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Prelude

• I want to provide a quantum gravity perspective on String theory
• Both QG gravity and String theory have provided strong physical, 

mathematical and philosophical insights
• Both are suffering from profound shortcomings
• One can use the insight gain in one approach to upgrade the other



Physics and geometry
• Long and fruitful interplay between inventions of new geometrical 

structures and the discovery of new physical concepts:       
quantum mechanics is intimately tied up with symplectic geometry, 
general relativity with Riemannian geometry, and the gauge 
principle with the geometry of principal bundles. 

• The deeper reason behind the connection between physics and 
geometry is that each time a new geometrical concept was realized 
in mathematics, a new expression of the relativity principle was at 
play in fundamental physics. Unification of electric and magnetic, 
unification of wave and particle or unification of space and time 
always comes with a relativization of what was before understood 
as an absolute concept. 

• The mathematical expression of such relativization is geometrical 
by essence and always reveals a new mathematical structure as the 
central element of the underlying geometry:

• What’s next? What geometry for QG? What relativity principle,      
What unification ? What new geometrical structure?



Road map for QG 

• What is the fundamental new relativity principle ? 
• What is the simplest implementation of that idea ?
• What geometry represents that idea ?
• Is there a model that can guide us through the maze of new concepts ?
• Are there any generic predictions ?

• Can we address several shortcomings of DFT as an effective string 
description: No unique connection, 

            The fact that the section condition a is a kinematical choice
            Link DFT with generalised geometry,  
            Can we include T-dual backgrounds?
• Can we curve T-duality?

Fundamental

Technical



What is Relative locality?
•Absolute locality is the hypothesis that the concept of 
spacetime is independent of the nature of probe used. That it 
is a universal notion. The   in         doesn’t depend on the 
field or the process

•Relative locality is on the contrary, exploring the idea that  
spacetime is a notion which depends on the quantum nature 
of probe used i-e energy and quantum numbers.
The usual spacetime notion is adapted to probes which are 
point-like and classical.
What is the proper notion of Home space, (the    in          ) 
which is adapted to quantum and non-local probes ?
Why? Reconcile fundamental scale with the relativity principle 
How to implement it? What are the elements?
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fundamental opposite point of view that it must be interesting
and fruitful to try to synthetise the teaching of both.

In order to understand these two contenders and the lessons
we can draw from them, lets firts emphasize how they rely on
different philosophy and hypothesis. In loop gravity the main
empahsisis is on the structure of spacetime itself, this follows
from a long tradition, descending from anaxymandre, New-
ton, Einstein that postulate that the fundamental property of
physical object is derived by the nature of the container. What
interest us here is not so much what is the nature of space and
time itself rather than the question about what does spce and
time defines. What is more fundamental ? is it space itself an
absolute object that defines every objects inside or is it on the
other hand the objects and their relations and interactions that
defines space itself? This debates goes back to the Leibniz-
Clark correspondence. It is exemplify in the tension between
the relationism of Descartes and Leibniz and the absolutism
of Newton. The fundamental question then is whether

The relativists are descendent of Newton and wants to un-
derstand the nature of spacteime itself independently of the
nature of fundmantal probes or objects. The goal is to quan-
tised pure gravity and the expectation is that

Both are naive or incomplete in some fundamental way.

B. Formulating the contradiction

Emergence: Spacetime is only an approximate notion, but
the notion of aproxiamtaion necessitate a bigger realm in
which the approximation takes places. usually this is left to
the imagination. RL aims at formalisating this.

III. RELATIVE LOCALITY

In order to understand what relative locality is, lets first
start to understand what question it asks. The possibility for
relative locality to be a proper description of the fundamen-
tal world should be contrasted with what is usually taken as
an evidence: an obvious but unstated hypothesis that perme-
ates most of fundamental physics, an underlying assumption
that frame our current physical theories. This evidence can
be called the hypothesis of absolute locality. This hypothesis
essentially assumes that spacetime an absolute quantity inde-
pendent of the type of probes one uses.

One becomes a relative localist the second one starts won-
dering whether this is true, or even why this is true, if one
still believes so. Questioning this fundamental hypothesis is
the purpose of developping a theory of relative locality and the
aims of these notes is to describe part of his process and create
an invitation to anybody interested in gravity and the quantum
to contribute to this fundamental quest. As we will see, un-
folding this question will naturally lead us in understanding
the geometry of quantum mechanics, in questionning the no-
tion of classical reality in the mathematization of the notion
of observers. Studying examples that realise this notion will
also It will also this

We will have to answer a few questions along the way: Why
does reconciling gravity and the quantum necessary leads to a
questioning of absolute locality. what are the physical models
and examples of systems that exemplify the relative locality
of observables.

A. What is absolute locality?

Our best description of fundamental physics so far is in
terms of relativistic quantum field theory. Such a description
encompass a remarkable variety of phenomena. It describes
the world of particle physics with the standard model which
represents from the deep ultraviolet

B. What is relative locality?

C. Why do we need locality and where

D. The field and absolute locality

One of the central concept of modern theoretical physics
is the field. The classical field and the quantum field is as-
sumed to be real and in some instances it is believed to be
more fundamental than the concept of particles . Whether the
field is classical or quantum or even gravitational it is always
by essence describing an object leaving on a classical space-
time. If one looks at what a field is it is conveniently described
as a map

F : M ! V
x ! F(x) (2)

where M is the spacetime manifold and V the target of the
field. In a more modern language the field is a section of a
bundle P ! M over M with fiber V . The goal then of Quan-
tum field theory is to then quantised the field F̂(x). There is
no question then that the quantisation affects the field itself
but clearly doesn’t change the nature of spacetime, it doesn’t
affect what x is. A

Strangely enough the same is true if the field includes the
gravitational field. Of course a quantum gravitational fields
changes how one relates to spacetime, for instance as viewed
by the field but it doesn’t contain the possibility to question he
nature of x itself.

The goal of relative locality is to enable us to wonder what
is this x that the field refers to? How does it come into ex-
istence? Is it true that the existence of x has to precedes the
existence of the field ?

Here, one first needs to acknowledge that the concept of a
field requires the preexistence of a manifold M on which it
leaves and that the notion of a field cannot be defined inde-
pendently of a preconcieved notion of what the sets of point
x of M is. In condensed matter it is customary to work with
label space for fields that are discrete sets, since it aims at de-
scribing matter. In fundamnetal physics any such attempts is
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2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµu⌫ + pgµ⌫) = 0. (2)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,
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Lets start with an image then a model leading to an example.



Relative Locality: Illustration full sky survey:

Wise infrared 

Rosat X-ray

Planck microwave

Fermi Gamma ray



Geometry of String theory
Since Friedan we know that there exists a fundamental relation 
between 2d RG flow and spacetime geometry 
The Zamolodchikov action governing 2d RG flow is then 
interpreted as the String Field action containing Einstein action.
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The problem is that this beautiful geometric picture usually 
breaks down, instabilities (tachyons), new marginal fields (dilaton, 
axions), modulis, extra fluxes, etc…
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Recently this project has reopened we have more evidence that 
by generalizing the concept of geometry may we can simply 
write the CFT eq as a generalised Ricci Flow equation

Why would it even be possible?



Usual String Geometry
The usual picture is that if one has a CFT that can be written as 
a sigma model  
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Where     = the target is  a non compact manifold then it is 
possible to effectively describe the same same system by a 
collection of fields  of diverse masses and spin
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And then we know that there is an infinite set of extra CFT that 
cannot be described like that and put into the limbo of Non-
Geometrical Theories for which we have no handle:
Asymmetric orbifolds, Gepner points, R-flux compactification, 
Scherk-Schwarz twisted fluxes, self dual points, minimal models, 
etc…
Can we understand this untameable zoo in the language of 
quantum Gravity as quantum geometries ? 

2 Organisations: 2d side= Conf invariance,  EQFT = locality
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Metastring
Why would it even be possible?
Let’s assume that  one has a CFT that can be written as a sigma 
model                   where target=M no longer a  compact 
manifold
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2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµu⌫ + pgµ⌫) = 0. (4)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,

that is

h⌫
�rµT

µ� = h⌫
�[u

�uµrµ(⇢h)+⇢huµrµu
�+⇢hrµu

µu�+g�µrµp] = ⇢huµrµu
⌫+h⌫

�g
�µrµp = 0.

(5)

where we have used that u⌫r⌫(uµ)uµ = aµuµ = 0. From here it follows that

uµrµu
⌫ +

1

⇢h
h⌫µrµp = 0. (6)

which is the relativistic version of the Euler equation.

In the non-relativistic limit

h = c2 + e+
p

⇢
! c2 (7)

and
1

⇢h
hµ⌫rµp ! 1

⇢c2
(@jp+

vj
c2
@tp+

vjvi
c2

@ip) ⇠
1

⇢c2
@jp (8)

and therefore we finally get
@~v

@t
+ (~v · ~r)~v +

1

⇢
~rp = 0, (9)

or using the convective derivative
D~v

Dt
+

~rp

⇢
= 0. (10)
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Then one wants to know whether it is is still possible to effectively 
describe the same same system by a collection of fields  
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The label of the field, the      in          belong to P= Home space
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The basic hypothesis that we have to let go of is that in general 
Target space is not equal to Home space 
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If not then what is it ? A fundamentally QG question.



Flat metastring
Lets study the simplest string with target a one dimensional 
circle SR  and ask what is Home space in that case.  Is it SR? 

interested here in a careful analysis of the compact case, with generic periodic �̃. As is well known,
when we turn on ~ another lattice appears, the lattice of momenta �, dual to the winding lattice,
� = �̃⇤. Since our goal is to understand the geometry behind the presence of these two lattices it
is interesting to note that one is quantized classically and the other one quantum mechanically and
it will be useful to unify these two lattices into one denoted as ⇤ ⌘ � � �̃. The duality pairing
between � and �̃ equips ⇤ with a canonical metric that will play a key role in our story.

Let us first review the usual classical solutions, again essentially to set notation. We work on a
cylindrical worldsheet, which we think of as cut along � = 0 and unrolled,2 and the general classical
solutions can then be written

X(⌧, �) = XR(⌧ + �) +XL(⌧ � �), (2)

with3

XL(⌧ � �) = xL +
↵0

2
pL(⌧ � �) + i�

1X

m=�1

1

m
↵me

�im(⌧��) (3)

XR(⌧ + �) = xR +
↵0

2
pR(⌧ + �) + i�

1X

m=�1

1

m
↵̃me

�im(⌧+�), (4)

where we have introduced the string length scale

� ⌘

r
~↵0

2
, (5)

with ↵0 the “string slope” which has dimensions of length over energy. Given that XL(⌧ � �) and
XR(⌧ + �) are independent of one another, it is natural to also introduce

X̃(⌧, �) = XR(⌧ + �)�XL(⌧ � �), (6)

which is such that @�X̃ = @⌧X, and @⌧X̃ = @�X. We see that the lattice vectors are given by
p̃ = pR�pL

2 . Similarly, we define p = pR+pL
2 . The zero modes (p, p̃) can be extracted via

p =
1

2⇡↵0

Z 2⇡

0

d� @⌧X, p̃ =
1

2⇡↵0

Z 2⇡

0

d� @�X. (7)

Thus, we have the familiar situation of the zero mode sector being coordinatized by (xL, pL, xR, pR),
all independent. We will be interested in the structure of physical (vertex) operators and their
algebra, as well as the symplectic structure of the theory. Typically in the literature, it is taken
as self-evident that (xL, pL) and (xR, pR) generate two commuting Heisenberg algebras when the
theory is quantized. We will discuss this carefully in a separate section in a detailed analysis of the
symplectic structure, but now we will need a somewhat weaker assumption that (pL, pR) commute,
which as we will see, is borne out by the symplectic analysis.

2
Implicit here is the independence on where we cut open the cylinder. This will become an issue to be checked in

the course of the construction of the symplectic structure, which we present in a separate section.
3
The Euclidean continuation, as in [1], is that left-movers are holomorphic (⌧ � � ! �i ln z) and right-movers

anti-holomorphic, ⌧ + � ! �i ln z̄.
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Is the coordinates field, while the dual coordinate field is 

The string equation of motion can simply be written as a self 
duality condition 

Given that XL(⌧ � �) and XR(⌧ + �) are independent of one another, it is natural to also
introduce

X̃(⌧, �) = XR(⌧ + �)�XL(⌧ � �), (8)

which is such that @�X̃ = @⌧X, and the corresponding classical solution may be written as4

X(⌧, �) = x+ ↵0(p⌧ + p̃�) +Q�(⌧ � �) +Q+(⌧ + �) (10)

X̃(⌧, �) = x̃+ ↵0(p̃⌧ + p�)�Q�(⌧ � �) +Q+(⌧ + �), (11)

where x = xR + xL and x̃ = xR � xL. We regard X(⌧, �), X̃(⌧, �) as a reorganization of XL(⌧ �

�), XR(⌧ + �). In particular, the zero modes (x, x̃, p, p̃) should be considered independent, being
linear combinations of (xL, pL, xR, pR).

The field X̃(⌧, �) has a well-known significance in the limit when the radius of compactification
is sent to zero. In this limit, the (x, p) zero modes decouple, and X̃(⌧, �) is the field that the string
couples to, with x̃ coordinatizing the (T-dual) non-compact geometry. The momentum p plays the
role of the translational monodromy of X̃(⌧, �), i.e.,

X̃(⌧, � + 2⇡) = X̃(⌧, �) + 2⇡↵0p. (12)

It should be clear then that what we mean by the space-time that the string “sees” should not be
taken to be given by X(⌧, �). The meaning of X(⌧, �) will change in di↵erent limits. This is the
essence of T-duality. The field X(⌧, �) has a space-time interpretation in the original Polyakov path
integral only in the limit of large radius.

Furthermore, we note that

dX = ⇤dX̃, i.e. @⌧X = @�X̃, @�X = @⌧X̃, (13)

and so T-duality, which interchanges X and X̃, is associated with Hodge duality on the worldsheet,
as far as the currents are concerned. The momentum field conjugate to X(⌧, �) is of course the
momentum density P (⌧, �) = 1

2⇡↵0@⌧X(⌧, �). Similarly, it is convenient to introduce the winding

density P̃ (⌧, �) = 1
2⇡↵0@⌧X̃(⌧, �).

