Conference on Symmetries, Geometry and Quantum Gravity 18-22 June 2018, Primošten, Croatia

Nonassociative differential geometry and gravity

Marija Dimitrijević Ćirić

University of Belgrade, Faculty of Physics, Belgrade, Serbia

with: P. Aschieri, R. Szabo; arXiv: 1710.11467

NC/NA geometry and gravity

Early Universe, singularities of BHs \Rightarrow QG \Rightarrow Quantum space-time NC/NA space-time \Longrightarrow Gravity on NC/NA spaces.

General Relativity (GR) is based on the diffeomorphism symmetry. This concept (space-time symmetry) is difficult to generalize to NC/NA spaces. Different approaches:

NC spectral geometry [Chamseddine, Connes, Marcolli '07; Chamseddine, Connes, Mukhanov '14].

Emergent gravity [Steinacker '10, '16].

Frame formalism, operator description [Burić, Madore '14; Fritz, Majid '16].

Twist approach [Wess et al. '05, '06; Ohl, Schenckel '09; Castellani, Aschieri '09; Aschieri, Schenkel '14].

NC gravity as a gauge theory of Lorentz/Poincaré group [Chamseddine '01,'04, Cardela, Zanon '03, Aschieri, Castellani '09,'12; Dobrski '16].

Overview

NA gravity

Motivation General

NA differntial geometry

R-flux induced cochain twist NA tensor calculus NA differential geometry

NA deformation of GR

Levi-Civita connection NA vacuum Einstein equations NA gravity in space-time

Discussion

NA gravity: Motivation

Do closed strings provide a framework for quantum gravity?

In particular: closed strings propagating in a locally non-geometric constant R-flux background [Munich group '11].

The low energy limit: Nonassociative gravity on space-time.

Twist deformation: a well defined way to deform symmetries, in particular diffeomorphism symmetry, and the corresponding differential geometry [Wess et al. '06; Aschieri et al. '08,'09,...].

R-flux induced cochain twist: introduced in [Mylonas, Schupp, Szabo '14; Aschieri, Szabo '15].

NA gravity: General

NA gravity is based on:

- -locally non-geometric constant *R*-flux.
- -twist \mathcal{F} and associator Φ with

$$\Phi\left(\mathcal{F}\otimes 1\right)(\Delta\otimes\operatorname{id})\mathcal{F}=(1\otimes\mathcal{F})\left(\operatorname{id}\otimes\Delta\right)\!\mathcal{F}\;.$$

- -equivariance (covariance) under the twisted diffeomorphisms (quasi-Hopf algebra of twisted diffeomorphisms).
- -twisted differential geometry in phase space. In particular: connection, curvature, torsion.
- -NA Levi-Civita connection and projection of phase space Einstein equations to space-time.

Our goals:

- -consistently construct NA deformation of GR: NA Einstein equations, NA Einstein-Hilbert action; investigate phenomenological consequences.
- -understand symmetries of the obtained NA gravity.

NA differntial geometry: Review of twist deformation

Symmetry algebra g and the universal covering algebra Ug. A well defined way of deforming symmetries: the twist formalism. Twist \mathcal{F} (introduced by Drinfel'd in 1983-1985) is:

- -an invertible element of $Ug \otimes Ug$
- -fulfills the 2-cocycle condition (ensures the associativity of the *-product).

$$\mathcal{F} \otimes 1(\Delta \otimes \mathrm{id})\mathcal{F} = 1 \otimes \mathcal{F}(\mathrm{id} \otimes \Delta)\mathcal{F}. \tag{2.1}$$

-additionaly: $\mathcal{F} = 1 \otimes 1 + \mathcal{O}(h)$; h-deformation parameter.

Moyal-Weyl deformation: $\mathcal{F} = e^{-\frac{i}{2}\theta^{\mu\nu}\partial_{\mu}\otimes\partial_{\nu}}$

$$\mathcal{F}=\mathrm{e}^{-rac{i}{2} heta^{\mu
u}\partial_{\mu}\otimes\partial_{
u}}$$

NC field theory [Szabo '03], NC Standard model [Wess et al. '01,...'06], NC gravity [Chamseddine '01, '04; Cardela, Zanon '03; Wess et al. '05...].

 $\mathcal{F}=e^{-rac{i}{2} heta^{ab}X_a\otimes X_b}$ Abelian twist:

where $X_a = X_a^{\mu}(x)\partial_{\mu}$, $[X^a, X^b] = 0$ and $\theta^{ab} = const.$ NC gravity [Aschieri, Castellani '09, ... '14].

NA differntial geometry: R-flux induced cochain twist

Phase space \mathcal{M} : $x^A=(x^\mu, \tilde{x}_\mu=p_\mu)$, $\partial_A=\left(\partial_\mu, \tilde{\partial}^\mu=\frac{\partial}{\partial p_\mu}\right)$. 2d dimensional, $A=1,\dots 2d$.

