

4G

(

1 + aβ
√
M

8πζ(2)

3lζ(3)

)

For the dual spining black hole

Sd =
2πr+
4G

, r+ =
l
√
M√
2

√

1 +

√

1− (Jd)2

M 2l2

We now demand SNC = Sd
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NC Duality

This leads to

(Jd(a))2 = λ
64

3
π
ζ(2)

ζ(3)
lM 5/2 +O(a2) λ = −aβ

This implies that β < 0.

Thus the dual black hole has mass M and spin Jd.

The scalar field probe also picks up an effective mass
proportional to −aβ. This is consistent with the restriction
that β < 0.

We could have taken taken M to depend on the
parameter a. In that case we can show that M picks up a
correction to higher order than that for Jd.
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QNM - Fermionic

We would like to probe the black hole with a fermionic
field

This is a very involved procedure. To simplify the method,
we use the dual black hole picture discussed above.

Instead of probing a massless spinning BTZ with a NC
fermionic probe, we probe the dual black hole with a
commutative fermionic probe.

We ensure that D2 = �g , where �g corresponds to the
KG operator for the dual black hole with mass M and
J ∝

√
aβ.
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QNM - Fermionic

We start with the metric

ds2 = −
(

r2

l2
−M +

J2

4r2

)

dt2 +
dr2

r2

l2
−M + J2

4r2

+ r2
(

dφ− J

2r2
dt

)2

.

In terms of coordinates

x+ =
1

l
r+t− r−φ, x− = r+φ− 1

l
r−t and tanh ρ =

√

√

√

√

r2 − r2+

r2 − r2
−

ds2 = − sinh2 ρ (dx+)
2
+ l2dρ2 + cosh2 ρ (dx−)

2
.

We choose

γ0 = iσ2 =





0 1

−1 0



 , γ1 = σ1 =





0 1

1 0



 , γ2 = σ3 =





1 0

0 −1




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QNM - Fermionic

The Dirac equation is given by

[

γae µ
a

(

∂µ − i

2
ω cd
µ Σcd

)

+m

]

Ψ = 0

where e0x+
= sinh ρ, e1ρ = l, e2x

−

= cosh ρ and others being 0 and

ω 01
0 ≡ ω 01

x+ = −ω 10
0 =

1

l
cosh ρ,

ω 12
2 ≡ ω 12

x−
= −ω 21

2 = −1

l
sinh ρ,

This leads to the Dirac equation

[

1

l
γ1

(

∂

∂ρ
+

cosh ρ

2 sinh ρ
+

sinh ρ

2 cosh ρ

)

+ γ0
1

sinh ρ

∂

∂x+
+ γ2

1

cosh ρ

∂

∂x−
+m

]

Ψ = 0
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QNM - Fermionic

We choose the ansatz

Ψ =





ψ1

ψ2



 =





ψ1(r)

ψ2(r)



 exp
[

− i
l
(ωt− jφ)

]

=





ψ1(ρ)

ψ2(ρ)



 exp
[

−i(k+x+ + k−x
−)

]

=
1

2





P (ρ) +Q(ρ)

P (ρ)−Q(ρ)



 exp
[

−i(k+x+ + k−x
−)

]

,

where ω and j are respectively the energy and angular momentum of the spin 1/2 particle
and they are related to k+ and k− as

k+ =
lωr+ − jr−

l(r2+ − r2
−
)
, k− =

lωr− − jr+

l(r2+ − r2
−
)
.

Now defining

P (ρ) =

√

cosh ρ+ sinh ρ

cosh ρ sinh ρ
P ′(ρ), Q(ρ) =

√

cosh ρ− sinh ρ

cosh ρ sinh ρ
Q′(ρ), z = tanh2 ρ

and further putting P ′ = ψ′

1 + ψ′

2 and Q′ = ψ′

1 − ψ′

2
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QNM - Fermionic

We get

2
√
z(1− z)

d

dz
ψ′

1 + il

(

k+
1
√
z
+ k−

√
z

)

ψ′

1 +

[

il(k+ + k−) + lm+
1

2

]

ψ′

2 = 0,

2
√
z(1− z)

d

dz
ψ′

2 − il

(

k+
1
√
z
+ k−

√
z

)

ψ′

2 −
[

il(k+ + k−)− lm− 1

2

]

ψ′

1 = 0.

which can be combined to give

z(1− z)
d2

dz2
ψ′

1 +
1− 3z

2

d

dz
ψ′

1 +
1

4

[

l2k2+ − ilk+

z
+ ilk− − l2k2

−
−

(lm+ 1
2
)
2

1− z

]

ψ′

1 = 0.