Our intention in this discussion is to highlight the zero modes. Of course, it is often assumed
that the zero mode x plays a preferred role, being interpreted as a coordinate in the target space,
while x̃ is immaterial as it does not appear in the action. In fact, neither x nor x̃ appear in the
abelian currents dX and the string action density. However, they do enter the theory in the vertex
operator algebra, and so we are led to study them more carefully. In the present context both

(xL, xR) (equivalently (x, x̃)) do appear in vertex operators, and we will take pains to treat them
with care. It is implicit in this analysis that (xL, xR) (equivalently (x, x̃)) are independent; it is
only in the R ! 1 (R ! 0) limit that a projection p̃ ! 0 (p ! 0) on the spectrum is induced, at
which point x̃ (x) decouples.

4
Here, we have defined

Q̂�(⌧ � �) = i�

1X

m=�1

1

m
↵̂me

�im(⌧��)
, Q̂+(⌧ + �) = i�

1X

m=�1

1

m

ˆ̃↵me
�im(⌧+�)

. (9)
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The zero modes are  

Wave vector      and      dual wave vector  
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2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµu⌫ + pgµ⌫) = 0. (10)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.
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N + Ñ � 2

�2

n

R

w

R̃
=

N � Ñ
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T-duality
If the compact target is one-dimensional then 

Invariance under 

What space does the string moves in? It depends !
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2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµu⌫ + pgµ⌫) = 0. (12)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p
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N + Ñ � 2

�2

n

R

w

R̃
=

N � Ñ

2�2
(10)

(n,R) $ (w, R̃) (11)

R ! 1 x̃ �(x)

R ! 0 x �(x̃) (12)

2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµu⌫ + pgµ⌫) = 0. (13)

2

1 Primosten Talk

x �(x)

@tgab = Rab

�i = @⌧gi = @giZ (1)

S = S0 +
X

i

Z
giVi (2)

X : ⌃ ! M (3)

� : P ! R X �(X) (4)

� : M ! R (5)

P 6= M (6)

X(�, ⌧) = x+ ↵0p⌧ + ↵0p̃� + · · ·
X̃(�, ⌧) = x̃+ ↵0p̃⌧ + ↵0p� + · · · (7)

p =
n

R
, p̃ =

w

R̃
, RR̃ = 2�2 (8)

p p̃ (9)

P 2
NC =

⇣ n

R

⌘2

+

✓
w

R̃

◆2

+
N + Ñ � 2
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What happens in between? How do we go from space to dual 
space? 
We see from this two extreme examples that the string moves 
in a subspace which is half the dimension of  a `doubled space’.
And that which half depends on the nature of the probe.
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Commutators

What are the commutators for the zero modes? 
It easy to establish that momenta commute  

Starting from

the zero modes form two commuting Heisenberg algebras. This interpretation would be perfectly
fine if we were interested only in polynomials of these variables. However, of course we are not: we
are interested in operators containing exponentials of the zero modes, as we have discussed above.
Indeed, it is precisely in the usual context of compactification that we are interested in operators
that are well-defined on tori. It is the algebra of these exponential operators that is important, and
not the algebra of Xs, which are not single-valued.

In this section, we will consider carefully the symplectic structure of the classical Polyakov
string.14 A systematic way to study the symplectic structure is to vary the classical action, and
evaluating this on-shell, to extract the symplectic 1-form. We will consider a cylindrical worldsheet,
cut open along � = 0 to a rectangular region, coordinatized by � 2 [0, 2⇡], ⌧ 2 [⌧0, ⌧1]. It is
important to recall that the dual field X̃ is defined by the identity @⌧X := @�X̃. The dynamics of
the dual field can then simply be given by @⌧X̃=̂@�X, where hatted equalities mean that they are
taken on-shell. It is obvious that these two equations imply the usual dynamics for the string field
X. The action is

S =
1

4⇡↵0

Z
d2�

⇥
(@⌧X)2 � (@�X)2

⇤
. (55)

Here the integral
R
d2� is over the domain

R ⌧1
⌧0

d⌧
R 2⇡

0 d�. Note that, in principle, this can be
generalized to include additional terms integrated over boundaries of the worldsheet. Varying (55),
we find

�S =
1

2⇡↵0

Z
d2�

h
@⌧ (�X · @⌧X)� @�(�X · @�X)� �X · (@2

⌧ � @2
�)X

i

=̂
1

2⇡↵0

Z 2⇡

0

d�
⇣
�X · @⌧X

⌘���
⌧1

⌧0
�

1

2⇡↵0

Z ⌧1

⌧0

d⌧
⇣
�X(⌧, 2⇡)� �X(⌧, 0)

⌘
· @�X(⌧, 0).

=̂
1

2⇡↵0

Z 2⇡

0

d�
⇣
�X · @⌧X

⌘���
⌧1

⌧0
�

1

2⇡↵0

Z ⌧1

⌧0

d⌧
⇣
�X(⌧, 2⇡)� �X(⌧, 0)

⌘
· @⌧X̃(⌧, 0). (56)

In the second line we have used the bulk equation of motion in the form ⇤X = 0 while in the
third line we have used them on the boundary in the form @⌧X̃ = @�X. Notice that there is a
term integrated along the cut in the worldsheet (which we have placed at � = 0) in addition to the
usual term integrated over the space-like boundaries. This extra term appears precisely because in
the present context, the fields (X, X̃), and their variations, are not single-valued on the worldsheet
(although the current dX and the dual current dX̃ are single-valued).

Now, we define the charges

pC =
1

2⇡↵0

Z

C
⇤dX=̂

1

2⇡↵0

Z

C
dX̃, p̃C =

1

2⇡↵0

Z

C
dX, (57)

where C is a cut on the surface. The equation of motion implies that (pC , p̃C) depend only on the
homology class of C. In the coordinates we are using here and for a spacelike cut, we have

p =
1

2⇡↵0

Z 2⇡

0

d� @⌧X, p̃ =
1

2⇡↵0

Z 2⇡

0

d� @�X. (58)

14
We are not aware of the foregoing analysis appearing in the existing literature. However, the result seems to

have been guessed in Ref. [14] (and apparently not subsequently mentioned).
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And that they are canonical generator of translations

It is usually assumed that the positions commute
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fine if we were interested only in polynomials of these variables. However, of course we are not: we
are interested in operators containing exponentials of the zero modes, as we have discussed above.
Indeed, it is precisely in the usual context of compactification that we are interested in operators
that are well-defined on tori. It is the algebra of these exponential operators that is important, and
not the algebra of Xs, which are not single-valued.

In this section, we will consider carefully the symplectic structure of the classical Polyakov
string.14 A systematic way to study the symplectic structure is to vary the classical action, and
evaluating this on-shell, to extract the symplectic 1-form. We will consider a cylindrical worldsheet,
cut open along � = 0 to a rectangular region, coordinatized by � 2 [0, 2⇡], ⌧ 2 [⌧0, ⌧1]. It is
important to recall that the dual field X̃ is defined by the identity @⌧X := @�X̃. The dynamics of
the dual field can then simply be given by @⌧X̃=̂@�X, where hatted equalities mean that they are
taken on-shell. It is obvious that these two equations imply the usual dynamics for the string field
X. The action is

S =
1

4⇡↵0

Z
d2�

⇥
(@⌧X)2 � (@�X)2

⇤
. (55)

Here the integral
R
d2� is over the domain

R ⌧1
⌧0

d⌧
R 2⇡

0 d�. Note that, in principle, this can be
generalized to include additional terms integrated over boundaries of the worldsheet. Varying (55),
we find
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⌘
· @⌧X̃(⌧, 0). (56)

In the second line we have used the bulk equation of motion in the form ⇤X = 0 while in the
third line we have used them on the boundary in the form @⌧X̃ = @�X. Notice that there is a
term integrated along the cut in the worldsheet (which we have placed at � = 0) in addition to the
usual term integrated over the space-like boundaries. This extra term appears precisely because in
the present context, the fields (X, X̃), and their variations, are not single-valued on the worldsheet
(although the current dX and the dual current dX̃ are single-valued).

Now, we define the charges

pC =
1
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Z

C
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1
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Z

C
dX̃, p̃C =

1
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Z

C
dX, (57)

where C is a cut on the surface. The equation of motion implies that (pC , p̃C) depend only on the
homology class of C. In the coordinates we are using here and for a spacelike cut, we have

p =
1

2⇡↵0

Z 2⇡

0

d� @⌧X, p̃ =
1

2⇡↵0

Z 2⇡

0

d� @�X. (58)

14
We are not aware of the foregoing analysis appearing in the existing literature. However, the result seems to

have been guessed in Ref. [14] (and apparently not subsequently mentioned).
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And that they are canonical generator of translations

It is usually assumed that the positions commute
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That is not correct!



Commutators

What is the commutators for the zero modes? 
It easy to establish that momenta commute  

Starting from

the zero modes form two commuting Heisenberg algebras. This interpretation would be perfectly
fine if we were interested only in polynomials of these variables. However, of course we are not: we
are interested in operators containing exponentials of the zero modes, as we have discussed above.
Indeed, it is precisely in the usual context of compactification that we are interested in operators
that are well-defined on tori. It is the algebra of these exponential operators that is important, and
not the algebra of Xs, which are not single-valued.

In this section, we will consider carefully the symplectic structure of the classical Polyakov
string.14 A systematic way to study the symplectic structure is to vary the classical action, and
evaluating this on-shell, to extract the symplectic 1-form. We will consider a cylindrical worldsheet,
cut open along � = 0 to a rectangular region, coordinatized by � 2 [0, 2⇡], ⌧ 2 [⌧0, ⌧1]. It is
important to recall that the dual field X̃ is defined by the identity @⌧X := @�X̃. The dynamics of
the dual field can then simply be given by @⌧X̃=̂@�X, where hatted equalities mean that they are
taken on-shell. It is obvious that these two equations imply the usual dynamics for the string field
X. The action is
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. (55)

Here the integral
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In the second line we have used the bulk equation of motion in the form ⇤X = 0 while in the
third line we have used them on the boundary in the form @⌧X̃ = @�X. Notice that there is a
term integrated along the cut in the worldsheet (which we have placed at � = 0) in addition to the
usual term integrated over the space-like boundaries. This extra term appears precisely because in
the present context, the fields (X, X̃), and their variations, are not single-valued on the worldsheet
(although the current dX and the dual current dX̃ are single-valued).

Now, we define the charges
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where C is a cut on the surface. The equation of motion implies that (pC , p̃C) depend only on the
homology class of C. In the coordinates we are using here and for a spacelike cut, we have
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We are not aware of the foregoing analysis appearing in the existing literature. However, the result seems to

have been guessed in Ref. [14] (and apparently not subsequently mentioned).
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N + Ñ � 2

�2

n

R

w

R̃
=

N � Ñ
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Instead we have 

1 Primosten Talk

x �(x)

@tgab = Rab

�i = @⌧gi = @giZ (1)

S = S0 +
X

i

Z
giVi (2)

X : ⌃ ! M (3)

� : P ! R X �(X) (4)

� : M ! R (5)

P 6= M (6)

X(�, ⌧) = x+ ↵0p⌧ + ↵0p̃� + · · ·
X̃(�, ⌧) = x̃+ ↵0p̃⌧ + ↵0p� + · · · (7)

p =
n

R
, p̃ =

w

R̃
, RR̃ = 2�2 (8)

p p̃ (9)

P 2
NC =

⇣ n

R

⌘2

+

✓
w

R̃

◆2

+
N + Ñ � 2
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The doubled space of compact string is non-commutative.
Even in the absence of fluxes!



Proof 1 

And compute the symplectic structure 
And the associated commutator via the
 covariant phase space method  

First proof one starts from 

the zero modes form two commuting Heisenberg algebras. This interpretation would be perfectly
fine if we were interested only in polynomials of these variables. However, of course we are not: we
are interested in operators containing exponentials of the zero modes, as we have discussed above.
Indeed, it is precisely in the usual context of compactification that we are interested in operators
that are well-defined on tori. It is the algebra of these exponential operators that is important, and
not the algebra of Xs, which are not single-valued.

In this section, we will consider carefully the symplectic structure of the classical Polyakov
string.14 A systematic way to study the symplectic structure is to vary the classical action, and
evaluating this on-shell, to extract the symplectic 1-form. We will consider a cylindrical worldsheet,
cut open along � = 0 to a rectangular region, coordinatized by � 2 [0, 2⇡], ⌧ 2 [⌧0, ⌧1]. It is
important to recall that the dual field X̃ is defined by the identity @⌧X := @�X̃. The dynamics of
the dual field can then simply be given by @⌧X̃=̂@�X, where hatted equalities mean that they are
taken on-shell. It is obvious that these two equations imply the usual dynamics for the string field
X. The action is
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. (55)

Here the integral
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In the second line we have used the bulk equation of motion in the form ⇤X = 0 while in the
third line we have used them on the boundary in the form @⌧X̃ = @�X. Notice that there is a
term integrated along the cut in the worldsheet (which we have placed at � = 0) in addition to the
usual term integrated over the space-like boundaries. This extra term appears precisely because in
the present context, the fields (X, X̃), and their variations, are not single-valued on the worldsheet
(although the current dX and the dual current dX̃ are single-valued).

Now, we define the charges
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where C is a cut on the surface. The equation of motion implies that (pC , p̃C) depend only on the
homology class of C. In the coordinates we are using here and for a spacelike cut, we have
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We are not aware of the foregoing analysis appearing in the existing literature. However, the result seems to

have been guessed in Ref. [14] (and apparently not subsequently mentioned).
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2�2
(10)

(n,R) $ (w, R̃) (11)

R ! 1 x̃ �(x)

R ! 0 x �(x̃) (12)

[k, k̃] = 0

[k, x] = i [k̃, x̃] = i

[x, x̃] = 0.

[x, x̃] = 2i⇡�2 (13)

�L=̂d✓ ! = �✓ !�1 (14)

2

On-shell

Important subtlety: 
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2

Periodic

But             is only quasi-periodic. This quasi-periodicity reveals 
the presence of edge modes: New non-local degrees of 
freedom that appears at the edge of the domain . A 
phenomenon generic to massless theories and gauge theories 
(QED, QCD, Gravity, massless scalar,…) which is related to the 
new understanding of IR physics.
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Proof 1 

And compute the symplectic structure 
And the associated commutator via the
 covariant phase space method  

First proof one starts from 

the zero modes form two commuting Heisenberg algebras. This interpretation would be perfectly
fine if we were interested only in polynomials of these variables. However, of course we are not: we
are interested in operators containing exponentials of the zero modes, as we have discussed above.
Indeed, it is precisely in the usual context of compactification that we are interested in operators
that are well-defined on tori. It is the algebra of these exponential operators that is important, and
not the algebra of Xs, which are not single-valued.