The twist \mathcal{F} :

$$\mathcal{F} = \exp\left(-\frac{\mathrm{i}\,\hbar}{2}\left(\partial_{\mu}\otimes\tilde{\partial}^{\mu} - \tilde{\partial}^{\mu}\otimes\partial_{\mu}\right) - \frac{\mathrm{i}\,\kappa}{2}\,R^{\mu\nu\rho}\left(p_{\nu}\,\partial_{\rho}\otimes\partial_{\mu} - \partial_{\mu}\otimes p_{\nu}\,\partial_{\rho}\right)\right), \tag{2.2}$$

with $R^{\mu\nu\rho}$ totally antisymmetric and constant, $\kappa:=\frac{\ell_s^2}{6\hbar}$. Does not fulfill the 2-cocycle condition

$$\Phi\left(\mathcal{F}\otimes 1\right)\left(\Delta\otimes\mathrm{id}\right)\mathcal{F}=\left(1\otimes\mathcal{F}\right)\left(\mathrm{id}\otimes\Delta\right)\mathcal{F}\ . \tag{2.3}$$

The associator Φ:

$$\Phi = \exp \left(\, \hbar \kappa \, R^{\mu\nu\rho} \, \partial_{\mu} \otimes \partial_{\nu} \otimes \partial_{\rho} \, \right) =: \phi_{1} \otimes \phi_{2} \otimes \phi_{3} = 1 \otimes 1 \otimes 1 + \mathcal{O}(\hbar\kappa). \tag{2.4}$$

Notation:
$$\mathcal{F}=\mathrm{f}^{\alpha}\otimes\mathrm{f}_{\alpha}$$
, $\mathcal{F}^{-1}=\overline{\mathrm{f}}^{\alpha}\otimes\overline{\mathrm{f}}_{\alpha}$, $\Phi^{-1}=:\overline{\phi}_{1}\otimes\overline{\phi}_{2}\otimes\overline{\phi}_{3}$,

$$\mathcal{R} = \mathcal{F}^{-2} =: \mathbf{R}^{\alpha} \otimes \mathbf{R}_{\alpha}, \ \mathcal{R}^{-1} = \mathcal{F}^{2} =: \overline{\mathbf{R}}^{\alpha} \otimes \overline{\mathbf{R}}_{\alpha}.$$

Hopf aglebra of diffeomorphisms $UVec(\mathcal{M})$:

$$[u, v] = (u^B \partial_B v^A - v^B \partial_B u^A) \partial_A,$$

$$\Delta(u) = 1 \otimes u + u \otimes 1,$$

$$\epsilon(u) = 0, S(u) = -u.$$

Quasi-Hopf algebra of infinitesimal diffeomorphisms $UVec^{\mathcal{F}}(\mathcal{M})$:

- -algebra structure does not change
- -coproduct is deformed: $\Delta^{\mathcal{F}}\xi = \mathcal{F} \Delta \mathcal{F}^{-1}$
- -counit and antipod do not change: $e^{\mathcal{F}} = e, S^{\mathcal{F}} = S$.

On basis vectors:

$$\begin{array}{lcl} \Delta_{\mathcal{F}}(\partial_{\mu}) & = & 1 \otimes \partial_{\mu} + \partial_{\mu} \otimes 1 \; , \\ \\ \Delta_{\mathcal{F}}(\tilde{\partial}^{\mu}) & = & 1 \otimes \tilde{\partial}^{\mu} + \tilde{\partial}^{\mu} \otimes 1 + \mathrm{i} \, \kappa \, R^{\mu\nu\rho} \, \partial_{\nu} \otimes \partial_{\rho} \; . \end{array}$$

NA differential geometry: NA tensor calculus

Guiding principle: Differential geometry on \mathcal{M} is covatiant under $UVec(\mathcal{M})$.

NA differential geometry on \mathcal{M} should be covariant under $U\mathsf{Vec}^{\mathcal{F}}(\mathcal{M})$.

In pactice: $U\text{Vec}(\mathcal{M})$ -module algebra \mathcal{A} (functions, forms, tensors) and $a,b\in\mathcal{A},\ u\in\text{Vec}(\mathcal{M})$

$$u(ab) = u(a)b + au(b)$$
, Lie derivative, coproduct.

The twist: $U \text{Vec}(\mathcal{M}) \to U \text{Vec}^{\mathcal{F}}(\mathcal{M})$ and $\mathcal{A} \to \mathcal{A}_{\star}$ with $ab \to a \star b = \overline{f}^{\alpha}(a) \cdot \overline{f}_{\alpha}(b)$. Then \mathcal{A}_{\star} is a $U \text{Vec}^{\mathcal{F}}(\mathcal{M})$ -module algebra:

$$\xi(a \star b) = \xi_{(1)}(a) \star \xi_{(2)}(b),$$

for $\xi \in U \text{Vec}^{\mathcal{F}}(\mathcal{M})$ and using the twisted coproduct $\Delta^{\mathcal{F}} \xi$.

Commutativity: $a \star b = \overline{f}^{\alpha}(a) \cdot \overline{f}_{\alpha}(b) = \overline{R}^{\alpha}(b) \star \overline{R}_{\alpha}(a) =: {}^{\alpha}b \star {}_{\alpha}a$ Associativity: $(a \star b) \star c = {}^{\phi_1}a \star ({}^{\phi_2}b \star {}^{\phi_3}c)$.