The solutions with purely ingoing flux at the horizon are given by

ψ′

1 = zα(1− z)βF (a, b, c; z),

ψ′

2 =

(

a− c

c

)

zα+ 1
2 (1− z)βF (a, b+ 1, c+ 1; z),
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QNM - Fermionic

where

α = − ilk+
2

, β = −1

2

(

lm+
1

2

)

, c = 2α+
1

2
,

a = α+ β +
ilk−

2
+

1

2
=
l(k+ − k−)

2i
+ β +

1

2
,

b = α+ β − ilk−

2
=
l(k+ + k−)

2i
+ β.

QNM boundary conditions also require vanishing flux at infinity. The flux in the radial
direction is given by

Jρ =
l2√
1− z

[

ψ′

1
∗
ψ′

2 + ψ′

2
∗
ψ′

1 +
√
z

(

ψ′

1
∗
ψ′

1 + ψ′

2
∗
ψ′

2

)]

Demanding that the outgoing flux vanishes at infinity requires that

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
= 0.

This requires either c− a = −n or c− b = −n, with n = 0, 1, 2, ...
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QNM - Fermionic

These equations lead to the conditions

ωL =
j

l
− 2i

r+ − r−

l

(

n+
lm

2
+

1

4

)

,

ωR = −j

l
− 2i

r+ + r−

l

(

n+
lm

2
+

3

4

)

.

The QNM frequencies upto the first order in the deformation
parameter are given by

ωL =
j

l
− 2i

√
M

(

1− J(a)

2lM
− 1

8

J2(a)

l2M 2

)(

n+
1

4
+

lm

2

)

+ O(a3/2)

ωR = −j

l
− 2i

√
M

(

1 +
J(a)

2lM
− 1

8

J2(a)

l2M 2

)(

n+
3

4
+

lm

2

)

+ O(a3/2)

K.S.Gupta, SGQG-2018, Primosten – p. 29



Holography

Holography and AdS/CFT duality are fundamental
aspects in certain quantum theories of gravity, such as
string theory.

NC effects are also relevant at the Planck scale.

Thus it is natural to investigate holography within the NC
framework.

One approach is through QNM’s, which play an important
role in holography, especially for the BTZ.

Second approach is via Sullivan’s theorem, which is
relevant for the BTZ.
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Holography

For the BTZ black hole, the poles of the retarded Green’s
function in the boundary CFT are in exact
correspondence with the QNM frequencies in the bulk

This provides a demonstration for the AdS/CFT
conjecture for the BTZ

The NC duality allows us to discuss our problem in the
framework of a commutative BTZ, for which the AdS/CFT
conjecture holds

We can thus predict that the poles of the retarded Green’s
function would pick up NC corrections as

2i
√
M

(

J(a)

2lM
+

J2(a)

8l2M 2

)

− 2i
√
M

(

J(a)

2lM
− J2(a)

8l2M 2

)
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Holography

Sullivan’s theorem says that for a certain class of
manifolds, there is a 1-1 correspondence of the
hyperbolic structure as encoded in the metric and the
conformal structure of the boundary.

It has been shown to be valid for the BTZ.

Sullivan’s theorem implies that the monodromis of the
solutions of the wave equation around the two horizons of
the BTZ satisfy

M(r+)M+(r−) = 1 M(r+)M−(r−) = 1
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Holography

These conditions lead to

ωL =
j

l
− 2i

r+ − r−

l

(

n+
1

4

)

,

ωR = −j

l
− 2i

r+ + r−

l

(

n+
3

4

)

.

which are the same equations that we got by direct
calculation restricted to the massless probe.

These modes are obtained without using any condition at
infinity and hence are also known as non-QNM’s.

They are obtained purely from holographic considerations
as applied to the BTZ.
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Entropy

We have analyzed black hole entropy within our
framework in two different ways.

The first one involves the brick wall method introduced by
’t Hooft.

The second one involves the study of the area operator
and the quantization of entropy.

Our results lead to a NC correction to the usual BTZ
entropy.