In this section, we will consider carefully the symplectic structure of the classical Polyakov
string.14 A systematic way to study the symplectic structure is to vary the classical action, and
evaluating this on-shell, to extract the symplectic 1-form. We will consider a cylindrical worldsheet,
cut open along � = 0 to a rectangular region, coordinatized by � 2 [0, 2⇡], ⌧ 2 [⌧0, ⌧1]. It is
important to recall that the dual field X̃ is defined by the identity @⌧X := @�X̃. The dynamics of
the dual field can then simply be given by @⌧X̃=̂@�X, where hatted equalities mean that they are
taken on-shell. It is obvious that these two equations imply the usual dynamics for the string field
X. The action is

S =
1

4⇡↵0

Z
d2�

⇥
(@⌧X)2 � (@�X)2

⇤
. (55)

Here the integral
R
d2� is over the domain

R ⌧1
⌧0

d⌧
R 2⇡

0 d�. Note that, in principle, this can be
generalized to include additional terms integrated over boundaries of the worldsheet. Varying (55),
we find

�S =
1

2⇡↵0

Z
d2�

h
@⌧ (�X · @⌧X)� @�(�X · @�X)� �X · (@2

⌧ � @2
�)X

i

=̂
1

2⇡↵0

Z 2⇡

0

d�
⇣
�X · @⌧X

⌘���
⌧1

⌧0
�

1

2⇡↵0

Z ⌧1

⌧0

d⌧
⇣
�X(⌧, 2⇡)� �X(⌧, 0)

⌘
· @�X(⌧, 0).

=̂
1

2⇡↵0

Z 2⇡

0

d�
⇣
�X · @⌧X

⌘���
⌧1

⌧0
�

1

2⇡↵0

Z ⌧1

⌧0

d⌧
⇣
�X(⌧, 2⇡)� �X(⌧, 0)

⌘
· @⌧X̃(⌧, 0). (56)

In the second line we have used the bulk equation of motion in the form ⇤X = 0 while in the
third line we have used them on the boundary in the form @⌧X̃ = @�X. Notice that there is a
term integrated along the cut in the worldsheet (which we have placed at � = 0) in addition to the
usual term integrated over the space-like boundaries. This extra term appears precisely because in
the present context, the fields (X, X̃), and their variations, are not single-valued on the worldsheet
(although the current dX and the dual current dX̃ are single-valued).

Now, we define the charges

pC =
1

2⇡↵0

Z

C
⇤dX=̂

1

2⇡↵0

Z

C
dX̃, p̃C =

1

2⇡↵0

Z

C
dX, (57)

where C is a cut on the surface. The equation of motion implies that (pC , p̃C) depend only on the
homology class of C. In the coordinates we are using here and for a spacelike cut, we have

p =
1

2⇡↵0

Z 2⇡

0

d� @⌧X, p̃ =
1

2⇡↵0

Z 2⇡

0

d� @�X. (58)

14
We are not aware of the foregoing analysis appearing in the existing literature. However, the result seems to

have been guessed in Ref. [14] (and apparently not subsequently mentioned).
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On-shell
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N + Ñ � 2

�2

n

R

w

R̃
=

N � Ñ
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⌦ = �k ^ �x+ �k̃ ^ (�x̃� 2⇡�2�k)

⌦ = �k ^ �x+ �k̃ ^ (�x̃� 2⇡�2�k| {z }) (16)

L =
1

4⇡↵0 [(@⌧X)2 � (@�X)2] (17)

2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµu⌫ + pgµ⌫) = 0. (18)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,

that is

h⌫
�rµT

µ� = h⌫
�[u

�uµrµ(⇢h)+⇢huµrµu
�+⇢hrµu

µu�+g�µrµp] = ⇢huµrµu
⌫+h⌫

�g
�µrµp = 0.

(19)

where we have used that u⌫r⌫(uµ)uµ = aµuµ = 0. From here it follows that

uµrµu
⌫ +

1

⇢h
h⌫µrµp = 0. (20)

which is the relativistic version of the Euler equation.

In the non-relativistic limit

h = c2 + e+
p

⇢
! c2 (21)

and
1

⇢h
hµ⌫rµp ! 1

⇢c2
(@jp+

vj
c2
@tp+

vjvi
c2

@ip) ⇠
1

⇢c2
@jp (22)

and therefore we finally get
@~v

@t
+ (~v · ~r)~v +

1

⇢
~rp = 0, (23)

3

Extra flux due to the edge modes 

After inversion responsible for 
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Proof II 
First proof one starts the construction of vertex operators 
A generic closed string vertex operator is the product of 3 

entities: a zero mode an holomorphic left mover 
and an anti-holomorphic right mover: 
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The OPE determine the algebra of the left chiral algebra and 
the right chiral algebras, Both are non-commutative VOA
The consistency of  string theory (mod invariance, duality 

symmetry, consistent coupling higher genus, etc…) demands 
that vertex operators have to be Mutually local.
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2 Relativistic (and non-relativistic) Euler equation
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which is the relativistic version of the Euler equation.

In the non-relativistic limit

h = c2 + e+
p
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! c2 (24)
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Mutual locality

VL and VR form  non-commutative VOA

The W’s must form a commutative algebra by mutual locality.
How is that possible?
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K = (k, k̃) WK (20)

z = e⌧+i� (21)

2 Relativistic (and non-relativistic) Euler equation
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where we have used that u⌫r⌫(uµ)uµ = aµuµ = 0. From here it follows that
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which is the relativistic version of the Euler equation.

In the non-relativistic limit

h = c2 + e+
p
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! c2 (25)

3

Restriction of the spectra

of the wave operator arises. It seems very natural that the zero modes satisfy (49), as this is in
keeping with an interpretation in terms of commutative geometry, so that they (or more precisely
q = qL + qR) represent coordinates on ordinary classical space-time. The downside is that cocycles
appear in the algebra of physical operators. So the zero mode operator algebra is not just the
algebra generated by q and q̃ but q and q̃ + ⇡↵0p, a combination that depends on the choice of an
O(d, d) frame, as we will see in what follows.

In the following section, we will provide evidence for the following re-interpretation. We will
argue that up to a normalization one should take

ÛK = eik·x̂eik̃·
ˆ̃x, (52)

where x = xR + xL and x̃ = xR � xL are the zero mode operators appearing above in the mode
expansion (10,11). A detailed analysis of the symplectic structure13 of the zero modes indicates
that the operator that is canonically conjugate to ˆ̃p is not ˆ̃x, but instead ˆ̃q := ˆ̃x � ⇡↵0p̂. It is this
operator, rather than ˆ̃x, that commutes with x̂. In other words, the commutative placeholders that
we used in the previous section (also used in [1]) to label vertex operators are not the string zero
modes. In fact, the symplectic structure implies that the zero modes satisfy

[x̂, ˆ̃x] = 2⇡i�2. (53)

Remarkably, this commutation relation is consistent with a trivial co-cycle as in the representation
(52). Also this shows that the zero mode operator algebra is now just the algebra generated by x̂
and ˆ̃x with no extra input.

Thus in the case where the double coordinates satisfy (53), the vertex operators contain no
cocycle factors, but form a non-commutative subgroup of the Weyl group on the double space P

coordinatized by (x, x̃). This means that we have to interpret the string zero modes as coordinates
in a non-commutative space-time. Note that eq. (53) does not depend on the compactification
radius, but only on the string length �. Thus there is an ↵0 e↵ect present in the physics of the zero
modes that is essentially implied by worldsheet locality. We will discuss in a separate paper what
might be the fate of the usual low energy limit ↵0

! 0 associated with e↵ective field theories.
To summarize, the zero mode operators appearing in physical vertex operators may be written

as in (52). Note that in writing it this way, we have chosen an operator ordering, or equivalently
we have made a choice of a pure (non-operatorial) phase. In the double space notation, XA(⌧, �) =
(Xµ(⌧, �), X̃µ(⌧, �)), this can be written covariantly as

ÛK = e�i⇡2 ⌘(�K,�K)ei⌘(K,X̂) = e�i⇡�2(k·k̃)ei(k̃·
ˆ̃x+k·x̂). (54)

4 The Symplectic Structure of the Zero Modes

In this section, we will derive the string symplectic structure. We began with the traditional
presentation of the zero mode sector of the compactified string, presented either as (xL, pL; xR, pR)
or equivalently as (x, p; x̃, p̃). Usually, these are interpreted as Darboux coordinates on a 4D-
dimensional phase space, on which the symplectic form has been block o↵-diagonalized. That is,
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We remind the reader that such an analysis is required to deduce Poisson brackets in the classical theory and
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and causality of the worldsheet theory, as we will explain in the following.
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2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµu⌫ + pgµ⌫) = 0. (22)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,

that is

h⌫
�rµT

µ� = h⌫
�[u

�uµrµ(⇢h)+⇢huµrµu
�+⇢hrµu

µu�+g�µrµp] = ⇢huµrµu
⌫+h⌫

�g
�µrµp = 0.

(23)

where we have used that u⌫r⌫(uµ)uµ = aµuµ = 0. From here it follows that

uµrµu
⌫ +

1

⇢h
h⌫µrµp = 0. (24)

which is the relativistic version of the Euler equation.

In the non-relativistic limit

h = c2 + e+
p

⇢
! c2 (25)

3

Lattice of momenta

factor is in fact independent of �

e�2i⌘(�K,�K0)✓(�12) = (�1)2⌘(�K,�K0). (39)

Demanding that this vertex operator be 2⇡-periodic is not enough. We also need to impose mutual

locality, the condition that vertex operators which are space-like separated on the world-sheet com-
mute with each other10. The mutual locality of vertex operators with the same momenta requires
the phase factor (39) to be trivial for identical momenta, that is, it requires 2⌘(�K,�K) to be an
even integer. In other words, the lattice is such that the scalar products ⌘(�K,�K) 2 Z are all
integers, and this in turn implies11 that ⌘(�K,�K0) 2 Z/2. Therefore, the closed string boundary
condition and the imposition of mutual locality of identical vertex operators demands that the
lattice (⇤, 2⌘) is an even self-dual lattice [1, 11, 12]. This requirement means that we must have

⌘(�K,�K) = 2�2(k · k̃) 2 Z. (41)

This condition can be equivalently stated as the demand that (k, 0) and (0, k̃) are elements of the
lattice ⇤ if K = (k, k̃) is, which means that ⇤ decomposes as a direct sum of two sublattices which
are Lagrangian with respect to ⌘ and dual to each other: ⇤ = � � �̃ with �⇤ = �̃. Usually, this
restriction on ⇤ comes from the demand of modular invariance. Here we see that it appears more
naturally as the demand of mutual locality. Note that with our conventions (see also [1]) the Virasoro
zero-mode generators are given by L0 = ↵0(p̂� ˆ̃p)2/4 + NL + 1, and L̄0 = ↵0(p̂+ ˆ̃p)2/4 + NR + 1,
where NL + 1 (resp. NR + 1) is the number of left (resp. right) oscillators. The on-shell equations
(L0, L̄0) = (1, 1) for the string states can therefore be written in terms of the wave vectors as

�2(k2 + k̃2) +NL +NR = 0, NL �NR = 2�2(k · k̃). (42)

The second condition, called level matching, is consistent with the condition (41) coming from
mutual locality.

We can finally impose mutual locality of vertex operators carrying di↵erent momenta K and K
0.

This implies a condition on the cocycle factors that were defined in equation (25):

✏K,K0

✏K0,K
= e2⇡i⌘(�K,�K0), (43)

where given the above discussion, we have e2⇡i⌘(�K,�K0) = ±1. A solution to this equation is given
by

✏K,K0 = e2⇡i�
2k̃·k0 . (44)

With this definition we can evaluate the LHS of (43), which is skew-symmetric in (K,K0) while
the RHS is symmetric. The di↵erence between the two is a factor e4⇡i�

2k·k̃0 which is equal to 1
by the condition (41). We note that (44) automatically satisfies (26), as would the exponential
of any bilinear form. This is not without ambiguity, as it could be multiplied by any expression

10
This is usually called local causality in the Lorentzian context. Since we are dealing with the Wick rotated theory

it appears as mutual locality.
11
Since

⌘(�K,�K
0
) =

1

2
(⌘(�(K+K

0
),�(K+K

0
))� ⌘(�K,�K)� ⌘(�K

0
,�K

0
)) . (40)
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Satisfies a Heisenberg algebra
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Wk,k̃ WK = eikX̂eik̃
ˆ̃X = UK VkL(z)VkR(z̄) (18)
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(2) = W(k2,k̃2)
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(1) (19)

K = (k, k̃) WK (20)

z = e⌧+i� (21)

UKUK0 = e2i⇡!(K,K0)UK0UK (22)

2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµu⌫ + pgµ⌫) = 0. (23)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,

that is

h⌫
�rµT

µ� = h⌫
�[u

�uµrµ(⇢h)+⇢huµrµu
�+⇢hrµu

µu�+g�µrµp] = ⇢huµrµu
⌫+h⌫

�g
�µrµp = 0.

(24)

where we have used that u⌫r⌫(uµ)uµ = aµuµ = 0. From here it follows that

uµrµu
⌫ +

1

⇢h
h⌫µrµp = 0. (25)

which is the relativistic version of the Euler equation.

3

Symplectic form



Mutual locality
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⌦ = �k ^ �x+ �k̃ ^ (�x̃� 2⇡�2�k| {z }) (16)
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(2)W(k1,k̃1)

(1) (19)

K = (k, k̃) WK (20)

z = e⌧+i� (21)

2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµu⌫ + pgµ⌫) = 0. (22)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,

that is

h⌫
�rµT

µ� = h⌫
�[u

�uµrµ(⇢h)+⇢huµrµu
�+⇢hrµu

µu�+g�µrµp] = ⇢huµrµu
⌫+h⌫

�g
�µrµp = 0.

(23)

where we have used that u⌫r⌫(uµ)uµ = aµuµ = 0. From here it follows that

uµrµu
⌫ +

1

⇢h
h⌫µrµp = 0. (24)

which is the relativistic version of the Euler equation.