Functions:
$$C^{\infty}(\mathcal{M}) \to C^{\infty}(\mathcal{M})_{\star}$$

$$f \star g = \overline{f}^{\alpha}(f) \cdot \overline{f}_{\alpha}(g)$$

$$= f \cdot g + \frac{i\hbar}{2} (\partial_{\mu} f \cdot \tilde{\partial}^{\mu} g - \tilde{\partial}^{\mu} f \cdot \partial_{\mu} g) + i\kappa R^{\mu\nu\rho} p_{\nu} \partial_{\rho} f \cdot \partial_{\mu} g + \cdots ,$$

$$[x^{\mu} \stackrel{\star}{,} x^{\nu}] = 2 i\kappa R^{\mu\nu\rho} p_{\rho}, [x^{\mu} \stackrel{\star}{,} p_{\nu}] = i\hbar \delta^{\mu}_{\nu}, [p_{\mu} \stackrel{\star}{,} p_{\nu}] = 0,$$

$$[x^{\mu} \stackrel{\star}{,} x^{\nu} \stackrel{\star}{,} x^{\rho}] = \ell_{s}^{3} R^{\mu\nu\rho}.$$
(2.5)

Forms:
$$\Omega^{\sharp}(\mathcal{M}) \to \Omega^{\sharp}(\mathcal{M})_{\star}$$

$$\omega \wedge_{\star} \eta = \overline{f}^{\alpha}(\omega) \wedge \overline{f}_{\alpha}(\eta),$$

$$f \star dx^{A} = dx^{C} \star (\delta^{A}{}_{C} f - i \kappa \mathscr{R}^{AB}{}_{C} \partial_{B} f),$$
(2.6)

with non-vanishing components $\mathscr{R}^{\mathsf{x}^\mu,\mathsf{x}^\nu}{}_{\check{\mathsf{x}}_\rho} = R^{\mu\nu\rho}.$ Basis 1-forms

$$\begin{aligned} & \left(\mathrm{d} x^A \wedge_{\star} \mathrm{d} x^B \right) \wedge_{\star} \mathrm{d} x^C = {}^{\phi_1} (\mathrm{d} x^A) \wedge_{\star} \left({}^{\phi_2} (\mathrm{d} x^B) \wedge_{\star} {}^{\phi_3} (\mathrm{d} x^C) \right) \\ & = \mathrm{d} x^A \wedge_{\star} \left(\mathrm{d} x^B \wedge_{\star} \mathrm{d} x^C \right) = \mathrm{d} x^A \wedge \mathrm{d} x^B \wedge \mathrm{d} x^C. \end{aligned}$$

NA tensor calculus: duality, derivation, Lie derivative

Exterior derivative d: $d^2 = 0$ and the undeformed Leibniz rule

$$d(\omega \wedge_{\star} \eta) = d\omega \wedge_{\star} \eta + (-1)^{|\omega|} \omega \wedge_{\star} d\eta. \tag{2.7}$$

Duality, *-pairing:

$$\langle \omega, u \rangle_{\star} = \langle \overline{f}^{\alpha}(\omega), \overline{f}_{\alpha}(u) \rangle.$$
 (2.8)

* Lie drivative:

$$\mathcal{L}_{u}^{\star}(T) = \mathcal{L}_{\overline{f} \alpha(u)}(\overline{f} \alpha(T)), \tag{2.9}$$

$$[\mathcal{L}_{u}^{\star}, \mathcal{L}_{v}^{\star}]_{\bullet} = \mathcal{L}_{[u,v]_{\star}}^{\star},$$

$$\mathcal{L}_{u}^{\star}(\omega \wedge_{\star} \eta) = \mathcal{L}_{\bar{\phi}_{1}u}^{\star}(\bar{\phi}_{2}\omega) \wedge_{\star} \bar{\phi}_{3}\eta + \alpha(\bar{\phi}_{1}\bar{\varphi}_{1}\omega) \wedge_{\star} \mathcal{L}_{\alpha(\bar{\phi}_{2}\bar{\varphi}_{2}u)}^{\star}(\bar{\phi}_{3}\bar{\varphi}_{3}\eta),$$

with $[u, v]_{\star} = [\overline{f}^{\alpha}(u), \overline{f}_{\alpha}(v)]$. Relation of \mathcal{L}_{u}^{\star} with diffeomorphism symmetry in space-time needs to be understood.

NA differential geometry: NA connection

*-connection:

$$\nabla^{\star} : \mathsf{Vec}_{\star} \longrightarrow \mathsf{Vec}_{\star} \otimes_{\star} \Omega^{1}_{\star}$$

$$u \longmapsto \nabla^{\star} u , \qquad (2.10)$$

$$\nabla^{\star}(u \star f) = (\bar{\phi}_{1} \nabla^{\star}(\bar{\phi}_{2} u)) \star \bar{\phi}_{3} f + u \otimes_{\star} df, \qquad (2.11)$$

the right Leibniz rule, for $u \in \text{Vec}_{\star}$ and $f \in A_{\star}$. In particular:

$$\nabla^{\star} \partial_{A} =: \partial_{B} \otimes_{\star} \Gamma_{A}^{B} =: \partial_{B} \otimes_{\star} (\Gamma_{AC}^{B} \star dx^{C}) .$$

$$d_{\nabla^{\star}} (\partial_{A} \otimes_{\star} \omega^{A}) = \partial_{A} \otimes_{\star} (d\omega^{A} + \Gamma_{B}^{A} \wedge_{\star} \omega^{B}),$$

$$(2.12)$$

for $\omega^A \in \Omega^{\sharp}_{\star}$.