Our analysis predicts a renormalization of the Newton’s
constant due to NC corrections.
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Entropy - Brick Wall Method

In the WKB approximation, the r-dependent radial wavefunction has the form
R(r) = ei

∫
k(r)dr where

k2(r,m, ω) = − m2

r2
(

r2

l2
− 8GM

) + ω2 1
(

r2

l2
− 8GM

)2
+ aβω

8

l2

3r2

2l2
− 8GM

(

r2

l2
− 8GM

)2

According to the semi-classical quantization rule, the radial wave number is quantized as

πn =

∫ L

r++h

k(r,m, ω)dr

where the quantum number n > 0, m should be fixed such that k(r,m, ω) is real and h is
the brick wall cutoff (UV regulator) and L is the infrared regulator. The total number ν of
solutions with energy not exceeding ω is given by

ν =

m0
∑

−m0

n =

∫ m0

−m0

dm n =
1

π

∫ m0

−m0

dm
∫ L

r++h

k(r,m, ω)dr

K.S.Gupta, SGQG-2018, Primosten – p. 35



Entropy - Brick Wall Method

The free energy at inverse temperature βT of the black hole is

e−βT F =
∑

ν

e−βT E =
∏

ν

1

1− e−βT E
/ ln

βTF =
∑

ν

ln
(

1− e−βT E
)

=

∫

dνln
(

1− e−βT E
)

/ part. integ.

= −
∫

∞

0
dE

βT ν(E)

eβTE − 1

where βT = 2πl2

r+
. For this, we find the free energy F as

F = − 1

π

∫

∞

0

dω
eβT ω − 1

∫ L

r++h

dr
∫ m0

−m0

dm k(r,m, ω)

Keeping the most divergent terms in h, we get

F = − l
5
2

(8GM)
1
4

ζ(3)

β3
T

1√
2h

− 2aβ
(8GM)

3
4

√
l√

2h

ζ(2)

β2
T
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Entropy - Brick Wall Method

Using S = β2
T
∂F
∂βT

, we get

S = 3
l
5
2

(8GM)
1
4

ζ(3)

β2
T

1√
2h

+ 4aβ
(8GM)

3
4

√
l√

2h

ζ(2)

βT

= S0

(

1 +
4

3
aβ

8GM

l2
ζ(2)

ζ(3)
βT

)

where S0 is the undeformed entropy for BTZ and

h =
9G2ζ2(3)

√
8GM

8lπ6
(1)

The cutoff h is fixed by demanding that S0 =
A
4G

= 2πr+
4G

.
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Entropy - Renormalization of G

Now writing S = A
4G∗

, we find that

1

G∗ =
1

G

(

1 +
8

3

aβπ

l

ζ(2)

ζ(3)

√
8GM

)

This gives a renormalization of the Newton’s constant due
to NC effects
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Entropy - Quantization

Given a system with energy E and vibrational frequency
∆ω(E), it can be shown that

I =

∫

δE

∆ω(E)

is an adibatic invariant.

By Bohr-Sommerfeld semi-classical quantization,

I ≈ n~

We identify the energy E with the black hole mass M .
The frequency is identified with the absolute value of
QNM frequency.
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Entropy - Quantization

Using the formulae

∆M = ~∆ω = ~(
∣

∣ωL,R

∣

∣

n
−

∣

∣ωL,R

∣

∣

n−1
)

∆ω =
∣

∣ωL,R

∣

∣

n
−

∣

∣ωL,R

∣

∣

n−1
=

2
√
M

l

(

1± aβ

2l

m

n(n+ 1)

)

∆ω =
2
√
M

l

(

1± aβ

2l

m

n(n+ 1)

)

.

A = 2πr+ = 2πl
√
M,

∆A = 2π~

(

1± aβ

2l

m

n(n+ 1)

)

.

we can show that

I =

∫

δM

∆ω
≈ l

√
M

(

1∓ aβ

2l

m

n(n+ 1)

)

= Nǫ, N ∈ N
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Entropy - Quantization

Using these equations we find

A = 2πI
(

1± aβ

2l

m

n(n+ 1)

)

⇒ AN = 2πNǫ

(

1± aβ

2l

m

n(n+ 1)

)

.

Using the Bekenstein-Hawking relation with a renormalized
G, we have

SN =
AN

4G∗
=

AN

4G

(

1 + aβ
8

3

π

l

ζ(2)

ζ(3)

√
8GM

)

we are led to a quantized entropy

SN = Nǫ
π

2G

(

1± aβ

2l

m

n(n+ 1)
+ aβ

8

3

π

l

ζ(2)

ζ(3)

√
8GM

)
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Concluding Remarks

We have investigated a toy model which illustrates the
possibility of capturing Planck scale effects through
gravitational waves.

The QNM’s explicitly depend on the NC parameter, which
can be used put contraints on such parameters.

Upto the first order in the deformation parameter, a new
kind of black hole duality in AdS3 has been found.

We have a prediction for the retarded pole of Green’s
function in a NC boundary field theory.

Analysis of various other physical effects and more
realistic backgrounds are open areas.
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