In the non-relativistic limit

h = c2 + e+
p

⇢
! c2 (25)

3

of the wave operator arises. It seems very natural that the zero modes satisfy (49), as this is in
keeping with an interpretation in terms of commutative geometry, so that they (or more precisely
q = qL + qR) represent coordinates on ordinary classical space-time. The downside is that cocycles
appear in the algebra of physical operators. So the zero mode operator algebra is not just the
algebra generated by q and q̃ but q and q̃ + ⇡↵0p, a combination that depends on the choice of an
O(d, d) frame, as we will see in what follows.

In the following section, we will provide evidence for the following re-interpretation. We will
argue that up to a normalization one should take

ÛK = eik·x̂eik̃·
ˆ̃x, (52)

where x = xR + xL and x̃ = xR � xL are the zero mode operators appearing above in the mode
expansion (10,11). A detailed analysis of the symplectic structure13 of the zero modes indicates
that the operator that is canonically conjugate to ˆ̃p is not ˆ̃x, but instead ˆ̃q := ˆ̃x � ⇡↵0p̂. It is this
operator, rather than ˆ̃x, that commutes with x̂. In other words, the commutative placeholders that
we used in the previous section (also used in [1]) to label vertex operators are not the string zero
modes. In fact, the symplectic structure implies that the zero modes satisfy

[x̂, ˆ̃x] = 2⇡i�2. (53)

Remarkably, this commutation relation is consistent with a trivial co-cycle as in the representation
(52). Also this shows that the zero mode operator algebra is now just the algebra generated by x̂
and ˆ̃x with no extra input.

Thus in the case where the double coordinates satisfy (53), the vertex operators contain no
cocycle factors, but form a non-commutative subgroup of the Weyl group on the double space P

coordinatized by (x, x̃). This means that we have to interpret the string zero modes as coordinates
in a non-commutative space-time. Note that eq. (53) does not depend on the compactification
radius, but only on the string length �. Thus there is an ↵0 e↵ect present in the physics of the zero
modes that is essentially implied by worldsheet locality. We will discuss in a separate paper what
might be the fate of the usual low energy limit ↵0

! 0 associated with e↵ective field theories.
To summarize, the zero mode operators appearing in physical vertex operators may be written

as in (52). Note that in writing it this way, we have chosen an operator ordering, or equivalently
we have made a choice of a pure (non-operatorial) phase. In the double space notation, XA(⌧, �) =
(Xµ(⌧, �), X̃µ(⌧, �)), this can be written covariantly as

ÛK = e�i⇡2 ⌘(�K,�K)ei⌘(K,X̂) = e�i⇡�2(k·k̃)ei(k̃·
ˆ̃x+k·x̂). (54)

4 The Symplectic Structure of the Zero Modes

In this section, we will derive the string symplectic structure. We began with the traditional
presentation of the zero mode sector of the compactified string, presented either as (xL, pL; xR, pR)
or equivalently as (x, p; x̃, p̃). Usually, these are interpreted as Darboux coordinates on a 4D-
dimensional phase space, on which the symplectic form has been block o↵-diagonalized. That is,

13
We remind the reader that such an analysis is required to deduce Poisson brackets in the classical theory and

commutation relations in the quantum theory. The result that we are claiming here is the one consistent with locality

and causality of the worldsheet theory, as we will explain in the following.
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K = (k, k̃) WK (20)

z = e⌧+i� (21)

2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµu⌫ + pgµ⌫) = 0. (22)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,

that is

h⌫
�rµT

µ� = h⌫
�[u

�uµrµ(⇢h)+⇢huµrµu
�+⇢hrµu

µu�+g�µrµp] = ⇢huµrµu
⌫+h⌫

�g
�µrµp = 0.

(23)

where we have used that u⌫r⌫(uµ)uµ = aµuµ = 0. From here it follows that

uµrµu
⌫ +

1

⇢h
h⌫µrµp = 0. (24)

which is the relativistic version of the Euler equation.

In the non-relativistic limit

h = c2 + e+
p

⇢
! c2 (25)
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Lattice of momenta

Satisfies a Heisenberg algebra
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2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµu⌫ + pgµ⌫) = 0. (23)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,

that is

h⌫
�rµT

µ� = h⌫
�[u

�uµrµ(⇢h)+⇢huµrµu
�+⇢hrµu

µu�+g�µrµp] = ⇢huµrµu
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�µrµp = 0.

(24)

where we have used that u⌫r⌫(uµ)uµ = aµuµ = 0. From here it follows that

uµrµu
⌫ +
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⇢h
h⌫µrµp = 0. (25)

which is the relativistic version of the Euler equation.
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2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµu⌫ + pgµ⌫) = 0. (24)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,

that is
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(25)

where we have used that u⌫r⌫(uµ)uµ = aµuµ = 0. From here it follows that

uµrµu
⌫ +

1

⇢h
h⌫µrµp = 0. (26)

which is the relativistic version of the Euler equation.
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What is Home space?

Mutual locality implies that the string has to project itself 
onto a commutative sub-lagrangian manifold inside the non-

commutative phase space P.
The 2-form decides what Lagrangian the string projects itself 

onto.
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2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµu⌫ + pgµ⌫) = 0. (24)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,

that is
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where we have used that u⌫r⌫(uµ)uµ = aµuµ = 0. From here it follows that

uµrµu
⌫ +
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h⌫µrµp = 0. (26)

which is the relativistic version of the Euler equation.
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[k, k̃] = 0

[k, x] = i [k̃, x̃] = i

[x, x̃] = 0.

[x, x̃] = 2i⇡�2 (13)
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The zero mode of the string is a non commutative space      
but that’s not yet the Home space of the string

1 Primosten Talk

x �(x)

@tgab = Rab

�i = @⌧gi = @giZ (1)

S = S0 +
X

i

Z
giVi (2)

X : ⌃ ! M (3)

� : P ! R X �(X) (4)

� : M ! R (5)

P 6= M (6)

X(�, ⌧) = x+ ↵
0
p⌧ + ↵

0
p̃� + · · ·

X̃(�, ⌧) = x̃+ ↵
0
p̃⌧ + ↵

0
p� + · · · (7)

p =
n

R
, p̃ =

w

R̃
, RR̃ = 2�2 (8)

p p̃ (9)

P
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⇣
n

R
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✓
w

R̃
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+
N + Ñ � 2

�2

n

R

w

R̃
=

N � Ñ

2�2
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(n,R) $ (w, R̃) (11)

R ! 1 x̃ �(x)

R ! 0 x �(x̃) (12)

[k, k̃] = 0

[k, x] = i [k̃, x̃] = i

[x, x̃] = 0.

[x, x̃] = 2i⇡�2 (13)

�L=̂d✓ ⌦ = �✓ ⌦�1 (14)

dX(�)X(�) (15)
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What is space from quantum?
In QM Euclidean space appears simply as a choice of polarization: 
That is in the argument of the wave function. This is the quantum 
analog of a choice of Lagrangian

In ST the role of GN = g
2
↵
0 is played by the slope parameter ↵0 = �

✏

[xa, x̃b] =
i

2⇡
�
a
b (4)

 (x) ! �(x). (5)

Note G
�1
N is a tension

� provides a length scale on space-time beyond which we cannot observe ✏ provides a energy
scale on momentum space which fundamental object cannot exceed. QG: For Instance in LQG
or Dyn Triang: The non locality of QG is endoded in two ways. First it is due to the fact
that fundamental building blocks have a fundamental length scale, and also due to the fact that
geometry fluctuates.

Another way to experience the non-locality is :
In order to probe a region of size R we need to localize in it an energy

E � ~
RO

. On the other hand such an energy will create a black hole of size RS = GE. So the minimal
size we can observe is

Rmin = Max

✓
~
E
,GE

◆
� �. (6)

At some point after we reach the self dual point the size of the region we can observe extend
instead of shrinking. The same phenomena remarkably appear in string model. If we consider
a theory compactified on a radius R. We can show that both radia

R,
2�2

R
(7)

Both radia are physically indistinguishable.
First Hint: Non locality is due to the presence of a length scale and an energy scale. Second

Hint: There seems to be a operational indistinguishability between R/� and �/R.
What Type of Non Locality?

In order to address this issue we need to focus on a more precise definition of non locality: There
are two fundamentally di↵erent approaches to Quantum gravity
Both approach di↵er about what is the fundamental object of study. Is it the smallest elements?
Or is it the Biggest one ( space-time) Heidegger :” What is a thing ? ”

In the tradition of Newton, Galillee, Einstein etc... The fundamental object is space-time
and physical objects are defined by how they move in it.

In the tradition of the Greek school, Leibniz, particle physics today, The fundamental objects
are the microscopical constituent (matter) and their relation defines what space and time is.

This dichotomy is the dichotomy between GR and QM. Fundamental object of study is
quantum objects or space-time.

As physicist we usually believe both depending on the context. If one think that Geometry
is primordial then the challenge is to ”quantize” it, And then define fundamental objects in
terms of it. (Locality, symmetry principle,...) (E.g particle defined as rep of Poincare group)
—¿ LQG.

2

Similarly Lorentzian space appears simply as a field label.

Can we define a notion of quantum space? quantum space-time?

Space appears in the statement of micro-causality as the locus at 
which field which are space like separated commute. 



Quantum spaces are?

In ST the role of GN = g
2
↵
0 is played by the slope parameter ↵0 = �

✏

[xa, x̃b] =
i

2⇡
�
a
b (4)

 (x) ! �(x). (i@t �H) = 0 ! ⇤g� = 0 (5)

F (x̂)| i = F (x)| i (6)

Note G
�1
N is a tension

� provides a length scale on space-time beyond which we cannot observe ✏ provides a energy
scale on momentum space which fundamental object cannot exceed. QG: For Instance in LQG
or Dyn Triang: The non locality of QG is endoded in two ways. First it is due to the fact
that fundamental building blocks have a fundamental length scale, and also due to the fact that
geometry fluctuates.

Another way to experience the non-locality is :
In order to probe a region of size R we need to localize in it an energy

E � ~
RO

. On the other hand such an energy will create a black hole of size RS = GE. So the minimal
size we can observe is

Rmin = Max

✓
~
E
,GE

◆
� �. (7)

At some point after we reach the self dual point the size of the region we can observe extend
instead of shrinking. The same phenomena remarkably appear in string model. If we consider
a theory compactified on a radius R. We can show that both radia

R,
2�2

R
(8)

Both radia are physically indistinguishable.
First Hint: Non locality is due to the presence of a length scale and an energy scale. Second

Hint: There seems to be a operational indistinguishability between R/� and �/R.
What Type of Non Locality?

In order to address this issue we need to focus on a more precise definition of non locality: There
are two fundamentally di↵erent approaches to Quantum gravity
Both approach di↵er about what is the fundamental object of study. Is it the smallest elements?
Or is it the Biggest one ( space-time) Heidegger :” What is a thing ? ”

In the tradition of Newton, Galillee, Einstein etc... The fundamental object is space-time
and physical objects are defined by how they move in it.

In the tradition of the Greek school, Leibniz, particle physics today, The fundamental objects
are the microscopical constituent (matter) and their relation defines what space and time is.

This dichotomy is the dichotomy between GR and QM. Fundamental object of study is
quantum objects or space-time.

As physicist we usually believe both depending on the context. If one think that Geometry
is primordial then the challenge is to ”quantize” it, And then define fundamental objects in
terms of it. (Locality, symmetry principle,...) (E.g particle defined as rep of Poincare group)
—¿ LQG.
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In general a Schrodinger like polarization is associated  with 
classical Lagrangian sub-manifold of phase space.

By definition a quantum  space is the spectra of a maximally  
commutative *-subalgebra of the Heisenberg algebra

Is there more than Lagrangian and Schrodinger space ?

 We simply reverse the logic and define space  as the maximal set 
of commutative operations allowed in our algebra. Taking the 
Heisenberg algebra as an example 

Yes there are

x
a ! x

a + �
ab
x̃b

x̃a ! x̃a (35)

[xa
, x

b] = 0, [xa
, x̃b] = 2⇡i�2

�
a
b , [x̃a, x̃b] = 0

[xa
, x

b] = 0, [xa
, x̃b] = 2⇡i�2

�
a
b , [x̃a, x̃b] = 2i⇡�2

Bab

[xa
, x

b] = 2i⇡�2
�
ab
, [xa

, x̃b] = 2⇡i�2
�
a
b , [x̃a, x̃b] = 0 (36)

[ , ] [[ , ]] (37)

rxy = 4P [[ x+, y� ]]� x± = x± g(x) (38)

[xa
, x̃b] = 2i⇡�2

�
a
b (39)

⇥
e
i x
R , e

i x̃
R̃

⇤
= 0 {ei x

R , e
i x̃
R̃} 6= 0 (40)

2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµ

u
⌫ + pg

µ⌫) = 0. (41)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,

that is

h
⌫
�rµT

µ� = h
⌫
�[u

�
u
µrµ(⇢h)+⇢hu

µrµu
�+⇢hrµu

µ
u
�+g

�µrµp] = ⇢hu
µrµu

⌫+h
⌫
�g

�µrµp = 0.

(42)

where we have used that u⌫r⌫(uµ)uµ = a
µ
uµ = 0. From here it follows that

u
µrµu

⌫ +
1

⇢h
h
⌫µrµp = 0. (43)

which is the relativistic version of the Euler equation.
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Flat Modular space
Flat Modular space are quantum space associated with abelian 
subgroup of the Heisenberg group.
Such groups are generated by modular observables

A quantum algebra possesses more commutative directions 
than a classical Poisson algebra 

Modular uncertainty: can specify     
within a cell of fixed area but 
no knowledge of which cell

classical Lagrangian

quantum Lagrangian

p

x

In ST the role of GN = g
2
↵
0 is played by the slope parameter ↵0 = �

✏

[xa, x̃b] =
i

2⇡
�
a
b (4)

 (x) ! �(x). (i@t �H) = 0 ! ⇤g� = 0 (5)

F (x̂)| i = F (x)| i F (ˆ̃x) (6)

⇥
e
2i⇡x

, e
2i⇡x̃

⇤
= 0 {e2i⇡x, e2i⇡x̃} 6= 0 (7)

⇤ 2 P (x, x̃) (8)

Note G
�1
N is a tension

� provides a length scale on space-time beyond which we cannot observe ✏ provides a energy
scale on momentum space which fundamental object cannot exceed. QG: For Instance in LQG
or Dyn Triang: The non locality of QG is endoded in two ways. First it is due to the fact
that fundamental building blocks have a fundamental length scale, and also due to the fact that
geometry fluctuates.