Connection on forms, dual connection $^*\nabla\omega$:

$$^{*}\nabla: \Omega_{\star}^{1} \longrightarrow \Omega_{\star}^{1} \otimes_{\star} \Omega_{\star}^{1},$$

$$\omega \longmapsto {}^{*}\nabla\omega,$$

$$^{*}\nabla(f \star \omega) = {}^{\phi_{1}}f \star ({}^{\phi_{3}} \star \nabla({}^{\phi_{2}}\omega)) + df \otimes_{\star} \omega.$$
(2.13)

the left Leibniz rule, for $\omega \in \Omega^1_{\star}$ and $f \in A_{\star}$. In particular:

$$\mathrm{d}_{^{\star}\nabla}(\omega_A \otimes_{\star} \mathrm{d} x^A) = (\mathrm{d}\omega_A - \omega_B \wedge_{\star} \Gamma_A^B) \otimes_{\star} \mathrm{d} x^A.$$

NA differential geometry: NA torsion, NA curvature

Torsion:

$$\begin{split} \mathsf{T}^{\star} &:= \mathrm{d}_{\nabla^{\star}} \left(\partial_{A} \otimes_{\star} \mathrm{d} x^{A} \right) \; \colon \, \mathsf{Vec}_{\star} \otimes_{\star} \mathsf{Vec}_{\star} \to \mathsf{Vec}_{\star}, \\ \mathsf{T}^{\star} (\partial_{A}, \partial_{B}) &= \partial_{C} \star \left(\mathsf{\Gamma}^{\mathsf{C}}_{AB} - \mathsf{\Gamma}^{\mathsf{C}}_{BA} \right) =: \partial_{C} \star \mathsf{T}^{\mathsf{C}}_{AB}. \end{split}$$

Torsion-free condition: $\Gamma^{C}_{AB} = \Gamma^{C}_{BA}$.

Curvature:

$$\begin{split} \mathsf{R}^{\star} &:= \mathrm{d}_{\nabla^{\star}} \bullet \mathrm{d}_{\nabla^{\star}} \, : \, \mathsf{Vec}_{\star} \, \longrightarrow \, \mathsf{Vec}_{\star} \otimes_{\star} \Omega_{\star}^{2}, \\ \mathsf{R}^{\star}(\partial_{A}) &= \partial_{C} \otimes_{\star} \left(\mathrm{d} \Gamma_{A}^{C} + \Gamma_{B}^{C} \wedge_{\star} \Gamma_{A}^{B} \right) = \partial_{C} \otimes_{\star} \mathsf{R}_{A}^{C}, \end{split}$$

with the curvature coefficients

$$R^{*}(\partial_{A}, \partial_{B}, \partial_{C}) = \langle \partial_{D} \otimes_{*} R_{A}^{D}, \partial_{B} \wedge_{*} \partial_{C} \rangle_{*}
= \partial_{D} * (\partial_{C} \Gamma_{AB}^{D} - \partial_{B} \Gamma_{AC}^{D} - \Gamma_{B'E}^{D} * (\delta^{E}{}_{B} \Gamma_{AC}^{B'} + i \kappa \mathscr{R}^{EG}{}_{B} (\partial_{G} \Gamma_{AC}^{B'}))
+ \Gamma_{B'E}^{D} * (\delta^{E}{}_{C} \Gamma_{AB}^{B'} + i \kappa \mathscr{R}^{EG}{}_{C} (\partial_{G} \Gamma_{AB}^{B'})))
= \partial_{D} * R^{D}{}_{ABC}.$$
(2.14)

First Cartan structure equation:

$$\mathsf{T}^{\star}(u,v) = {}^{\phi_1} \nabla^{\star}_{\phi_{2_{v}}}({}^{\phi_3} u) - {}^{\phi_1} \nabla^{\star}_{\phi_{2_{\alpha} u}}({}^{\phi_3 \alpha} v) + [u,v]_{\star}. \tag{2.15}$$