Another way to experience the non-locality is :
In order to probe a region of size R we need to localize in it an energy

E � ~
RO

. On the other hand such an energy will create a black hole of size RS = GE. So the minimal
size we can observe is

Rmin = Max

✓
~
E
,GE

◆
� �. (9)

At some point after we reach the self dual point the size of the region we can observe extend
instead of shrinking. The same phenomena remarkably appear in string model. If we consider
a theory compactified on a radius R. We can show that both radia

R,
2�2

R
(10)

Both radia are physically indistinguishable.
First Hint: Non locality is due to the presence of a length scale and an energy scale. Second

Hint: There seems to be a operational indistinguishability between R/� and �/R.
What Type of Non Locality?

In order to address this issue we need to focus on a more precise definition of non locality: There
are two fundamentally di↵erent approaches to Quantum gravity
Both approach di↵er about what is the fundamental object of study. Is it the smallest elements?
Or is it the Biggest one ( space-time) Heidegger :” What is a thing ? ”

In the tradition of Newton, Galillee, Einstein etc... The fundamental object is space-time
and physical objects are defined by how they move in it.

In the tradition of the Greek school, Leibniz, particle physics today, The fundamental objects
are the microscopical constituent (matter) and their relation defines what space and time is.

This dichotomy is the dichotomy between GR and QM. Fundamental object of study is
quantum objects or space-time.

2

Schroedinger rep is a singular limit.
1d modular line is a 2d torus compact and not simply-connected 

1 Primosten Talk

x �(x)

@tgab = Rab

�i = @⌧gi = @giZ (1)

S = S0 +
X

i

Z
giVi (2)

X : ⌃ ! M (3)

� : P ! R X �(X) (4)

� : M ! R (5)

P 6= M (6)

X(�, ⌧) = x+ ↵
0
p⌧ + ↵

0
p̃� + · · ·

X̃(�, ⌧) = x̃+ ↵
0
p̃⌧ + ↵

0
p� + · · · (7)

p =
n

R
, p̃ =

w

R̃
, RR̃ = 2�2

, RR̃ = �
2 (8)

p p̃ (9)

P
2
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n
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✓
w

R̃
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+
N + Ñ � 2

�2

n

R
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R̃
=

N � Ñ

2�2
(10)

(n,R) $ (w, R̃) (11)

R ! 1 x̃ �(x)

R ! 0 x �(x̃) (12)

[k, k̃] = 0

[k, x] = i [k̃, x̃] = i

[x, x̃] = 0.

[x, x̃] = 2i⇡�2 (13)

�L=̂d✓ ⌦ = �✓ ⌦�1 (14)

dX(�)X(�) (15)
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x
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a + �
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x̃b

x̃a ! x̃a (35)

[xa
, x

b] = 0, [xa
, x̃b] = 2⇡i�2

�
a
b , [x̃a, x̃b] = 0
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, x
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[xa
, x

b] = 2i⇡�2
�
ab
, [xa

, x̃b] = 2⇡i�2
�
a
b , [x̃a, x̃b] = 0 (36)

[ , ] [[ , ]] (37)

rxy = 4P [[ x+, y� ]]� x± = x± g(x) (38)

[xa
, x̃b] = 2i⇡�ab (39)

⇥
e
i x
R , e

i x̃
R̃

⇤
= 0 {ei x

R , e
iRx̃} 6= 0 (40)

2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµ

u
⌫ + pg

µ⌫) = 0. (41)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,

that is

h
⌫
�rµT

µ� = h
⌫
�[u

�
u
µrµ(⇢h)+⇢hu

µrµu
�+⇢hrµu

µ
u
�+g

�µrµp] = ⇢hu
µrµu

⌫+h
⌫
�g

�µrµp = 0.

(42)

where we have used that u⌫r⌫(uµ)uµ = a
µ
uµ = 0. From here it follows that

u
µrµu

⌫ +
1

⇢h
h
⌫µrµp = 0. (43)

which is the relativistic version of the Euler equation.
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2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµ

u
⌫ + pg

µ⌫) = 0. (41)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,

that is
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⌫
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µrµ(⇢h)+⇢hu

µrµu
�+⇢hrµu

µ
u
�+g

�µrµp] = ⇢hu
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where we have used that u⌫r⌫(uµ)uµ = a
µ
uµ = 0. From here it follows that

u
µrµu

⌫ +
1

⇢h
h
⌫µrµp = 0. (43)

which is the relativistic version of the Euler equation.
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Aharanov

Home space for compact string is a modular space
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a
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2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµ

u
⌫ + pg

µ⌫) = 0. (41)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,

that is
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where we have used that u⌫r⌫(uµ)uµ = a
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uµ = 0. From here it follows that

u
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⌫µrµp = 0. (43)

which is the relativistic version of the Euler equation.
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2.2 Covariant Formulation

These relations can be conveniently written in terms of a Born structure (H, ⌘,!) where H is
an O(2d) metric, ⌘ is an O(d, d) metric and ⌦ is an Sp(2d) symplectic structure.

H(K,K0) :=
�2

2
(kR · k0R + kL · k0L) = �2(k · k0 + k̃ · k̃0),

⌘(K,K0) :=
�2

2
(kR · k0R � kL · k0L) = �2(k · k̃0 + k̃ · k0).

!(K,K0) :=
�2

2
(kL · k0R � kR · k0L) = �2(k · k̃0 � k̃ · k0). (33) {opeloc1}

We see that ! is the only structure that couples the left and right sectors. These structure as
assumed to be compatible in the sense that there exist two real structure (J,K) such that

H = ⌘J, ! = ⌘K, J2 = K2 = 1 (34)

J is a chiral structure while K defines a Lagrangian (or para-Hermitian) structure:

JT ⌘J = ⌘, KT ⌘K = �⌘. (35)

The constraints can be written as

0 = H(K,K) +NR +NL � 2, 0 = ⌘(K,K) +NR �NL. (36)

The equal time commutation relation can the be written as

[XA(�1),XB(�2)] = 2i[⇡!AB
� ⌘AB✓(�12)] (37)

where �12 = �1 � �2 and ✓(�) is the staircase distribution

✓(�) = � +
X

n 6=0

ein�

in
, (38)

it is quasi periodic ✓(�+2⇡) = ✓(�)+2⇡, it is odd ✓(��) = �✓(�) and its value for � 2 [0, 2⇡] is
✓(�) = ⇡. This means that ✓(�) 2 ⇡Z and its derivative is 2⇡ times the periodic delta function.
The covariant eom reads

@⌧X = J@�X. (39)

The solution of the equation of motion can be conveniently written in terms of the Fourier
components of the currents JA := @�X:

K̂A :=
1

4⇡�2

I
@�X̂A, JAn :=

1

2⇡�

I
@�X̂Aein�. (40)

And the solution reads5

XA(z, z̄) = XA
� i�2(ln (z̄/z)KA + ln(z̄z)J(K)A) +QA(⌧,�) (41)

5One has to remember that @� z̄ = i�

5

Geometry of String theory

 defines the spectra,    level matching,          mutual locality

O(d,d) metric
Sp(2d) Symplectic

The new player compare to DFT is      doubled space is a 
symplectic manifold

⌦ = �k ^ �x+ �k̃ ^ (�x̃� 2⇡�2�k)

⌦ = �k ^ �x+ �k̃ ^ (�x̃� 2⇡�2�k| {z }) (16)

L =
1

4⇡↵0 [(@⌧X)2 � (@�X)2] (17)

Wk,k̃ WK = eikX̂eik̃
ˆ̃X = UK VkL(z)VkR(z̄) (18)

W(k1,k̃1)
(1)W(k2,k̃2)

(2) = W(k2,k̃2)
(2)W(k1,k̃1)

(1) (19)

K = (k, k̃) WK (20)

z = e⌧+i� (21)

UKUK0 = e2i⇡!(K,K0)UK0UK (22)

(⌘ ± !)(K,K0) 2 Z (23)

2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµu⌫ + pgµ⌫) = 0. (24)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,

that is

h⌫
�rµT

µ� = h⌫
�[u

�uµrµ(⇢h)+⇢huµrµu
�+⇢hrµu

µu�+g�µrµp] = ⇢huµrµu
⌫+h⌫

�g
�µrµp = 0.

(25)
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2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-
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µ⌫) = 0. (28)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,
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Curved Born Geometry 
The structure group of Born Geometry is Lorentz

Lorentz

In ST the role of GN = g2↵0 is played by the slope parameter ↵0 = �
✏

[xa, x̃b] =
i

2⇡
�ab (4)

 (x) ! �(x). (i@t �H) = 0 ! ⇤g� = 0 (5)

F (x̂)| i = F (x)| i F (ˆ̃x) (6)

⇥
e2i⇡x, e2i⇡x̃

⇤
= 0 {e2i⇡x, e2i⇡x̃} 6= 0 (7)

⇤ 2 P (x, x̃) (8)

 (x+ a, x̃) = e2i⇡ax̃ (x, x̃),  (x, x̃+ ã) =  (x, x̃). (9)

H⇤ = �(L⇤) L⇤ ! T⇤ = P/⇤ T⇤ ! L⇤ (10)

H (11)

Sp(2d) Sp(2d) \O(d, d) = GL(d) Sp(2d) \O(d, d) \O(2, 2(d� 1)) = O(1, (d� 1)) (12)

Note G�1
N is a tension

� provides a length scale on space-time beyond which we cannot observe ✏ provides a energy
scale on momentum space which fundamental object cannot exceed. QG: For Instance in LQG
or Dyn Triang: The non locality of QG is endoded in two ways. First it is due to the fact
that fundamental building blocks have a fundamental length scale, and also due to the fact that
geometry fluctuates.

Another way to experience the non-locality is :
In order to probe a region of size R we need to localize in it an energy

E �
~
RO

. On the other hand such an energy will create a black hole of size RS = GE. So the minimal
size we can observe is

Rmin = Max

✓
~
E
,GE

◆
� �. (13)

At some point after we reach the self dual point the size of the region we can observe extend
instead of shrinking. The same phenomena remarkably appear in string model. If we consider
a theory compactified on a radius R. We can show that both radia

R,
2�2

R
(14)

Both radia are physically indistinguishable.
First Hint: Non locality is due to the presence of a length scale and an energy scale. Second

Hint: There seems to be a operational indistinguishability between R/� and �/R.
What Type of Non Locality?

In order to address this issue we need to focus on a more precise definition of non locality: There
are two fundamentally di↵erent approaches to Quantum gravity
Both approach di↵er about what is the fundamental object of study. Is it the smallest elements?
Or is it the Biggest one ( space-time) Heidegger :” What is a thing ? ”

2

Curving Born geometry amounts to 2 different operations:
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They generalises notion of spacetime and momentum space
This provides a gravitization of the quantum LF, Leigh, Minic



Curved Born Geometry 
The structure group of Born Geometry is Lorentz

Lorentz

In ST the role of GN = g2↵0 is played by the slope parameter ↵0 = �
✏
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Sp(2d) Sp(2d) \O(d, d) = GL(d) Sp(2d) \O(d, d) \O(2, 2(d� 1)) = O(1, (d� 1)) (12)

Note G�1
N is a tension

� provides a length scale on space-time beyond which we cannot observe ✏ provides a energy
scale on momentum space which fundamental object cannot exceed. QG: For Instance in LQG
or Dyn Triang: The non locality of QG is endoded in two ways. First it is due to the fact
that fundamental building blocks have a fundamental length scale, and also due to the fact that
geometry fluctuates.

Another way to experience the non-locality is :
In order to probe a region of size R we need to localize in it an energy

E �
~
RO

. On the other hand such an energy will create a black hole of size RS = GE. So the minimal
size we can observe is

Rmin = Max

✓
~
E
,GE

◆
� �. (13)

At some point after we reach the self dual point the size of the region we can observe extend
instead of shrinking. The same phenomena remarkably appear in string model. If we consider
a theory compactified on a radius R. We can show that both radia

R,
2�2

R
(14)

Both radia are physically indistinguishable.
First Hint: Non locality is due to the presence of a length scale and an energy scale. Second

Hint: There seems to be a operational indistinguishability between R/� and �/R.
What Type of Non Locality?

In order to address this issue we need to focus on a more precise definition of non locality: There
are two fundamentally di↵erent approaches to Quantum gravity
Both approach di↵er about what is the fundamental object of study. Is it the smallest elements?
Or is it the Biggest one ( space-time) Heidegger :” What is a thing ? ”
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Completely different philosophy from DFT we assign the B-
fields and flux to 
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Explains why Lorentz, the structure group of g on L
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2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµ

u
⌫ + pg

µ⌫) = 0. (36)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,

that is
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�µrµp = 0.

(37)

where we have used that u⌫r⌫(uµ)uµ = a
µ
uµ = 0. From here it follows that

u
µrµu
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1

⇢h
h
⌫µrµp = 0. (38)

which is the relativistic version of the Euler equation.

In the non-relativistic limit
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and therefore we finally get
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~rp = 0, (41)

or using the convective derivative
D~v

Dt
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~rp

⇢
= 0. (42)
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Dual non-commutativity

Satisfies Jacobi if dB=0.



Fluxes and non commutativity
beta-transform Preserves dual space 

Commutators becomes

Space is  non-commutative even in the limit 

[xa
, x

b] = 0, [xa
, x̃b] = 2⇡i�2

�
a
b , [x̃a, x̃b] = 0

[xa
, x

b] = 0, [xa
, x̃b] = 2⇡i�2

�
a
b , [x̃a, x̃b] = 2i⇡�2

Bab

[xa
, x

b] = 2i⇡�2
�
ab
, [xa

, x̃b] = 2⇡i�2
�
a
b , [x̃a, x̃b] = 0 (35)

2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµ

u
⌫ + pg

µ⌫) = 0. (36)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,

that is
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where we have used that u⌫r⌫(uµ)uµ = a
µ
uµ = 0. From here it follows that

u
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⌫ +
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⇢h
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⌫µrµp = 0. (38)

which is the relativistic version of the Euler equation.

In the non-relativistic limit
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and therefore we finally get
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2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµ

u
⌫ + pg

µ⌫) = 0. (37)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,

that is
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where we have used that u⌫r⌫(uµ)uµ = a
µ
uµ = 0. From here it follows that

u
µrµu

⌫ +
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⇢h
h
⌫µrµp = 0. (39)

which is the relativistic version of the Euler equation.

In the non-relativistic limit
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1 Primosten Talk

x �(x)

@tgab = Rab

�i = @⌧gi = @giZ (1)

S = S0 +
X

i

Z
giVi (2)

X : ⌃ ! M (3)

� : P ! R X �(X) (4)

� : M ! R (5)

P 6= M (6)

X(�, ⌧) = x+ ↵
0
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0
p̃� + · · ·

X̃(�, ⌧) = x̃+ ↵
0
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0
p� + · · · (7)

p =
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R̃
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(n,R) $ (w, R̃) (11)

R ! 1 x̃ �(x)

R ! 0 x �(x̃) (12)

[k, k̃] = 0

[k, x] = i [k̃, x̃] = i

[x, x̃] = 0.

[x, x̃] = 2i⇡�2 (13)

�L=̂d✓ ⌦ = �✓ ⌦�1 (14)

dX(�)X(�) (15)
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Explains clearly in what way this is a non-geometrical 
background: It is a non commutative one.

⌦ = �k ^ �x+ �k̃ ^ (�x̃� 2⇡�2
�k)

⌦ = �k ^ �x+ �k̃ ^ (�x̃� 2⇡�2
�k| {z }) (16)

L =
1

4⇡↵0 [(@⌧X)2 � (@�X)2] (17)

Wk,k̃ WK = e
ikX̂

e
ik̃ ˆ̃X = UK VkL(z)VkR(z̄) (18)

W(k1,k̃1)
(1)W(k2,k̃2)

(2) = W(k2,k̃2)
(2)W(k1,k̃1)

(1) (19)

K = (k, k̃) WK (20)

z = e
⌧+i� (21)

UKUK0 = e
2i⇡!(K,K0)

UK0UK (22)

(⌘ ± !)(K,K0) 2 Z (23)

H(K,K0) = �
2(k · k0 + k̃ · k̃0),

⌘(K,K0) = �
2(k · k̃0 + k̃ · k0).

!(K,K0) = �
2(k · k̃0 � k̃ · k0). (24)

(H, ⌘,!) ⌘ (⌘,!) ! (25)

K = ⌘
�1
! J = ⌘

�1
H K

2 = 1 J
2 = 1 (26)

✓
0(�) = 2⇡�(�) (27)

X = (xa
, x̃a) (28)

d! 6= 0, d! = Habcdx
a ^ dxb ^ dxc ++ · · · (29)

2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµ

u
⌫ + pg

µ⌫) = 0. (30)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

3

Does it mean non associativity ?



D- bracket
Associated with a non necessarily integrable or symplectic 
para-hermitian structure. It is possible to construct the notion 
of a D-bracket on TP that generalises the Lie bracket. 
Moreover even if the Lie bracket        is not associative  
the projected  D-bracket        can be associative  when 
projected onto its Lagrangian even when 
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b , [x̃a, x̃b] = 0 (36)

[ , ] [[ , ]] (37)

2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµ

u
⌫ + pg

µ⌫) = 0. (38)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,

that is

h
⌫
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⌫
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�µrµp] = ⇢hu
µrµu

⌫+h
⌫
�g
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(39)

where we have used that u⌫r⌫(uµ)uµ = a
µ
uµ = 0. From here it follows that

u
µrµu

⌫ +
1

⇢h
h
⌫µrµp = 0. (40)

which is the relativistic version of the Euler equation.

In the non-relativistic limit
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2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµ

u
⌫ + pg

µ⌫) = 0. (38)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,

that is
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where we have used that u⌫r⌫(uµ)uµ = a
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uµ = 0. From here it follows that
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which is the relativistic version of the Euler equation.

In the non-relativistic limit
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D-bracket provides a dynamical generalisation of the notion of 
Courant bracket used in generalized geometry. 
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e
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d! 6= 0, d! = Habcdx
a ^ dxb ^ dxc ++ · · · (29)

2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµ

u
⌫ + pg

µ⌫) = 0. (30)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy
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Curved Born Geometry 
The structure group of Born Geometry is Lorentz

Lorentz

In ST the role of GN = g2↵0 is played by the slope parameter ↵0 = �
✏

[xa, x̃b] =
i

2⇡
�ab (4)

 (x) ! �(x). (i@t �H) = 0 ! ⇤g� = 0 (5)

F (x̂)| i = F (x)| i F (ˆ̃x) (6)

⇥
e2i⇡x, e2i⇡x̃

⇤
= 0 {e2i⇡x, e2i⇡x̃} 6= 0 (7)

⇤ 2 P (x, x̃) (8)

 (x+ a, x̃) = e2i⇡ax̃ (x, x̃),  (x, x̃+ ã) =  (x, x̃). (9)

H⇤ = �(L⇤) L⇤ ! T⇤ = P/⇤ T⇤ ! L⇤ (10)

H (11)

Sp(2d) Sp(2d) \O(d, d) = GL(d) Sp(2d) \O(d, d) \O(2, 2(d� 1)) = O(1, (d� 1)) (12)

Note G�1
N is a tension

� provides a length scale on space-time beyond which we cannot observe ✏ provides a energy
scale on momentum space which fundamental object cannot exceed. QG: For Instance in LQG
or Dyn Triang: The non locality of QG is endoded in two ways. First it is due to the fact
that fundamental building blocks have a fundamental length scale, and also due to the fact that
geometry fluctuates.

Another way to experience the non-locality is :
In order to probe a region of size R we need to localize in it an energy

E �
~
RO

. On the other hand such an energy will create a black hole of size RS = GE. So the minimal
size we can observe is

Rmin = Max

✓
~
E
,GE

◆
� �. (13)

At some point after we reach the self dual point the size of the region we can observe extend
instead of shrinking. The same phenomena remarkably appear in string model. If we consider
a theory compactified on a radius R. We can show that both radia

R,
2�2

R
(14)

Both radia are physically indistinguishable.
First Hint: Non locality is due to the presence of a length scale and an energy scale. Second

Hint: There seems to be a operational indistinguishability between R/� and �/R.
What Type of Non Locality?

In order to address this issue we need to focus on a more precise definition of non locality: There
are two fundamentally di↵erent approaches to Quantum gravity
Both approach di↵er about what is the fundamental object of study. Is it the smallest elements?
Or is it the Biggest one ( space-time) Heidegger :” What is a thing ? ”
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This suggest the following theorem proven recently:
There exists a unique connection-The Born connection-which 
preserves             and is Torsionless in a generalised sense.
This connection reduces to the Levi-Civita connection when 
projected onto its Lagrangian.
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This gives an interesting and new perspective on Levi-Civita 
which appears simply as the projection of the D-bracket

This resolves an old puzzle of DFT 
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2 Relativistic (and non-relativistic) Euler equation

Question: Derive the relativistic Euler equation from the conservation of energy and mo-

mentum and write its non-relativistic limit.

Let us start from the conservation of energy and momentum

rµT
µ⌫ = rµ((e+ p)uµ

u
⌫ + pg

µ⌫) = 0. (39)

where e ⌘ ⇢(1 + ✏) is the total energy density (which is the sum of the rest-mass energy

density and the internal energy density ⇢✏) and p is the pressure. We also define ⇢h = e+ p

the enthalpy.

Now, consider the projection of this equation via the projection tensor hµ⌫ ⌘ gµ⌫ +uµu⌫ ,

that is
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where we have used that u⌫r⌫(uµ)uµ = a
µ
uµ = 0. From here it follows that
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Summary
• We have reviewed very briefly the idea of relative locality and 

showed how this concept give a powerful new perspective on 
the geometry of string theory.

• We have seen that the zero mode positions of the compact 
string are non-commutative.  While the Home space of the 
compact string is a modular space: The string folds  itself onto 
one of its quantum Lagrangian.

• The consistency of this structure leads at the classical level to the 
construction of a Born geometry that includes a para-hermitian 
structure encoded the mutual locality of vertex operators  plus a 
generalized metric encoding the spectra of this operators. 

• The new ingredient     missed by DFT promotes double space 
to a phase space and allows the dynamical selection of the 
section condition and the construction of a unique connection 
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Road map for QG/ST Geometry 

• What is the fundamental new relativity principle ?
    Relative locality
• What is the simplest implementation of that idea ?
    Modular space
• What geometry represents that idea ?
    Born geometry 
• Is there a model that can guide us through the maze of new 

concepts ?      Metastring theory
• There is  in addition to the pairing   and metric  an additional structure 

a 2 form     that geometrically control the deformation of the 
differential structure and the choice of section condition.   
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Conclusion
We have seen that the dynamicalisation of the section 
condition naturally involves a new notion of space that 
incorporate
•fundamentally quantum
•fundamentally non-local
•respecting the principle of relative locality
•reconciling discreetness with relativity 
It is tempting to think that it implies generalization of the 
concept of fields that goes beyond DFT

Generic prediction: Fundamental UV-IR mixing
To be tested in Quantum cosmology:  First opportunity to 
finally adress the fundamental problem of quantum cosmology 

See Brandenberger talk.



Quantum Gravity in the sky??

Wise infrared 

Rosat X-ray

Planck microwave

Fermi Gamma ray



Lessons from Quantum-Gravity

• We have many different approaches to the problem. 
• Strings, Loops, Emergent gravity, AdS/CFT, Non Gaussian fixed point, 

CDT etc…
•  What have we learned so far?  What do they all have in common?

• The only common theme between all of them is non-locality
• non-local observables in background independent approach
• non-local probes
• non-locality of holography 
• discreteness
• non-local fixed point, etc…



The Challenges of non-Locality

• Locality is built in Field Theory
 and General Relativity:

locality of asymptotic states, 
locality of interactions,
locality of RG =separation of scales.

•We expect that any theory of quantum gravity will involve some 
non-locality.   How  do we deal with non-locality without opening 
Pandora’s Box? 

These are the foundations of modern physics.
We need to specify what type of non-locality is viable,  we need a new 
principle to tame non-locality.



What kind of non locality?

One of the fundamental challenges is to reconcile having a 
fundamental scale  with Lorentz invariance

•Relative locality 

A new take on quantum gravity: It should emerge  from a theory 
which is quantum has a fundamental delocalisation scale and satisfies 

the relativity principle.  Non-locality cannot be arbitrary.

•Born Duality

Relative Locality is taken as the organizational feature
allowing us to tame non locality. 

ability to change polarization

Instead of assuming the existence of an absolute space time one 
define it through localization/interaction of fundamental probes. 
Each probes might define its own notion of space-time: Locality is 
relative



Modular space

Is there a physical system where modular spacetime is realized ?
Yes there is: In string theory

We can show that the Home space of closed string is a modular 
space.  It is not doubled. It is not compactified.

Modularity is the target space realization of  T-duality.

A generic polarization is in fact a modular space. Modular space 
have a built-in length and energy scales, they are fundamentally 
quantum



Modular space
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geometry fluctuates.

Another way to experience the non-locality is :
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At some point after we reach the self dual point the size of the region we can observe extend
instead of shrinking. The same phenomena remarkably appear in string model. If we consider
a theory compactified on a radius R. We can show that both radia
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Both radia are physically indistinguishable.
First Hint: Non locality is due to the presence of a length scale and an energy scale. Second

Hint: There seems to be a operational indistinguishability between R/� and �/R.
What Type of Non Locality?

In order to address this issue we need to focus on a more precise definition of non locality: There
are two fundamentally di↵erent approaches to Quantum gravity
Both approach di↵er about what is the fundamental object of study. Is it the smallest elements?
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are the microscopical constituent (matter) and their relation defines what space and time is.

This dichotomy is the dichotomy between GR and QM. Fundamental object of study is
quantum objects or space-time.

2

The quasi-periods correspond to the tails of an Aharonov-
Bohm potential attached to a unit flux   

A generic commutative subalgebra is associated with
 a lattice in phase space

The Hilbert space  corresponds to sections of a U(1)  bundle   
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A modular wave function is quasi-periodic
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Both radia are physically indistinguishable.
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What Type of Non Locality?
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1d Euclidean space is non compact, simply connected 
1d modular space is 2d, compact and not simply-connected 

It carries flux and the doubling is a choice of polarisation.
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Both radia are physically indistinguishable.
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A lift determines a polarisation metric
A vacuum determines a quantum metric

3 Born reciprocity

From the point of view of probes what is the fundamental clash between Quantum mechanics
and Gravity?

I :

⇢
P ! Q

Q ! �P
(6)

Hint 3: The geometrical realm in which one should formulate the theory is phase space and
not

4 Geometry of phase space

P ! H ⌘

5 Relative locality: What does it have to do with non locality

6 Opening Pandora’s Box

What non locality?

7 What are the examples

8 Gravitising the Quantum

9 From non local probes to Gravity equation

The quantum equivalence principle.

10 Meta-String theory

11 What equations for phase space geometry

12 Conclusion

The point of view I want to develop in this talk is the point of view that start from the idea
that microscopical probes are fundamental.

If we think in that language what is the problem of quantum gravity. Born duality principle.
expose Relative Locality Is an investigation into the geometry of energy momentum space.

Geometry of momentum space = non locality
The hope is that there is a geometrical principle that allow to put together geometry on

momentum space and on space time consistently.
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Kn =
�

R
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ua Na Sa T ab (2.3)

DaN
a = 0, DaS

a
� 0 DaT

ab = 0 (2.4)

Na

e = nua Sa

e = sua T ab

e = euaub + pqab qab = hab + uaub. (2.5)

s(e, n) ds = �de� �µdn, p+ ⇢ = Ts+ µn. (2.6)

p � = 1/T µ e (2.7)

ṅ = �✓n (2.8)

ė = �✓(e+ p) (2.9)

(e+ p)u̇a = �dap (2.10)

uadaf = 0 Daf = �uaḟ + daf (2.11)
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The unbroken symmetry group is the lattice translation.
Space corresponds to a Cartan subgroup.

This is why we can reconcile for the first time fundamental 
discreetness and translational and Lorentz symmetries.
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Note G
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� provides a length scale on space-time beyond which we cannot observe ✏ provides a energy
scale on momentum space which fundamental object cannot exceed. QG: For Instance in LQG
or Dyn Triang: The non locality of QG is endoded in two ways. First it is due to the fact
that fundamental building blocks have a fundamental length scale, and also due to the fact that
geometry fluctuates.