Second Cartan structure equation:

$$\begin{split} \mathsf{R}^{\star}(z,u,v) &= {}^{\kappa_{1}\,\check{\phi}_{1}\,\phi'_{1}} \nabla^{\star}_{\bar{\rho}_{3}\,\bar{\zeta}_{3}\,\bar{\phi}_{3}\,\phi'_{3}_{v}} ({}^{\bar{\rho}_{1}\,\bar{\phi}_{1}\,\kappa_{2}\,\check{\phi}_{2}\,\phi'_{2}} \nabla^{\star}_{\bar{\rho}_{2}\,\bar{\zeta}_{2}\,\check{\phi}_{3}_{u}} {}^{\bar{\zeta}_{1}\,\bar{\phi}_{2}\,\kappa_{3}} z) \\ &- {}^{\kappa_{1}\,\check{\phi}_{1}\,\phi'_{1}} \nabla^{\star}_{\bar{\rho}_{3}\,\bar{\zeta}_{3}\,\bar{\phi}_{3}\,\phi'_{3}\,_{\alpha}\,_{u}} ({}^{\bar{\rho}_{1}\,\bar{\phi}_{1}\,\kappa_{2}\,\check{\phi}_{2}\,\phi'_{2}} \nabla^{\star}_{\bar{\rho}_{2}\,\bar{\zeta}_{2}\,\check{\phi}_{3}\,\alpha_{v}} {}^{\bar{\zeta}_{1}\,\bar{\phi}_{2}\,\kappa_{3}} z) + \nabla^{\star}_{[u,v]_{\star}} z. \end{split}$$

Bianchi identitites:

$$dT^{A} + \Gamma_{B}^{A} \wedge_{\star} T^{B} = R_{B}^{A} \wedge_{\star} dx^{B},$$

$$dR_{A}^{C} + \Gamma_{B}^{C} \wedge_{\star} R_{A}^{B} - R_{B}^{C} \wedge_{\star} \Gamma_{A}^{B} =$$

$$= \Gamma_{B}^{C} \wedge_{\star} \left(\Gamma_{D}^{B} \wedge_{\star} \Gamma_{A}^{D} \right) - {}^{\phi_{1}} \Gamma_{B}^{C} \wedge_{\star} \left({}^{\phi_{2}} \Gamma_{D}^{B} \wedge_{\star} {}^{\phi_{3}} \Gamma_{A}^{D} \right).$$
(2.16)

Ricci tensor:

$$\operatorname{Ric}^{\star}(u, v) := -\langle \operatorname{R}^{\star}(u, v, \partial_{A}), \operatorname{d}x^{A} \rangle_{\star}$$

$$\operatorname{Ric}^{\star} = \operatorname{Ric}_{AD} \star (\operatorname{d}x^{D} \otimes_{\star} \operatorname{d}x^{A}).$$
(2.17)

Commponents from $Ric_{BC} := Ric^*(\partial_B, \partial_C)$

$$\begin{split} \operatorname{Ric}_{BC} &= \partial_{A} \Gamma_{BC}^{A} - \partial_{C} \Gamma_{BA}^{A} + \Gamma_{B'A}^{A} \star \Gamma_{BC}^{B'} - \Gamma_{B'C}^{A} \star \Gamma_{BA}^{B'} \\ &+ \operatorname{i} \kappa \, \Gamma_{B'E}^{A} \star \left(\mathscr{R}^{EG}_{A} \left(\partial_{G} \Gamma_{BC}^{B'} \right) - \mathscr{R}^{EG}_{C} \left(\partial_{G} \Gamma_{BA}^{B'} \right) \right) \\ &+ \operatorname{i} \kappa \, \mathscr{R}^{EG}_{A} \, \partial_{G} \partial_{C} \Gamma_{BE}^{A} - \operatorname{i} \kappa \, \mathscr{R}^{EG}_{A} \, \partial_{G} \left(\Gamma_{B'E}^{A} \star \Gamma_{B'C}^{B'} - \Gamma_{B'C}^{A} \star \Gamma_{BE}^{B'} \right) \\ &+ \kappa^{2} \, \mathscr{R}^{AF}_{D} \left(\mathscr{R}^{EG}_{A} \, \partial_{F} \left(\Gamma_{B'E}^{D} \star \partial_{G} \Gamma_{BC}^{B'} \right) - \mathscr{R}^{EG}_{C} \, \partial_{F} \left(\Gamma_{B'E}^{D} \star \partial_{G} \Gamma_{BA}^{B'} \right) \right) \,. \end{split}$$

Scalar curvature cannot be defined along these lines: cannot be seen as a map and inverse metric tensor needed. Not straightforward.

NA deformation of GR: NA Levi-Civita connection

GR connection $\Gamma^{\text{LC}\,\rho}_{\mu\nu}$ is a Levi-Civita connection: torssion-free and metric compatible $\nabla_{\alpha}g_{\mu\nu}=0$. Generalization to our NA phase space:

Metric tensor
$$g^* \in \Omega^1_\star \otimes_\star \Omega^1_\star$$
 and $g^*(u,v) = \langle g^*, u \otimes_\star v \rangle_\star \in C^\infty(\mathcal{M})_\star$. In the coordinate basis: $g^* = g_{AB} \star (\mathrm{d} x^A \otimes_\star \mathrm{d} x^B), \quad g^*(\partial_A, \partial_B) = g_{AB} = g_{BA}.$