Another way to experience the non-locality is :
In order to probe a region of size R we need to localize in it an energy
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. On the other hand such an energy will create a black hole of size RS = GE. So the minimal
size we can observe is
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At some point after we reach the self dual point the size of the region we can observe extend
instead of shrinking. The same phenomena remarkably appear in string model. If we consider
a theory compactified on a radius R. We can show that both radia
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Both radia are physically indistinguishable.
First Hint: Non locality is due to the presence of a length scale and an energy scale. Second

Hint: There seems to be a operational indistinguishability between R/� and �/R.
What Type of Non Locality?

In order to address this issue we need to focus on a more precise definition of non locality: There
are two fundamentally di↵erent approaches to Quantum gravity
Both approach di↵er about what is the fundamental object of study. Is it the smallest elements?
Or is it the Biggest one ( space-time) Heidegger :” What is a thing ? ”

In the tradition of Newton, Galillee, Einstein etc... The fundamental object is space-time
and physical objects are defined by how they move in it.
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In order to address this issue we need to focus on a more precise definition of non locality: There
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or Dyn Triang: The non locality of QG is endoded in two ways. First it is due to the fact
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geometry fluctuates.
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In order to probe a region of size R we need to localize in it an energy
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At some point after we reach the self dual point the size of the region we can observe extend
instead of shrinking. The same phenomena remarkably appear in string model. If we consider
a theory compactified on a radius R. We can show that both radia
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Both radia are physically indistinguishable.
First Hint: Non locality is due to the presence of a length scale and an energy scale. Second

Hint: There seems to be a operational indistinguishability between R/� and �/R.
What Type of Non Locality?

In order to address this issue we need to focus on a more precise definition of non locality: There
are two fundamentally di↵erent approaches to Quantum gravity
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Note G�1
N is a tension

� provides a length scale on space-time beyond which we cannot observe ✏ provides a energy
scale on momentum space which fundamental object cannot exceed. QG: For Instance in LQG
or Dyn Triang: The non locality of QG is endoded in two ways. First it is due to the fact
that fundamental building blocks have a fundamental length scale, and also due to the fact that
geometry fluctuates.
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At some point after we reach the self dual point the size of the region we can observe extend
instead of shrinking. The same phenomena remarkably appear in string model. If we consider
a theory compactified on a radius R. We can show that both radia
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Both radia are physically indistinguishable.
First Hint: Non locality is due to the presence of a length scale and an energy scale. Second

Hint: There seems to be a operational indistinguishability between R/� and �/R.
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A boost is a change of polarization
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Analog to rotation of the frame of a spin 

In ST the role of GN = g2↵0 is played by the slope parameter ↵0 = �
✏

[xa, x̃b] =
i

2⇡
�ab (4)

 (x) ! �(x). (i@t �H) = 0 ! ⇤g� = 0 (5)

F (x̂)| i = F (x)| i F (ˆ̃x) (6)

⇥
e2i⇡x, e2i⇡x̃

⇤
= 0 {e2i⇡x, e2i⇡x̃} 6= 0 (7)

⇤ 2 P (x, x̃) (8)

 (x+ a, x̃) = e2i⇡ax̃ (x, x̃),  (x, x̃+ ã) =  (x, x̃). (9)

H⇤ = �(L⇤) L⇤ ! T⇤ = P/⇤ T⇤ ! L⇤ (10)

H (11)

Sp(2d) Sp(2d) \O(d, d) = GL(d) Sp(2d) \O(d, d) \O(2, 2(d� 1)) = O(1, (d� 1)) (12)

O⇤ 6= ⇤ (13)

G⇤

[G⇤, GO⇤] 6= 0 (14)

�x ! �z (15)

Note G�1
N is a tension

� provides a length scale on space-time beyond which we cannot observe ✏ provides a energy
scale on momentum space which fundamental object cannot exceed. QG: For Instance in LQG
or Dyn Triang: The non locality of QG is endoded in two ways. First it is due to the fact
that fundamental building blocks have a fundamental length scale, and also due to the fact that
geometry fluctuates.

Another way to experience the non-locality is :
In order to probe a region of size R we need to localize in it an energy

E �
~
RO

. On the other hand such an energy will create a black hole of size RS = GE. So the minimal
size we can observe is

Rmin = Max

✓
~
E
,GE

◆
� �. (16)

At some point after we reach the self dual point the size of the region we can observe extend
instead of shrinking. The same phenomena remarkably appear in string model. If we consider
a theory compactified on a radius R. We can show that both radia

R,
2�2

R
(17)

Both radia are physically indistinguishable.
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in
the Schrödinger representation

ought to
be realized

in
any

other (unitarily
equivalent)

quantization.
Before presenting

our main
line of argument, let us comment that resolving

(a
close

relative of) this issue is of fundamental importance to quantum
gravity. Indeed, the main

conundrum
for any theory of quantum

gravity is to be able to find
a way to reconcile the

presence of a fundamental length and energy scale with the principle of relativity. The basic

issue is that the Lorentz contraction of length and the dilation of time for relative observers

renders seemingly impossible the ability to have a scale on which all observers agree. This

fundamental issue has attracted a lot of attention in recent years and is still at the core of

any attempt to produce a viable theory of quantum
gravity.

A
useful analogy in quantum

mechanics is provided by angular momentum. Classically,

the angular momentum
describes a point on

a sphere, and
its canonical actions are given

by
rotations which

are symmetries of the sphere.
Quantum

mechanically, representations

are discrete; the eigenvalue of the angular momentum
is evenly

spaced
and

this can
be

interpreted as a discretization of the sphere, in which it is replaced by a discrete set of circles

equally spaced along the z-axis, say, a geometrical picture rigorously realized in the Kirillov

orbit method [33]. These orbits correspond to the weight lattice of the representation. The

lattice apparently
destroys the rotational symmetry

of the classical description.
But we

know
that is not true: quantum

theory restores the rotational symmetry by arranging for

a
superposition

of spin
states which

in
turn

parametrize a
sphere’s-worth

of states.
The

spin states are merely a basis for the entire state space, and the basis is not invariant under

rotations.

Figure 1: Discretization of sphere.

So
how

does this analogy
work

in
the context of modular space?

In
the Schrödinger

representation, rotations act within the set of states
|xi, giving back a linear combination of

these states. In the modular polarization, clearly, we should regard the rotations as acting

on the basis, resulting in a new
choice of modular cell, i.e., a new

’quantization axis’. Such

a transformation corresponds to a canonical transformation.

Let us start again with the puzzle we are facing. As we have seen, once we introduce a

fundamental scale, the natural polarization that respects the presence of this scale introduces

a bilagrangian
lattice ⇤

=
`
� ˜̀

embedded
in
phase space

P , and
equipped

with
a neutral

metric ⌘. Moreover, we have seen that the Hilbert space is given by a space of sections of a

line bundle L
⇤ over the torus T

⇤ =
P/⇤

and that the embedding T
⇤ ,!

L
⇤ is characterized

by a lift, ↵
⌘ 2

U(1). Rotations act on phase space as symplectic transformations

X
=
(x, x̃)

7!
O

· X
=
(Ox,O T

x̃),

O
2
O(d).

(69)
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A boosted state is a superposition 
of unboosted ones

In ST the role of GN = g2↵0 is played by the slope parameter ↵0 = �
✏

[xa, x̃b] =
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2⇡
�ab (4)

 (x) ! �(x). (i@t �H) = 0 ! ⇤g� = 0 (5)

F (x̂)| i = F (x)| i F (ˆ̃x) (6)

⇥
e2i⇡x, e2i⇡x̃

⇤
= 0 {e2i⇡x, e2i⇡x̃} 6= 0 (7)

⇤ 2 P (x, x̃) (8)

 (x+ a, x̃) = e2i⇡ax̃ (x, x̃),  (x, x̃+ ã) =  (x, x̃). (9)

H⇤ = �(L⇤) L⇤ ! T⇤ = P/⇤ T⇤ ! L⇤ (10)

H (11)

Sp(2d) Sp(2d) \O(d, d) = GL(d) Sp(2d) \O(d, d) \O(2, 2(d� 1)) = O(1, (d� 1)) (12)

O⇤ 6= ⇤ (13)

G⇤

[G⇤, GO⇤] 6= 0 (14)

�x ! �z (15)

 ⇤ !  O⇤ = UO⇤ ⇤ (16)

Note G�1
N is a tension

� provides a length scale on space-time beyond which we cannot observe ✏ provides a energy
scale on momentum space which fundamental object cannot exceed. QG: For Instance in LQG
or Dyn Triang: The non locality of QG is endoded in two ways. First it is due to the fact
that fundamental building blocks have a fundamental length scale, and also due to the fact that
geometry fluctuates.

Another way to experience the non-locality is :
In order to probe a region of size R we need to localize in it an energy

E �
~
RO

. On the other hand such an energy will create a black hole of size RS = GE. So the minimal
size we can observe is

Rmin = Max

✓
~
E
,GE

◆
� �. (17)

At some point after we reach the self dual point the size of the region we can observe extend
instead of shrinking. The same phenomena remarkably appear in string model. If we consider
a theory compactified on a radius R. We can show that both radia

R,
2�2

R
(18)

Both radia are physically indistinguishable.
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3 Born reciprocity

From the point of view of probes what is the fundamental clash between Quantum mechanics
and Gravity?

I :

⇢
P ! Q

Q ! �P
(6)

Hint 3: The geometrical realm in which one should formulate the theory is phase space and
not

4 Geometry of phase space

P ! H ⌘

5 Relative locality: What does it have to do with non locality

6 Opening Pandora’s Box

What non locality?

7 What are the examples

8 Gravitising the Quantum

9 From non local probes to Gravity equation

The quantum equivalence principle.

10 Meta-String theory

11 What equations for phase space geometry

12 Conclusion

The point of view I want to develop in this talk is the point of view that start from the idea
that microscopical probes are fundamental.

If we think in that language what is the problem of quantum gravity. Born duality principle.
expose Relative Locality Is an investigation into the geometry of energy momentum space.

Geometry of momentum space = non locality
The hope is that there is a geometrical principle that allow to put together geometry on

momentum space and on space time consistently.

3

In ST the role of GN = g
2
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2i⇡x̃
} 6= 0 (7)

⇤ 2 P (x, x̃) (8)

 (x+ a, x̃) = e
2i⇡ax̃ (x, x̃),  (x, x̃+ ã) =  (x, x̃). (9)

H⇤ = �(L⇤) L⇤ ! T⇤ = P/⇤ T⇤ ! L⇤ (10)

H (11)

Note G
�1
N is a tension

� provides a length scale on space-time beyond which we cannot observe ✏ provides a energy
scale on momentum space which fundamental object cannot exceed. QG: For Instance in LQG
or Dyn Triang: The non locality of QG is endoded in two ways. First it is due to the fact
that fundamental building blocks have a fundamental length scale, and also due to the fact that
geometry fluctuates.

Another way to experience the non-locality is :
In order to probe a region of size R we need to localize in it an energy

E �
~
RO

. On the other hand such an energy will create a black hole of size RS = GE. So the minimal
size we can observe is

Rmin = Max

✓
~
E
,GE

◆
� �. (12)

At some point after we reach the self dual point the size of the region we can observe extend
instead of shrinking. The same phenomena remarkably appear in string model. If we consider
a theory compactified on a radius R. We can show that both radia

R,
2�2

R
(13)

Both radia are physically indistinguishable.
First Hint: Non locality is due to the presence of a length scale and an energy scale. Second

Hint: There seems to be a operational indistinguishability between R/� and �/R.
What Type of Non Locality?

In order to address this issue we need to focus on a more precise definition of non locality: There
are two fundamentally di↵erent approaches to Quantum gravity
Both approach di↵er about what is the fundamental object of study. Is it the smallest elements?
Or is it the Biggest one ( space-time) Heidegger :” What is a thing ? ”

In the tradition of Newton, Galillee, Einstein etc... The fundamental object is space-time
and physical objects are defined by how they move in it.

2



Many is Large

Under a boost

Space is definitely not compactified: it is modular

In ST the role of GN = g2↵0 is played by the slope parameter ↵0 = �
✏
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= 0 {e2i⇡x, e2i⇡x̃} 6= 0 (7)

⇤ 2 P (x, x̃) (8)

 (x+ a, x̃) = e2i⇡ax̃ (x, x̃),  (x, x̃+ ã) =  (x, x̃). (9)

H⇤ = �(L⇤) L⇤ ! T⇤ = P/⇤ T⇤ ! L⇤ (10)

H (11)

Sp(2d) Sp(2d) \O(d, d) = GL(d) Sp(2d) \O(d, d) \O(2, 2(d� 1)) = O(1, (d� 1)) (12)

O⇤ 6= ⇤ (13)

G⇤

[G⇤, GO⇤] 6= 0 (14)

�x ! �z (15)

 ⇤ !  O⇤ = UO⇤ ⇤ (16)

Note G�1
N is a tension

� provides a length scale on space-time beyond which we cannot observe ✏ provides a energy
scale on momentum space which fundamental object cannot exceed. QG: For Instance in LQG
or Dyn Triang: The non locality of QG is endoded in two ways. First it is due to the fact
that fundamental building blocks have a fundamental length scale, and also due to the fact that
geometry fluctuates.

Another way to experience the non-locality is :
In order to probe a region of size R we need to localize in it an energy

E �
~
RO

. On the other hand such an energy will create a black hole of size RS = GE. So the minimal
size we can observe is

Rmin = Max

✓
~
E
,GE

◆
� �. (17)

At some point after we reach the self dual point the size of the region we can observe extend
instead of shrinking. The same phenomena remarkably appear in string model. If we consider
a theory compactified on a radius R. We can show that both radia

R,
2�2

R
(18)

Both radia are physically indistinguishable.

2

This is the essence of Relative locality: Different boosted 
observers experience different space-times

We get from quantum to classical through a many body 
limit of  extensification

are zeroes of order d of ⇥(N)
(⇤,k) labeled by elements of the quotient lattice N ˜̀/˜̀. This follows

from the fact that for these values the exchange na
! �na

� 1 changes the summand by a
sign. We see that a general extensified state is a state with a particular coherency in the
structure of its zeroes. We also see that the zeroes of the extensified vacuum states ⇥(N)

(⇤,k) are
aligned along a Lagrangian manifold given by the condition x := (z� z̄)/2i = k/N ( see Fig.
3). The choice of Lagrangian is controlled by the choice of complex structure that enters
the definition of the Hamiltonian. The coherency of these states is manifest in the fact that
the zeroes are equally spaced with regular spacing �X 2 N�1 ˜̀ along the dual Lagrangian
N�1 ˜̀= (N`)?.