Metric compatibility condition: ${}^*\nabla g^* = 0$. We calculate

$$dg_{AB} = d\langle g^{\star}, \partial_{A} \otimes_{\star} \partial_{B} \rangle_{\star}$$

$$= \langle {}^{\star}\nabla g^{\star}, \partial_{A} \otimes_{\star} \partial_{B} \rangle_{\star} + \langle {}^{\phi_{1}}g^{\star}, {}^{\phi_{2}}\nabla^{\star}({}^{\phi_{3}}(\partial_{A} \otimes_{\star} \partial_{B})) \rangle_{\star}$$

$$= \langle g^{\star}, \nabla^{\star}(\partial_{A} \otimes_{\star} \partial_{B}) \rangle_{\star}.$$

Calcualtion straightforward up to

$$G_{CN} \star \Gamma_{AD}^{N} = \frac{1}{2} \left(\partial_{D} g_{AC} + \partial_{A} g_{DC} - \partial_{C} g_{AD} + i \kappa \mathscr{R}^{EF}_{C} \left(\partial_{E} \partial_{D} g_{AF} + \partial_{E} \partial_{A} g_{DF} \right) \right), \quad (3.19)$$

 $G_{MN}=g_{MN}+i\,\kappa\,\mathscr{R}^{EF}{}_{M}\,\partial_{E}g_{NF}.$ Problems with straightforward inversion noted already in [Blumenhagen, Fuchs '16]. Working with $G^{MC}\star G_{CN}=\delta^{M}_{N}$ leads to:

$$G^{MC} \star (\mathsf{G}_{CN} \star \mathsf{\Gamma}^{N}_{AD}) = (\bar{\phi}_{1} G^{MC} \star \bar{\phi}_{2} G_{CN}) \star \bar{\phi}_{3} \mathsf{\Gamma}^{N}_{AD} \neq \mathsf{\Gamma}^{M}_{AD}. \tag{3.20}$$

Inversion possible in terms of differential operators:

$$\Gamma_{AD}^{\mathcal{S}} = \mathsf{G}^{*\mathcal{S}\mathcal{C}} * \mathsf{W}_{CAD} + \sum_{\vec{\lambda}} \frac{(\mathrm{i}\,\kappa)^{|\vec{\lambda}\,|}}{\vec{\lambda}\,!} \; (-1)^{I(\vec{\lambda}\,)} \; \mathrm{Y}_{\mathsf{G}}^{(\vec{\lambda}\,)}{}_{M}^{\mathcal{S}} \big(\mathsf{G}^{*MC} * \mathsf{W}_{CAD}\big),$$

with * being the ★-product corresponding to the twist

$${\it F}=\expig(-rac{{
m i}\,\hbar}{2}\,(\partial_{\mu}\otimes ilde{\partial}^{\mu}- ilde{\partial}^{\mu}\otimes\partial_{\mu})ig)$$

and
$$G^{*SC} * G_{CN} = \delta_N^S$$
.

Also:

$$\begin{split} W_{CAD} &= \frac{1}{2} \left(\partial_{D} g_{AC} + \partial_{A} g_{DC} - \partial_{C} g_{AD} \right. \\ &+ \mathrm{i} \, \kappa \, \mathscr{R}^{EF}{}_{C} \left(\partial_{E} \partial_{D} g_{AF} + \partial_{E} \partial_{A} g_{DF} \right) \right), \\ Y_{G}{}^{M}{} &= \overline{f}_{R}^{\,\beta} \big(G^{*MC} * \overline{f}_{R}^{\,\alpha} (G_{CN}) \big) \, \overline{f}_{R \,\beta} \, \overline{f}_{R \,\alpha} =: \sum_{n=0}^{\infty} \frac{(\mathrm{i} \, \kappa)^{n}}{n!} \, Y_{G}^{(n) \, M}, \\ Y_{G}^{(0) \, M}{} &= \delta_{N}^{\, M} \, , \\ Y_{G}^{(1) \, M}{} &= \frac{1}{2} \, \overline{f}_{R}^{\,\beta} \big(G^{*MC} * (R^{\mu\nu\rho} \, p_{\nu} \, \partial_{\rho} G_{CN}) \big) \, \overline{f}_{R \,\beta} \, \partial_{\mu} \\ &\qquad \qquad - \frac{1}{2} \, \overline{f}_{R}^{\,\beta} \big(G^{*MC} * (\partial_{\mu} G_{CN}) \big) \, \overline{f}_{R \,\beta} \, R^{\mu\nu\rho} \, p_{\nu} \, \partial_{\rho}, \end{split}$$

with
$$F_R^{-1} = \exp\left(\frac{\mathrm{i}\,\kappa}{2}\,R^{\mu\nu\rho}\,(p_\nu\,\partial_\rho\otimes\partial_\mu - \partial_\mu\otimes p_\nu\,\partial_\rho)\right) = \overline{f}_R^{\,\alpha}\otimes\overline{f}_{R\,\alpha}$$
.

Connection coefficients, expanded up to first order in $\hbar\kappa$:

$$\Gamma_{AD}^{S(0,0)} = \Gamma_{AD}^{\mathsf{LC}S} = \frac{1}{2} \, \mathsf{g}^{SQ} \left(\partial_D \mathsf{g}_{AQ} + \partial_A \mathsf{g}_{DQ} - \partial_Q \mathsf{g}_{AD} \right) \,, \tag{3.21}$$

$$\Gamma_{AD}^{S(0,1)} = -\frac{\mathrm{i} \, \hbar}{2} \, \mathsf{g}^{SP} \left((\partial_\mu \mathsf{g}_{PQ}) \, \tilde{\partial}^\mu \Gamma_{AD}^{\mathsf{LC}\,Q} - (\tilde{\partial}^\mu \mathsf{g}_{PQ}) \, \partial_\mu \Gamma_{AD}^{\mathsf{LC}\,Q} \right) \,,$$

$$\Gamma_{AD}^{S(1,0)} = \mathrm{i} \, \kappa \, R^{\alpha\beta\gamma} \left(\tilde{\mathsf{g}}^S_{\gamma} \, \mathsf{g}_{\beta N} \left(\partial_\alpha \Gamma_{AD}^{\mathsf{LC}\,N} \right) - \mathsf{g}^{SM} \, p_\beta \left(\partial_\gamma \mathsf{g}_{MN} \right) \partial_\alpha \Gamma_{AD}^{\mathsf{LC}\,N} \right) \,,$$

$$\Gamma_{AD}^{S(1,1)} = \frac{\hbar \, \kappa}{2} \, R^{\alpha\beta\gamma} \left[\dots \, \text{long expression} \, \dots \right.$$

$$+ (\partial_\alpha \mathsf{g}^{SQ}) \left(\partial_\beta \mathsf{g}_{QP} \right) \partial_\gamma \Gamma_{AD}^{\mathsf{LC}\,P} \right].$$

Comments:

- - $\Gamma_{AD}^{S(0,1)}$ and $\Gamma_{AD}^{S(1,0)}$ imaginary, $\Gamma_{AD}^{S(1,1)}$ real.
- -for ${\rm g}_{MN}$ that does not depend on the momenta p_μ , only the last term in $\Gamma_{AD}^{S(1,1)}$ remains.

$$-\tilde{\mathsf{g}}_{\ \gamma}^{S}=\mathsf{g}^{SM}\,\delta_{M,\tilde{\mathsf{x}}_{\gamma}}.$$

NA deformation of GR: NA vacuum Einstein equation

We can write vacuum Einstein equations in phase space as:

$$Ric_{BC} = 0. (3.22)$$

Our strategy: expand Ricci tensor (2.17) in term of (3.21), i. e. the metric tensor g_{MN} . This gives Einstein equations in phase space. How do we obtain the induced equations in space-time?

From phase space to space-time:

▶ start from objects in space-time M $g = g_{\mu\nu} \mathrm{d} x^{\mu} \otimes \mathrm{d} x^{\nu}$ and lift them to phase space \mathcal{M} foliated with leaves of constant momenta, each leave is diffeomorphic to M.

$$C^{\infty}(\mathcal{M}) \xrightarrow{Q} \widehat{C^{\infty}(\mathcal{M})}$$

$$\pi^{*} \downarrow \qquad \qquad \downarrow s_{\bar{p}}^{*} = \sigma^{*}$$

$$C^{\infty}(M) \xrightarrow{Q_{\bar{p}}} \widehat{C^{\infty}(M)}$$

Functions, forms: pullback using the canonical projection $\pi: \mathcal{M} \to \mathcal{M}$.

Vector fields:
$$v^{\mu}(x) \partial_{\mu} \mapsto \pi^*(v^{\mu})(x,p) \partial_{\mu}$$
 and $\pi^*(v^{\mu})(x,p) = (v^{\mu})(\pi(x,p)) = v^{\mu}(x)$.

Metric tensor: $g = g_{\mu\nu} dx^{\mu} \otimes dx^{\nu} \rightarrow \hat{g}_{MN} dx^{M} \otimes dx^{N}$ with

$$(\hat{g}_{MN}(x)) = \begin{pmatrix} g_{\mu\nu}(x) & 0 \\ 0 & h^{\mu\nu}(x) \end{pmatrix} .$$
 (3.23)

Note the additional nondegenerate bilinear $h(x)^{\mu\nu} d\tilde{x}_{\mu} \otimes d\tilde{x}_{\nu}$; natural choice $h(x)^{\mu\nu} = \eta^{\mu\nu}$.

- ▶ Do all calculations in phase space, using the twisted differential geometry. In particular, calculate Ric_{BC} in terms of g_{AB} , (2.17), (3.21).
- Finally, project the result to space-time using the zero section $x \mapsto \sigma(x) = (x, 0)$.

Functions, forms: pullback to the zero momentum leaf:

Vector fields:
$$v^{\mu}(x,p) \partial_{\mu} + \tilde{v}_{\mu}(x,p) \tilde{\partial}^{\mu} \mapsto v^{\mu}(x,0) \partial_{\mu}$$
.

Ricci tensor: Ric
$$\to$$
 Ric*° = Ric $_{\mu\nu}^{\circ}$ d $x^{\mu} \otimes dx^{\nu}$, Ric $_{\mu\nu}^{\circ}(x) = \sigma^{*}(\text{Ric}_{\mu\nu})(x,p) = \text{Ric}_{\mu\nu}(x,0)$.