An important fact is that the position of the zeroes determines the vacuum wave-function,
up to a constant. This follows from the fact that the ratio of two wave-functions with the
same zeroes is analytic and periodic and hence constant. Using this fact, we can introduce
another basis of H

(N)
⇤ whose zeroes are distributed arbitrarily. One first considers the theta

function ⇥⇤(z) = ⇥(1)
⇤ (z) which is the unique vacuum state of H

(1)
⇤ and we define

⇥(N)
⇤ (z; zi) := e�2i⇡Nc·(z�zc)

NY

i=1

⇥⇤(z � zi), (98)

where we have introduced the ‘center of mass’ position: zc := (
PN

i=1 zi)/N = ic � c̃. The
normalization is chosen so that it is translation covariant

⇥(N)
⇤ (z + a; zi + a) = e�2i⇡NIm(a)(z�zc) ⇥(N)

⇤ (z; zi). (99)

x

x~

1

1

x

x~

↪︎
⇣
H

(1)
�

⌘�NH
(N)
�

Figure 4: Organizing the zeroes of the vacuum wavefunction in H
(N)
⇤ in a coherent fashion

identifies an embedding H
(N)
⇤ ,!

⇣
H

(1)
⇤

⌘⌦N

.

This means that a change of the center of mass can be reabsorbed, up to an exponential
factor, by a translation in z. When a 2 ⇤ we know that ⇥(N)

⇤ is mapped onto itself. This
means that the translation of the center of mass position by an element of ⇤ is trivial.

This wave-function possesses zeroes at the points z = i
2 +

1
2 + zi , for i = 1, · · · , N . The

quasi-periodicity condition of this function reads

⇥(N)
⇤ (z + in+ ñ; zi) = e2i⇡N(nc̃�ñc)e⇡Nn2

e�2i⇡nN ·z⇥(N)
⇤ (z; zi). (100)

This shows that it is in H
(N)
⇤ provided the center of mass (c, c̃) belongs to the lattice (N�1⇤).

When this is the case the phase factor is equal to the identity for all (n, ñ) 2 ⇤. Using the
translation covariance we can therefore label this function in terms of N elements zi such
that

P
i zi = 0 and an element (c, c̃) 2 ⇤/(N�1⇤).
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In ST the role of GN = g2↵0 is played by the slope parameter ↵0 = �
✏

[xa, x̃b] =
i

2⇡
�ab (4)

 (x) ! �(x). (i@t �H) = 0 ! ⇤g� = 0 (5)

F (x̂)| i = F (x)| i F (ˆ̃x) (6)

⇥
e2i⇡x, e2i⇡x̃

⇤
= 0 {e2i⇡x, e2i⇡x̃} 6= 0 (7)

⇤ 2 P (x, x̃) (8)

 (x+ a, x̃) = e2i⇡ax̃ (x, x̃),  (x, x̃+ ã) =  (x, x̃). (9)

H⇤ = �(L⇤) L⇤ ! T⇤ = P/⇤ T⇤ ! L⇤ (10)

H (11)

Sp(2d) Sp(2d) \O(d, d) = GL(d) Sp(2d) \O(d, d) \O(2, 2(d� 1)) = O(1, (d� 1)) (12)

O⇤ 6= ⇤ (13)

G⇤

[G⇤, GO⇤] 6= 0 (14)

�x ! �z (15)

 ⇤ !  O⇤ = UO⇤ ⇤ (16)

HN⇤ ' H
⌦⇤ (17)

Note G�1
N is a tension

� provides a length scale on space-time beyond which we cannot observe ✏ provides a energy
scale on momentum space which fundamental object cannot exceed. QG: For Instance in LQG
or Dyn Triang: The non locality of QG is endoded in two ways. First it is due to the fact
that fundamental building blocks have a fundamental length scale, and also due to the fact that
geometry fluctuates.

Another way to experience the non-locality is :
In order to probe a region of size R we need to localize in it an energy

E �
~
RO

. On the other hand such an energy will create a black hole of size RS = GE. So the minimal
size we can observe is
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At some point after we reach the self dual point the size of the region we can observe extend
instead of shrinking. The same phenomena remarkably appear in string model. If we consider
a theory compactified on a radius R. We can show that both radia
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It leads to a form of unification between matter-like dof  and 
pure geometry dof : flux unit



Singular limits

In any breakthrough, invisible phenomena become visible:
The lower order description is a singular limit of the higher one (M-
Berry). That is, a mathematically consistent description which cannot 
reveal certain observables.
• Eulerian fluid is a singular limit of the viscous fluid: planes can’t fly
• geometrical optic-wave optics:  No central bright spot
• Classical-Quantum: Aharonov-Bohm phases are invisible
• Non relativivistic-relativistic Quantum Field Theory: No anti-particle
• Newton-GR: No gravity waves



Duality and Unification 
In any breakthrough, invisible phenomena become visible, but also a 
fundamental form of unification takes place. Seemingly opposite 
concepts in the original picture are unified in the more advanced 
one. Each time a fundamental constant is understood as a 
conversion factor. 
• h:  Unification of wave and particle
• c:  Unification of space and time
• G: Unification of Inertial and gravitational mass
• k:  Unification of Energy and information
• h,c:  Unification of quanta and fields 
• G,c: Unification of matter and geometry

What’s next?
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scale on momentum space which fundamental object cannot exceed. QG: For Instance in LQG
or Dyn Triang: The non locality of QG is endoded in two ways. First it is due to the fact
that fundamental building blocks have a fundamental length scale, and also due to the fact that
geometry fluctuates.

Another way to experience the non-locality is :
In order to probe a region of size R we need to localize in it an energy
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RO

. On the other hand such an energy will create a black hole of size RS = GE. So the minimal
size we can observe is

Rmin = Max
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At some point after we reach the self dual point the size of the region we can observe extend
instead of shrinking. The same phenomena remarkably appear in string model. If we consider
a theory compactified on a radius R. We can show that both radia
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What is  Home space ?
So far we have presented the classical side of relative locality.
At the quantum level  phase space  is promoted to a non-
commutative Heisenberg algebra.
In QM Euclidean space appears simply as a choice of polarization: 
That is in the argument of the wave function. This is the quantum 
analog of a choice of Lagrangian
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scale on momentum space which fundamental object cannot exceed. QG: For Instance in LQG
or Dyn Triang: The non locality of QG is endoded in two ways. First it is due to the fact
that fundamental building blocks have a fundamental length scale, and also due to the fact that
geometry fluctuates.

Another way to experience the non-locality is :
In order to probe a region of size R we need to localize in it an energy
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RO

. On the other hand such an energy will create a black hole of size RS = GE. So the minimal
size we can observe is
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At some point after we reach the self dual point the size of the region we can observe extend
instead of shrinking. The same phenomena remarkably appear in string model. If we consider
a theory compactified on a radius R. We can show that both radia

R,
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Both radia are physically indistinguishable.
First Hint: Non locality is due to the presence of a length scale and an energy scale. Second

Hint: There seems to be a operational indistinguishability between R/� and �/R.
What Type of Non Locality?

In order to address this issue we need to focus on a more precise definition of non locality: There
are two fundamentally di↵erent approaches to Quantum gravity
Both approach di↵er about what is the fundamental object of study. Is it the smallest elements?
Or is it the Biggest one ( space-time) Heidegger :” What is a thing ? ”

In the tradition of Newton, Galillee, Einstein etc... The fundamental object is space-time
and physical objects are defined by how they move in it.

In the tradition of the Greek school, Leibniz, particle physics today, The fundamental objects
are the microscopical constituent (matter) and their relation defines what space and time is.

This dichotomy is the dichotomy between GR and QM. Fundamental object of study is
quantum objects or space-time.

As physicist we usually believe both depending on the context. If one think that Geometry
is primordial then the challenge is to ”quantize” it, And then define fundamental objects in
terms of it. (Locality, symmetry principle,...) (E.g particle defined as rep of Poincare group)
—¿ LQG.
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Similarly Lorentzian space appears simply as a field label. 
Classical locality is built in the field definition.
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scale on momentum space which fundamental object cannot exceed. QG: For Instance in LQG
or Dyn Triang: The non locality of QG is endoded in two ways. First it is due to the fact
that fundamental building blocks have a fundamental length scale, and also due to the fact that
geometry fluctuates.

Another way to experience the non-locality is :
In order to probe a region of size R we need to localize in it an energy
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At some point after we reach the self dual point the size of the region we can observe extend
instead of shrinking. The same phenomena remarkably appear in string model. If we consider
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Both radia are physically indistinguishable.
First Hint: Non locality is due to the presence of a length scale and an energy scale. Second

Hint: There seems to be a operational indistinguishability between R/� and �/R.
What Type of Non Locality?

In order to address this issue we need to focus on a more precise definition of non locality: There
are two fundamentally di↵erent approaches to Quantum gravity
Both approach di↵er about what is the fundamental object of study. Is it the smallest elements?
Or is it the Biggest one ( space-time) Heidegger :” What is a thing ? ”

In the tradition of Newton, Galillee, Einstein etc... The fundamental object is space-time
and physical objects are defined by how they move in it.

In the tradition of the Greek school, Leibniz, particle physics today, The fundamental objects
are the microscopical constituent (matter) and their relation defines what space and time is.

This dichotomy is the dichotomy between GR and QM. Fundamental object of study is
quantum objects or space-time.

As physicist we usually believe both depending on the context. If one think that Geometry
is primordial then the challenge is to ”quantize” it, And then define fundamental objects in
terms of it. (Locality, symmetry principle,...) (E.g particle defined as rep of Poincare group)
—¿ LQG.
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Can we define a notion of quantum space? quantum space-time?



Quantum + Gravity

• Quantising geometry ? : Background independence and non 
local observables, space is fundamentally discrete, built-in 
Hilbert space bases. But the challenge is reconciliation with the 
General relativity principle outside the classical limit. 

• String Theory ?: The probe is fundamental, delocalising the 
probe, consistent with relativity, but it hasn’t changed yet our 
understanding of space and time at the fundamental level.

• Emergent models ?: CDT, Causal sets, Horava Gravity, CMT 
inspired or Holography AdS/CFT

• Quantising gravity? : Doesn’t work — non-renormalisable, 
Asymptotic Safety  

• What have we learned? what are we missing? what haven’t we tried?

Yes: We expect radically new phenomena to become visible, not 
just small corrections to known phenomena, more than EFT.

• Should we care about putting together gravity and the quantum?



Visualization of wave function

In the same region of space we can have different eigenstates of 
different energy. It is disordered at a given energy and ordered at 
another.

High E Low E

The classical question: is it ordered or disordered? is ill-defined in QM. 
It depends on the observation not just the system!

Analogy:  Quantum crystal = spacetime  
                          electrons= probes.

Quasi-Particle interferences: 
Friedel oscillations

ordered
disordered translation invariant

localization is in beholder’s eye

Locality is relative but 
special relativity is missing

S. Davis

key element: lattice scale



Notion of spaces

Our concepts of space and time have radically evolved over history
•Euclid: Notion of absolute space
•Galileo: Relativity of observers in space : velocity is relative
•Newton: Motion generated by forces :  action at a distance
•Einstein: Time is relative     
•Einstein: Relativity of general observers

Quantum mechanic hasn’t affected our fundamental picture of  
space and time yet



Notion of Matter
The history of the concept of matter is more intertwined, it is a constant 
dialogue between the idea of individual objects versus continuum fields
•Democritus: Atomicity
• Aristotle: Continuum hypothesis : `There is no void’ Descartes 
•Newton: there are individual macroscopical objects acting on each other, 
due to their charges, mass.

•Faraday : Fields are real
•Maxwell: Fields in space are dynamical    
•Heisenberg-Born-Jordan: Discovery of Quantum mechanics:  Atoms are 
stable after all,  fundamental discreteness .

•Dirac: Quantum Fields are relativistic: Anti-particles
•Kramers-Heisenberg-Mandelstam-Chew: S-matrix: scattering of  
asymptotic states are the only observables (fields are not real)

• Veneziano, Nambu,…: String theory,  probes are non local

Classical space still appears as wave function, fields or string labels.
Quantum matter on classical space-time
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� provides a length scale on space-time beyond which we cannot observe ✏ provides a energy
scale on momentum space which fundamental object cannot exceed. QG: For Instance in LQG
or Dyn Triang: The non locality of QG is endoded in two ways. First it is due to the fact
that fundamental building blocks have a fundamental length scale, and also due to the fact that
geometry fluctuates.

Another way to experience the non-locality is :
In order to probe a region of size R we need to localize in it an energy
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. On the other hand such an energy will create a black hole of size RS = GE. So the minimal
size we can observe is
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At some point after we reach the self dual point the size of the region we can observe extend
instead of shrinking. The same phenomena remarkably appear in string model. If we consider
a theory compactified on a radius R. We can show that both radia
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Both radia are physically indistinguishable.
First Hint: Non locality is due to the presence of a length scale and an energy scale. Second

Hint: There seems to be a operational indistinguishability between R/� and �/R.
What Type of Non Locality?

In order to address this issue we need to focus on a more precise definition of non locality: There
are two fundamentally di↵erent approaches to Quantum gravity
Both approach di↵er about what is the fundamental object of study. Is it the smallest elements?
Or is it the Biggest one ( space-time) Heidegger :” What is a thing ? ”

In the tradition of Newton, Galillee, Einstein etc... The fundamental object is space-time
and physical objects are defined by how they move in it.
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Simply using Heisenberg uncertainty relation but also 
demanding that the equivalence principle holds in quantum 

mechanics means that Home space is at least relative to energy-
momentum in phase space. 

The geometry of relative locality allows to unify mathematically 
the two notions of proximity: Close in space or close in state. 

Why? How to implement it? What are the elements? 
What is the geometry of relative locality

What is Relative locality?



Road map for QG 

• What is the fundamental new relativity principle ?
 



Road map for QG/ST geometry 

• What is the fundamental new relativity principle ?
    Relative locality
• What is the simplest implementation of that idea ?
    Modular space
• What geometry represents that simple idea ?
    Born geometry 
• Is there a model that can guide us through the maze of new concepts ?
   Metastring theory (dual symmetric string) and string geometry
• Is there any generic predictions ?
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Road map for QG 

• What is the fundamental new relativity principle ?
    Relative locality
• What is the simplest implementation of that idea ?
    Modular space
• What geometry represents that simple idea ?
    Born geometry 