NA deformation of GR: NA gravity in space-time

The lifted metric $\hat{\mathbf{g}}_{MN} dx^M \otimes dx^N = \mathbf{g}_{MN} \star (dx^M \otimes_{\star} dx^N)$,

$$g_{MN}(x) = \begin{pmatrix} g_{\mu\nu}(x) & \frac{i\kappa}{2} R^{\sigma\nu\alpha} \partial_{\sigma} g_{\mu\alpha} \\ \frac{i\kappa}{2} R^{\sigma\mu\alpha} \partial_{\sigma} g_{\alpha\nu} & \eta^{\mu\nu}(x) \end{pmatrix} . \tag{3.24}$$

Ricci tensor in space-time, (expanded up to first order in $\hbar\kappa$):

$$\begin{split} \operatorname{Ric}_{\mu\nu}^{\circ} &= \operatorname{Ric}_{\mu\nu}^{\mathsf{LC}} + \frac{\ell_{3}^{\mathsf{S}}}{12} \, R^{\alpha\beta\gamma} \left(\partial_{\rho} \left(\partial_{\alpha} \mathsf{g}^{\rho\sigma} \left(\partial_{\beta} \mathsf{g}_{\sigma\tau} \right) \partial_{\gamma} \Gamma^{\mathsf{LC}\,\tau}_{\mu\nu} \right) \right. \\ &\qquad \qquad \left. - \partial_{\nu} \left(\partial_{\alpha} \mathsf{g}^{\rho\sigma} \left(\partial_{\beta} \mathsf{g}_{\sigma\tau} \right) \partial_{\gamma} \Gamma^{\mathsf{LC}\,\tau}_{\mu\rho} \right) \right. \\ &\qquad \qquad \left. + \partial_{\gamma} \mathsf{g}_{\tau\omega} \left(\partial_{\alpha} (\mathsf{g}^{\sigma\tau} \, \Gamma^{\mathsf{LC}\,\rho}_{\sigma\nu}) \, \partial_{\beta} \Gamma^{\mathsf{LC}\,\omega}_{\mu\rho} - \partial_{\alpha} (\mathsf{g}^{\sigma\tau} \, \Gamma^{\mathsf{LC}\,\rho}_{\sigma\rho}) \, \partial_{\beta} \Gamma^{\mathsf{LC}\,\omega}_{\mu\nu} \right. \\ &\qquad \qquad \left. + \left(\Gamma^{\mathsf{LC}\,\sigma}_{\mu\rho} \, \partial_{\alpha} \mathsf{g}^{\rho\tau} - \partial_{\alpha} \Gamma^{\mathsf{LC}\,\sigma}_{\mu\rho} \, \mathsf{g}^{\rho\tau} \right) \partial_{\beta} \Gamma^{\mathsf{LC}\,\omega}_{\sigma\rho} \right. \\ &\qquad \qquad \left. - \left(\Gamma^{\mathsf{LC}\,\sigma}_{\mu\nu} \, \partial_{\alpha} \mathsf{g}^{\rho\tau} - \partial_{\alpha} \Gamma^{\mathsf{LC}\,\sigma}_{\mu\nu} \, \mathsf{g}^{\rho\tau} \right) \partial_{\beta} \Gamma^{\mathsf{LC}\,\omega}_{\sigma\rho} \right) \right). \end{split} \tag{3.25}$$

Vacuum Einstein equations in space-time:

$$\operatorname{Ric}_{\mu\nu}^{\circ} = 0. \tag{3.26}$$

NA deformation of GR: Comments

- R-flux (via NA differential geometry) generates non-trivial dynamical consequences on spacetime, they are independent of ħ and real-valued.
- the linear R-flux correction to $\mathrm{Ric}_{\mu\nu}^{\circ}$ is not a total derivative.
- Why zero momentum leaf? Pulling back to a leaf of constant momentum $p=p^\circ$ (generally) gives a non-vanishing imaginary contribution $\mathrm{Ric}_{\mu\nu}^{(1,0)}\big|_{p=p^\circ}$ to the spacetime Ricci tensor. Also, n-triproducts calculated on the zero momentum leaf [Aschieri, Szabo '15] coincide with those proposed in [Munich group '11].
- Why $h(x)^{\mu\nu}=\eta^{\mu\nu}$? The simplest choice, can be extended. In relation with Born geometry [Freidel et al. '14]: in our model nonassociativity does not generates curved momentum space. Investigate $h(x)^{\mu\nu}\neq\eta^{\mu\nu}\dots$

Discussion

Our goals:

- ▶ Phenomenological consequences (*R*-flux induced corrections to GR solutions): to be investigates.
- Construction of scalar curvature, matter fields, full Einstein equations: to be investigated.
- Twisted diffeomorphism symmetry and "quantum diffeomorphisms": to be understood better.
- NA gravity as a gauge theory of Lorentz symmetry, NA Einstein-Cartan gravity: better understanding of NA gauge symmetry is needed, L_{∞} algebra? See also [Blumenhagen et al. '18].